
TE
AM
FL
Y

Team-Fly®

HTML & Web
Design

Tips & Techniques

Kris Jamsa
Konrad King

Andy Anderson

McGraw-Hill/Osborne

New York Chicago San Francisco
Lisbon London Madrid Mexico City Milan

New Delhi San Juan Seoul Singapore Sydney Toronto

Copyright © 2002 by The McGraw-HIll Companies, Inc. All rights reserved. Manufactured in the United States of
America. Except as permitted under the United States Copyright Act of 1976, no part of this publication may be
reproduced or distributed in any form or by any means, or stored in a database or retrieval system, without the prior
written permission of the publisher.

0-07-222825-3

The material in this eBook also appears in the print version of this title: 0-07-219394-8

All trademarks are trademarks of their respective owners. Rather than put a trademark symbol after every occur-
rence of a trademarked name, we use names in an editorial fashion only, and to the benefit of the trademark
owner, with no intention of infringement of the trademark. Where such designations appear in this book, they
have been printed with initial caps.

McGraw-Hill eBooks are available at special quantity discounts to use as premiums and sales promotions, or for
use in corporate training programs. For more information, please contact George Hoare, Special Sales, at
george_hoare@mcgraw-hill.com or (212) 904-4069.

TERMS OF USE
This is a copyrighted work and The McGraw-Hill Companies, Inc. (“McGraw-Hill”) and its licensors reserve all
rights in and to the work. Use of this work is subject to these terms. Except as permitted under the Copyright Act
of 1976 and the right to store and retrieve one copy of the work, you may not decompile, disassemble, reverse
engineer, reproduce, modify, create derivative works based upon, transmit, distribute, disseminate, sell, publish
or sublicense the work or any part of it without McGraw-Hill’s prior consent. You may use the work for your
own noncommercial and personal use; any other use of the work is strictly prohibited. Your right to use the work
may be terminated if you fail to comply with these terms.

THE WORK IS PROVIDED “AS IS”. McGRAW-HILL AND ITS LICENSORS MAKE NO GUARANTEES
OR WARRANTIES AS TO THE ACCURACY, ADEQUACY OR COMPLETENESS OF OR RESULTS TO BE
OBTAINED FROM USING THE WORK, INCLUDING ANY INFORMATION THAT CAN BE ACCESSED
THROUGH THE WORK VIA HYPERLINK OR OTHERWISE, AND EXPRESSLY DISCLAIM ANY WAR-
RANTY, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO IMPLIED WARRANTIES OF
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. McGraw-Hill and its licensors do not
warrant or guarantee that the functions contained in the work will meet your requirements or that its operation
will be uninterrupted or error free. Neither McGraw-Hill nor its licensors shall be liable to you or anyone else for
any inaccuracy, error or omission, regardless of cause, in the work or for any damages resulting therefrom.
McGraw-Hill has no responsibility for the content of any information accessed through the work. Under no cir-
cumstances shall McGraw-Hill and/or its licensors be liable for any indirect, incidental, special, punitive, conse-
quential or similar damages that result from the use of or inability to use the work, even if any of them has been
advised of the possibility of such damages. This limitation of liability shall apply to any claim or cause whatso-
ever whether such claim or cause arises in contract, tort or otherwise.

DOI: 10.1036/0072228253

To Bonnie,
You are, and always will be, the most important part of my life.

–Andy

To my wife Karen,
Thanks for enduring the late hours, solitary meals, missed vacations,

and especially for listening to my moans and groans about the writing
“process.” Your knowing smiles and not so gentle (but needed)

“Just Do It!” inspired me to see the project through from concept
to completion.

–Konrad

To Stephanie,
Although you have grown up to become a very special woman,

you will always be our little girl.
–Dad

About the Authors
Konrad King is an author and computer systems consultant for a wide range of clients. A former
Air Force officer, Konrad has worked with mainframes as well as PCs and PC-based networks. He
has written and worked with award-winning authors on several books on SQL database design and
implementation, Web design, and Microsoft Office software, such as FrontPage and PowerPoint.
When not writing, Konrad designs, develops, and maintains Web sites; installs and maintains networks
and enterprise software; and develops custom software applications in Visual C++, Visual Basic,
DataFlex, and various SQL database platforms. Having worked in the computer field since 1984,
Konrad is able to draw from a vast pool of knowledge about what works in the “real world” and
what does not.

Andy Anderson is a graphics artist and designer and has worked with Photoshop, Illustrator,
and most graphics arts programs for the Web since their release. An author and university professor,
Andy is also a sought-after lecturer in the U.S., Canada, and Europe. The remainder of his time is
spent developing curriculum and resource materials for various corporations and seminar companies.
His clients include designers and trainers from the U.S. government, Boeing, Disneyland, and other
Fortune 500 companies.

Kris Jamsa is the author of more than 90 computer books, with cumulative sales of several
million copies. Kris holds a bachelor of science degree in computer science from the United States
Air Force Academy, a masters degree in computer science from the University of Nevada, Las Vegas,
a Ph.D. in computer science with an emphasis in operating systems from Arizona State University,
and a masters of business administration from San Diego State University. In 1992, he and his wife,
Debbie, founded Jamsa Press, a computer- book publishing company. After expanding the company’s
presence to 70 countries and 28 languages, they sold Jamsa Press to a larger publishing house. Today,
Kris is the founder of Jamsa Media Group, which produces high-quality computer books. He is also
very active in analyzing emerging technologies. Kris lives on a ranch in Houston, Texas, with his wife
Debbie, their three dogs, and six horses. When he is not in front of his PC, Kris is normally riding
and jumping his horse Robin Hood.

Contents at a Glance

Chapter 1 HTML Basics . xxii

Chapter 2 HTML Tables . 62

Chapter 3 HTML Forms . 112

Chapter 4 Cascading Style Sheets (CSS) . 158

Chapter 5 XHTML and Emerging Trends . 220

Chapter 6 Graphics . 264

Chapter 7 Animation, Sound, and Video . 316

Chapter 8 JavaScript . 358

Chapter 9 Java Applets and ActiveX Objects . 418

Chapter 10 PHP4 . 464

Chapter 11 Active Server Pages (ASP) . 524

Chapter 12 Security and Performance . 586

Index . 637

v

For more information about this title, click here.

Copyright 2002 by The McGraw-Hill Companies, Inc. Click Here for Terms of Use.

This page intentionally left blank.

Contents

Acknowledgments, xv
Introduction, xv

Chapter 1 HTML Basics . xxii
Downloading and Installing the Personal Web Server . 16
Managing the Personal Web Server and Publishing Your Web Pages . 18
Describing Web Page Contents with a Title . 21
Identifying Web Documents Using the Document Type Definition . 23
Inserting Comments into a Web Document . 24
Specifying the Typeface for Web Page Text . 26
Controlling the Flow of Text with Paragraph and Line Break Tags . 27
Changing the Size of Text Using Heading Level Tags and the Font Tag size Attribute 32
Changing the Color of Text in an HTML Document . 33
Adding Graphics to a Web Page Using a Basic Tag . 35
Changing the Alignment of Text and Graphics . 37
Adding a Hypertext Link to a Web Page . 40
Enhancing Individual Letters and Words Using Character Formatting Tags 41
Using Symbols and Special Characters in an HTML Document . 42
Using Horizontal Rules to Organize Web Content . 44
Using Blockquote Tags to Control Left and Right Text Margins . 47
Creating Ordered and Unordered Lists . 48
Creating Nested Lists . 51
Creating Definition Listings . 52
Using Preformatted Text Tags to Control the Display of Web Content . 54
Displaying a Navigation Menu Within a Web Page Frame . 56
Displaying Multiple Web Pages Onscreen at the Same Time . 57

vii

For more information about this title, click here.

Copyright 2002 by The McGraw-Hill Companies, Inc. Click Here for Terms of Use.

Chapter 2 HTML Tables . 62
Creating a Table with Cells that Span Multiple Columns or Multiple Rows . 72
Working with Table and Cell Border Widths . 75
Working with Table and Cell Border Colors . 76
Working with Background Images and Colors . 78
Determining a Color Attribute’s Value . 81
Working with Cell Padding and Cell Spacing . 83
Setting Table Dimensions Using Relative or Absolute Values . 84
Setting Cell Dimensions Using Relative or Absolute Values . 85
Aligning Cell Content Horizontally and Vertically . 86
Aligning a Table on a Web Page . 89
Controlling the Width and Height of a Cell by Inserting a Transparent GIF 89
Wrapping Text Around an Image . 91
Displaying a Gallery of Thumbnails Within a Table . 93
Creating Bullets and Lists with Tables and Graphics . 96
Creating a Navigation Sidebar Using a Table . 97
Adding Images and Links to Table Cells . 98
Nesting Tables to Control Borders on a Web Page . 99
Approximating an Image Map by Placing Pieces of an Image Within a Table 100
Slicing a Graphic Image into Table Cells to Create a Quick-Loading Web Graphic 102
Reducing the Amount of Time a Web Browser Spends Drawing a Table . 103
Simulating Web Page Frames Using a Table . 104
Focusing the Viewer’s Attention with Cell Background Colors . 107
Aligning Web Page Content Visually with Visible Table Borders . 108
Controlling Gutter Size and Margin Width of Text on a Web Page . 110

Chapter 3 HTML Forms . 112
Creating a Single-Line Input Field on a Form . 119
Creating a Multiline Input Field on a Form . 120
Validating Text Element Data Prior to Submitting Form Results . 122
Placing Check Boxes on a Form . 124
Placing Radio Buttons on a Form . 126
Validating Radio Button Group Selections Prior to Submitting Form Results 128
Placing a Drop-Down List (Selection Menu) on a Form . 129
Verifying the Visitor Has Made a Selection List Choice Prior to Submitting Form Results 132
Changing the Items Available on a Selection List Based on Visitor Supplied Information 134
Sending All Selection List Values to the Web Server Through a Hidden Field 136
Adding a Reset Button to a Form . 138
Preventing a Visitor from Clearing Form Elements Accidentally . 139
Adding a Submit Button to a Form . 140

v i i i H T M L & W e b D e s i g n T i p s & T e c h n i q u e s

Replacing the Standard Submit and Reset Buttons on a Form with Other Graphics Images 141
Sending Form Results by E-Mail Without a CGI Script . 143
Controlling the Layout of Form Elements and Text with HTML Tables . 145
Creating a Shortcut Key for Form Navigation with a <label> Tag . 148
Instructing the Web Browser to Execute a Form Validation Function with the onClick Attribute 149
Passing Values to the Web Server Through Hidden Fields . 151
Hiding Visitor Input from View Within a Password Element . 152
Adding a Generic Button Object to a Form . 153
Enabling and Disabling Form Elements on-the-Fly . 154

Chapter 4 Cascading Style Sheets (CSS) . 158
Applying Multiple CSS Rules to a Single Selector . 170
Selecting a Typeface with the font-family Property . 172
Specifying the Size of Text with the font-size Property . 174
Creating Overlapping Text . 177
Aligning Web Page Text . 179
Controlling Margins and Line Height . 181
Displaying Text Within Columns . 183
Working with Borders . 186
Indenting Paragraphs and Controlling Letter, Word, and Line Spacing . 188
Offsetting Text with Initial Caps . 189
Customizing the Appearance of Hyperlinks . 191
Creating a Drop-Shadow Effect . 192
Applying a Border Graphic . 194
Positioning Background Images and Watermarks . 196
Floating Images and Text . 199
Customizing the Appearance of Lists . 201
Creating Text and Image Effects with Filters . 203
Aligning Labels with Form Elements and Adding Color to Forms . 206
Displaying a Gallery of Thumbnails with Captions . 209
Controlling the Cursor . 212
Layering Web Page Elements . 214
Sending Your Style Sheet Through a Validator . 216

Chapter 5 XHTML and Emerging Trends . 220
Converting HTML to XHTML Using HTML Tidy . 233
Selecting the Correct DOCTYPE for Your Web Page . 237
Validating Your Web Page with an XHTML Validator . 238
Setting the Text Size on an XHTML Web Page with Keywords . 242
Grouping an XHTML Form’s Selection List Items with the <optgroup> Tag 245
Adding Color to XHTML Tables with Cascading Style Sheet Rules . 247

C o n t e n t s i x

Embedding Fonts Within an XHTML Web Page with CSS Rules . 249
Inserting an XHTML Page Within Another with an Inline Frame . 251
Updating Multiple XHTML Page Inline Frames at Once . 255
Changing XHTML Page Appearance Based on Media Type . 257
Controlling the Way the Web Browser Prints an XHTML Web Page . 261

Chapter 6 Graphics . 264
Working with Cross-Platform Issues When Creating Graphics Images for the Web 274
Specifying Image Dimensions Within an Image Tag . 277
Working with the alt Attribute and Text-Only Viewers . 278
Creating a Tool Tip by Inserting a title Attribute in an Image Tag . 281
Compressing Photographs into a JPEG File . 283
Saving Clip Art and Text to a GIF-Formatted File . 286
Making Images Appear to Load Faster . 288
Working with the PNG-8 and PNG-24 File Formats . 290
Converting Graphics into Web Images with Image-Editing Programs . 291
Creating Web-Friendly Graphics Images on Your Scanner . 292
Creating Colorful Horizontal Rules . 294
Retrieving a Fast-Loading “Teaser” Image with the lowsrc Attribute . 296
Ensuring Accurate Color Presentation with the Web-Safe Color Palette . 298
Creating Graphical Hyperlink Anchors . 300
Creating Tiled Backgrounds from Graphics Images . 301
Creating Transparency in a GIF Image . 304
Retrieving Full-Size Images after Clicking on Thumbnails . 307
Preloading and Caching Images Behind the Scenes . 309
Expanding the Web-Safe Color Palette with Dithering Techniques . 311
Smoothing the Edges of Text Converted into a Graphic Through Anti-Aliasing 313

Chapter 7 Animation, Sound, and Video . 316
Creating a GIF Animation from Scratch . 334
Controlling GIF Animation Through Internal Settings . 336
Creating a Banner Ad Using GIF Animation . 338
Creating Smooth Transitions Between GIF Animation Frames Using Tweening 341
Incorporating a Completed Flash Splash Screen into a Web Site . 342
Creating a Flash Movie from Scratch . 345
Building Text-Based Animations Using FlaX . 348
Broadcasting Streaming Audio and Video . 348
Creating Your Own Streaming Media . 351
Creating a Page that Features a Web Cam . 352
Integrating Video and Audio into a Web Site Using SMIL (Smile) . 354

Chapter 8 JavaScript . 358
Handling Older Browsers that Do Not Support Scripts . 370
Storing Multiple Values in One Variable by Using JavaScript Arrays . 371

x H T M L & W e b D e s i g n T i p s & T e c h n i q u e s

TE
AM
FL
Y

Team-Fly®

Letting a Script Make Decisions and Process Accordingly . 372
Making Decisions Based on Two or More Conditions . 374
Executing Code When a Condition Is Not True . 375
Repeating Statements a Specific Number of Times . 376
Repeating Statements While a Condition Is True . 377
Responding to JavaScript Events . 378
Executing JavaScript Statements Within the Body of a Web Page . 380
Calling a User-Defined JavaScript Function . 382
Calling JavaScript Functions Within an Event Handler . 384
Looking Closer at JavaScript Event Handlers . 385
Creating an Interactive Navigation Bar with a Mouseover Effect . 388
Taking Advantage of the Scripting Object Model Arrays . 390
Referring to Web Page Objects by Name Instead of Position Number . 392
Leveraging the Contents of the Document Object . 393
Taking Advantage of the JavaScript Images Array . 396
Exploiting the JavaScript Links Array . 398
Changing Web Page Colors Using JavaScript . 401
Storing a Cookie on the Visitor’s Hard Drive . 402
Formatting Cookie Data Using JavaScript . 404
Retrieving a Cookie Value from the Cookie File . 406
Removing a Cookie from the Cookie File . 407
Saving Time and Programming by Using Prewritten (External) Scripts . 409
Creating an Animation Using the onLoad Event . 410
Displaying Self-Changing Banners Using JavaScript . 411
Pointing Hyperlinks to New Files On-the-Fly . 413
Pre-caching Pictures to Reduce Image Display Time . 415
Creating a Scrolling Marquee Using JavaScript . 416

Chapter 9 Java Applets and ActiveX Objects . 418
Using an Applet to Create a Pop-Up Navigation Menu . 437
Using an Applet to Animate a Text String . 440
Using an Applet to Display and Print a Calendar for Any Year . 442
Using an Applet to Display a Passage at Random from a Text File . 443
Using an Applet to Create a Navigation Menu that Runs in Its Own Window 444
Using an Applet to Scroll the Contents of a File Vertically Within a Rectangular Box Onscreen 448
Using an Applet to Animate an Image Along a Sine Wave . 450
Editing Java Source Code to Build a Custom Applet . 452
Using the Microsoft Chat ActiveX Control to Add Internet Chat to a Web Page 457
Using Only ActiveX Objects with Internet Explorer . 460

Chapter 10 PHP4 . 464
Sending Data from an HTML Form to a PHP Script . 484
Using PHP to Parse and Extract Form Results . 488

C o n t e n t s x i

Using PHP to Send an E-Mail Message . 491
Determining Whether a Visitor’s Web Browser Accepts Cookies . 493
Using PHP and a Disk File to Set Up Username/Password Access to a Web Site 496
Preventing Visitors from Linking Directly to Pages on Your Site . 498
Using a PHP Session to Establish a Persistent Connection Between a Site Visitor and the Web Server 499
Creating a MySQL Database and Tables . 502
Displaying SQL Query Results in an HTML Table on a Web Page . 504
Using PHP to Generate a Random Password . 507
Using PHP and MySQL to Set Up Username/Password Access to a Web Site 509
Preventing Visitors from Changing Variable Values with URL Arguments . 511
Using PHP and MySQL to Track Where Visitors Go on Your Web Site . 512
Determining the Visitor’s IP Address for Web Page Requests Sent Through a Proxy Server 514
Preventing One Visitor from Assuming Another Visitor’s PHP Session Identity 516
Using PHP Functions to Create Web Page Templates . 517
Using PHP to Add File Upload Functionality to a Web Page . 520

Chapter 11 Active Server Pages (ASP) . 524
Controlling the Flow of Content from Web Server to Web Browser Through the HTML Output Stream 539
Preventing the Web Browser from Displaying Stale Active Server Pages . 543
Redirecting the Web Browser to Another Web Page . 545
Maintaining Variable Values Between HTTP Requests with the Cookies Collection 547
Retrieving Form Results from the ASP Form Collection . 550
Retrieving Form Results from the ASP QueryString Collection . 553
Retrieving Information from the Server Variables Collection . 556
Connecting to a MySQL DBMS Through the MyODBC Driver . 559
Setting Up Username/Password Access to a Web Site . 562
Starting a Session and Working with Session Variables . 565
Executing SQL Queries and Displaying Query Results Sets Within an HTML Table 568
Displaying Banner Ads with the Microsoft Banner Ad Rotator . 573
Tracking Microsoft Banner Ad Rotator Impressions and Click-Throughs . 576
Handling “Status: 404 Not Found” Errors . 580

Chapter 12 Security and Performance . 586
Downloading and Installing a Public Key, Digital Signature, and Server ID . 600
Creating a Secure Web Page Under IIS . 601
Installing a Software-Based Firewall . 603
Fine-Tuning a Firewall’s Port Assignments . 605
Reducing Your Site’s Exposure to Viruses . 607
Improving Performance and Security by Disabling Printer and File Sharing 610
Using Client Certificates to Restrict User Access . 612
Auditing System Events to Detect Intruders . 614
Exploiting the NTFS File System . 617
Disabling Remote Services . 620

x i i H T M L & W e b D e s i g n T i p s & T e c h n i q u e s

Analyzing Your System’s Vulnerability . 623
Processing Credit Card Data . 625
Taking a Close Look at a Web Site’s Performance Chain . 625
Creating a Web Farm . 631
Monitoring Server Performance . 631

Index . 637

C o n t e n t s x i i i

This page intentionally left blank.

Acknowledgements
It’s nearly impossible to thank everyone who is involved in the process of taking an author’s
manuscript from concept to book form. Please take a moment and turn to page near the front of the
book that lists the Osborne team that brought this book together. This book’s quality content is
a direct result of their hard work and dedication.

We’d also like to thank this book’s technical editors Charles Hornberger and Wendy Willard for
their candor and selfless content contributions. Their insights greatly improved the book’s quality.
And, we’d like to thank Jim Schachterle for his support throughout this project and our project editor,
Janet Walden, for pulling together all the pieces.

Introduction
Analysts now estimate that across the Internet, over 100 million domain names are in use
(for Internet statistics, visit http://www.nua.com/surveys). With fast DSL and cable-modem
connections available to the masses, and with companies offering low-cost Web hosting, tens of
millions of users are now creating personal Web sites. Further, with the estimates of online users
now exceeding 500 million (and with that number growing at a rate of 7 percent per month!), Web
developers must find ways to exploit new technologies to attract and capture the attention of users as
they “surf” the Web.

Throughout this book’s chapters, you will learn ways to put Web technologies immediately to
use on your Web pages. Each chapter presents ways you can quickly integrate a technology, such as
dynamic content, security, database access, as well as client-side and server-side processing. You will
first learn a technology’s fundamentals and the best ways to exploit the technology within your Web
pages. Then, you can take advantage of ready-to-use solutions you can simply cut-and-paste into your
Web pages. Finally, you will examine behind-the-scenes settings and techniques you can use to unlock
your Web site’s full potential.

If a fast, state-of-the-art, eye-catching Web site is your goal, this book will help you achieve it.

xv
Copyright 2002 by The McGraw-Hill Companies, Inc. Click Here for Terms of Use.

Who Should Read This Book
Across the Web, millions of users and professional Web developers work with Web pages daily. To
simplify their efforts, many Web developers rely on numerous Web development software programs
to help them with Web page design. Unfortunately, to exploit new Web technologies fully and to drive
Web site performance, developers must at some point roll up their sleeves and dig into HTML tags,
attributes, Cascading Style Sheet rules, JavaScript, Active Server Pages, PHP, and more.

Despite the vast number of sites that make up the World Wide Web, you would be hard pressed to
find a Web developer who would not be happier if his or her site were faster, more secure, or easier
to manage. Further, the users who visit sites not only want entertaining and current content, but also
want that content to download quickly. Most users assume that the sites that present themselves as
secure truly are secure. Regardless of the content you place on a Web site, users expect quality, speed,
and security.

This book examines hundreds of ways Web developers can improve their site’s performance,
security, content, and ease of management. You do not have to be an experienced programmer or
network administrator to perform the operations this book presents. Each Tip presents step-by-step
instructions you can easily perform, as well as solutions you can cut-and-paste into your Web pages.
Within the books chapters, you will learn:

• The HTML fundamentals you must know to create your first Web site, and the steps you must
perform to host that site on the Web

• Ways you can use HTML-based tables to organize information you present on a Web page, and
how to use tables to arrange text and graphics

• How you can use Cascading Style Sheets to gain full control of text formatting within a Web page
and to simplify future updates

• How XHTML differs from HTML, new XHTML capabilities you can exploit within your
pages, as well as ways you can migrate your HTML pages to XHTML

• Techniques you can use to better exploit graphics within your Web pages while reducing the
time users must wait for images to download

• How to create dynamic Web page content using PHP and Active Server Pages

• Behind-the-scenes operations you can perform to use HTTP and CGI settings to automate
solutions that exploit your user’s browser type, connection speed, and more

• Ways you can secure your system from hackers and identify potential security holes in your
system that malicious users can exploit

• How you can integrate e-commerce solutions and credit card processing into your Web site

• And much more!

What You Need to Perform the Techniques We Present
This book presents a myriad of ways you can improve your Web site’s content, performance, security,
and ease of management. Within each chapter, you will find operations you can immediately perform
on your Web site.

x v i H T M L & W e b D e s i g n T i p s & T e c h n i q u e s

To take advantage of the techniques we present, you do not need high-end software or other
graphics arts tools. You simply need to spend five to ten minutes performing the Tip’s step-by-step
instructions. The Tips will help you download from the Web (for free!) any tools that you will need.

For high-end Web developers and programmers, this book examines ways you can use scripts
to access many low-level operations. Each programming language this book presents is built into
browsers, servers, or is readily available for download from the Web. If you have not programmed
in these languages before, do not worry. Each chapter’s introduction will provide the foundation
you will need to exploit the language.

What This Book Covers
This book contains 12 chapters. Each chapter examines a specific Web technology, programming
language, or design technique. Within each chapter, you will find a thorough discussion of a technology
or language followed by Tips you can quickly perform to enhance your Web pages and the overall
design and performance of your Web site.

Chapter 1: HTML Basics To start, this chapter lays the foundation that designers new to Web
development need to exploit the techniques they will learn throughout the remainder of the book.
Designers will learn how to create HTML pages, how to display pages from files that reside on their
own PC, and then how to use a Web server to make their pages available to visitors across the Web.

Chapter 2: HTML Tables Within a Web page, tables provide designers with a powerful way to organize
large amounts of data for display onscreen. Many Web designers also use tables to gain better control
over the alignment of text and graphics that appear on a page. A designer might, for example, use tables
to flow text around an image. In addition, a Web page may present a table of thumbnail images from
which users can select the pictures that they want to download as a larger graphic.

Chapter 3: HTML Forms Across the Web, millions of sites use forms to interact with visitors. Forms
may ask the visitor to provide a wide range of information, such as a shipping address, personal data,
or credit card numbers for purchases. In addition, forms let visitors search for specific products, services,
or content available at the site, or perhaps elsewhere on the Web. Developers create forms using
HTML tags. After the user submits his or her information, the Web server runs a special program
(which developers call a script) that processes and likely stores the data. In this chapter, you will
learn how to create forms using HTML, how to validate the information a user enters using JavaScript,
and then how to process the data the user submits.

Chapter 4: Cascading Style Sheets (CSS) Within a Web page, developers use a wide range of HTML
tags to format text, graphics, and links. Using only HTML tags, such for bolding, <i> for italics,
and so on, a Web developer can format Web page text as he or she desires. Unfortunately, if the
formatting must later be changed, the developer must change numerous tags. Cascading Style Sheets
make Web sites much easier to manage. Using Cascading Style Sheets, Web developers can assign
font, color, alignment, and many other attributes to the text that appears on a page. If the developer
must later change the page appearance, he or she can simply change the style definition and the
changes will immediately appear within the styled text. Further, for Web designers looking for

I n t r o d u c t i o n x v i i

high-end designs, Cascading Style Sheets allows precise positioning and even stacking text and
graphics to create countless effects.

Chapter 5: XHTML and Emerging Trends To ensure that your Web pages work and look the way you
want them to in the next generation of Web browsers, you must adhere to the World Wide Web
Consortium’s recommendations. When followed carefully, the “rules” within the XHTML standard
prevent you from creating Web pages with improper syntax, missing or proprietary tags, and invalid
attributes. By avoiding such bad code, you ensure your Web pages will look great and will work with
all standard Web browsers. Moreover, by guaranteeing the correctness of your Web page description
(by making it compliant with the XHTML standard), you allow browser manufacturers to omit code
designed to “guess” the intentions of malformed HTML. Browsers designed to run on non-PC devices
(such as cell phones, palm organizers, onboard computers within cars, and so on) must be small, because
these devices have limited memory capacities. This chapter shows you how to run an application
(HTML Tidy) which checks your Web page HTML, corrects any errors, and converts your HTML
to XHTML. You will also learn how to use online validation programs that check new Web pages
you create to ensure they comply with the XHTML standard. Then you will find Tips that show you
how to extend the capabilities of the markup language by adding new tags and attributes, as well as
Tips that let you detect the user’s browser type so your pages display quickly and correctly in browsers
running on non-PC devices.

Chapter 6: Graphics Across the Web, pages make extensive use of graphics. Unfortunately, many
sites that offer great visuals lose impatient visitors who are not willing to sit through long download
times. In this chapter you will learn techniques, such as caching and preloading, you can use, as well
as settings you can fine-tune to reduce image download times. You will also learn about the various
graphics file formats and when you should use each. Further, the chapter discusses color palettes and
ways you can ensure your content is “Web friendly.” Finally, graphics professionals will learn ways
to simplify the migration of images to the Web.

Chapter 7: Animation, Sound, and Video With high-speed cable-modem and DSL connections
becoming readily available, many Web sites use animations, background music, and video to capture
users’ attention. In this chapter, you will learn how to integrate a range of animations, from simple
animated graphics to high-end Flash animations. Further, you will learn how to play background
music as users view your pages and how to deliver streaming video content on demand. Finally,
you will learn how to broadcast audio (just as a Web-based radio station) from your Web site.

Chapter 8: JavaScript JavaScript is a programming language Web designers can use to automate
tasks within a Web page. Web developers place JavaScript statements within the HTML tags that
define a Web page. The JavaScript statements may, for example, validate the information the user
entered into a form. (The program or script may ensure each field has a value or that the values
appear correct and meaningful.) Or, JavaScript statements may perform specific processing as the
user performs operations on the page. For example, you might use JavaScript to display a pop-up
window that contains help text when a user clicks on a help link. Just as the user’s browser displays
the contents of an HTML page, the browser also executes the JavaScript statements. In this chapter,

x v i i i H T M L & W e b D e s i g n T i p s & T e c h n i q u e s

you will first learn how to create simple JavaScript applications. Then, you will examine many
JavaScript solutions that you can cut-and-paste into your own Web pages.

Chapter 9: Java Applets and ActiveX Objects For years, programmers have used the Java programming
language to create applets that can run on a variety of platforms; meaning, the same Java applet can
run under Windows, Linux, and on a Mac. Java applets provide programmers a way to automate tasks
without introducing the risk of computer viruses to users who download the applets. Across the Web,
there are countless “generic” Java applets you may want to leverage within your own pages. In this
chapter, you will learn how to integrate Java applets into your HTML content. Further, the chapter
examines how to provide support for ActiveX objects for Windows-based sites. Unlike Java applets,
which do not provide security risks to the users that download them, ActiveX objects do not restrict
the operations the code can perform. Therefore, it is important that you only integrate ActiveX
objects you received from reputable developer sites that contain certificates of authentication.
Chapter 9 details the precautions you should take.

Chapter 10: PHP4 PHP is a programming language that developers use to create dynamic (changing)
Web page content on-the-fly. Using PHP, for example, you can customize your Web page content
based on the information a user provides within a form, or perhaps based on information you glean
from a cookie your site previously stored on the user’s disk. Across the Web, over 1,000,000 sites use
PHP to create dynamic Web pages. Before you can take advantage of PHP, you must download and
install a PHP processor on your system. This chapter will walk you through the installation process.
Then, you will learn how to create simple PHP-based applications. As discussed, PHP is a programming
language and the chapter’s introduction will lay the foundation you need to create, test, and debug
PHP programs. Then, the Tips section will present several PHP-based solutions you can put to immediate
use within your Web pages.

Chapter 11: Active Server Pages (ASP) Like PHP, Active Server Pages provide a way for Web
developers to create on-the-fly content. To create an Active Server Page (a dynamic Web page), you
can use a myriad of programming languages that include VBScript, JScript (the Microsoft version of
JavaScript), PerlScript, Python, Rexx, and more. This chapter lays the foundation from which you
can develop your own Active Server Page solutions. In addition, the chapter’s Tips provide solutions
to a range of common Web page needs, such as creating and processing cookies, processing forms,
interacting with databases, using usernames and passwords to control site access, displaying and
tracking banner ads, and more.

Chapter 12: Security and Performance This year, hackers and computer viruses will cost users and
businesses over 12 billion dollars! In this chapter, you will learn steps you should take immediately
to protect your site. If you are not currently using a firewall to protect your site (or simply your PC),
you will learn how to download, install, and configure a site. You will also learn how your choice
of file system (the software the operating system uses to store files and directories on your disk) can
affect your ability to protect files (using permissions and encryption). Further, the chapter presents
the steps you must perform to create secure transmissions (that exchange packets behind the scenes
using encryption), and how to perform credit card transactions. Finally, the chapter looks at ways
you can improve your site’s performance.

I n t r o d u c t i o n x i x

How to Read This Book
Although this book’s chapters build on the information presented in preceding chapters, we
structured the book so that you can turn to any Tip and find the information you need.

To help you quickly locate the information you need, at the start of each chapter, we have included
a list of the specific Tips that chapter presents. If you need more information on a topic, each chapter
provides introductory text that will give you a solid foundation.

As you scan through the book’s pages, watch for the Use It icon, which highlights
specific steps within each Tip that you can perform immediately to accomplish a task.

Using This Book’s Companion Web Site
Throughout this book’s chapters, we will present numerous HTML files, Active Server Pages,

JavaScript code, PHP solutions, and much more. In many cases, you can simply cut-and-paste the
solutions we present into your own Web pages. All of this book’s files are readily available from
the McGraw-Hill/Osborne Web site at http://www.osborne.com.

x x H T M L & W e b D e s i g n T i p s & T e c h n i q u e s

TE
AM
FL
Y

Team-Fly®

CHAPTER 1

HTML Basics

TIPS IN THIS CHAPTER

� Downloading and Installing the Personal Web Server 16

� Managing the Personal Web Server and Publishing Your Web Pages 18

� Describing Web Page Contents with a Title 21

� Identifying Web Documents Using the Document Type Definition 23

� Inserting Comments into a Web Document 24

� Specifying the Typeface for Web Page Text 26

� Controlling the Flow of Text with Paragraph and Line Break Tags 27

� Changing the Size of Text Using Heading Level Tags and the Font Tag size Attribute 32

� Changing the Color of Text in an HTML Document 33

� Adding Graphics to a Web Page Using a Basic Tag 35

� Changing the Alignment of Text and Graphics 37

� Adding a Hypertext Link to a Web Page 40

� Enhancing Individual Letters and Words Using Character Formatting Tags 41

� Using Symbols and Special Characters in an HTML Document 42

� Using Horizontal Rules to Organize Web Content 44

� Using Blockquote Tags to Control Left and Right Text Margins 47

Copyright 2002 by The McGraw-Hill Companies, Inc. Click Here for Terms of Use.

1

Hypertext Markup Language, or as it is more commonly known, HTML, is the computer
language at the heart of the World Wide Web. When you create a Web site, you use HTML

to put the text, pictures, animations, and perhaps video and sound onto the individual Web pages that
make up the site. In addition, HTML lets you insert hypertext links and interactive buttons that connect
your Web pages to other pages on your Web site and on other Web sites around the world. Web design
is a creative process, and HTML is simply one of the tools (the page description language) you use to
produce Web pages.

HTML is a text markup and not a programming language. In theory, a Web page you create using
HTML should be viewable by anyone with a computer, any Web browser, and access to the Internet.
In reality, the ability to view all the content on a Web page depends on the capabilities of your Web
browser. Web browsers are programs that interpret the HTML in Web page documents and display
text, pictures, and animations on the visitor’s computer screen. Either alone or with the help of other
installed programs, browsers also play back any video and sound files you use HTML to insert on
a Web page. The latest versions of the two most popular Web browsers, Microsoft’s Internet Explorer
and Netscape’s Netscape Navigator, can display just about anything you can use HTML to put onto a
Web page.

For visitors to access Web pages on your Web site, they must first connect to the Internet and start
a Web browser. After the Web server sends a Web page to the visitor’s computer, the Web browser
interprets the HTML in the Web page file and displays the file’s contents as text and graphics images
in the browser’s application window.

Web servers and Web browsers use the HyperText Transport Protocol (HTTP) to communicate.
Among other things, the HTTP protocol specifies both the way in which Web browsers and servers
send messages and the structure of the messages themselves. A thorough discussion of the various
HTTP message types and structures is beyond the scope of this book. However, to design and create
even complex Web sites, you need only a basic understanding of the HTTP request and response stream
(between Web browser and Web server) illustrated in Figure 1-1.

� Creating Ordered and Unordered Lists 48

� Creating Nested Lists 51

� Creating Definition Listings 52

� Using Preformatted Text Tags to Control the Display of Web Content 54

� Displaying a Navigation Menu Within a Web Page Frame 56

� Displaying Multiple Web Pages Onscreen at the Same Time 57

1. Each time you enter a Web address (such as http://www.NVBizNet.com) into your browser’s
Address field and press ENTER, the Web browser sends an HTTP request for a file over the
Internet to the Web server.

2. After it receives the HTTP request for a file, the Web server retrieves the requested file and
sends the Web page to the Web browser.

3. The Web browser analyzes the Web page file to determine if there are any inserted files (such
as graphics, animations, sounds, and so on) that the browser needs from the Web server.

4. The Web browser sends multiple HTTP requests (one for each file the browser needs) to the
Web server.

5. As the Web server receives the HTTP requests for files, the server finds each file and sends
the files (one file per HTTP request) to the Web browser.

6. The Web browser takes the original Web page files, follows the instructions given by the
HTML tags in the file to combine the Web page and the inserted file contents into a Web
document the browser displays onscreen.

Understanding the Roles of Web Browsers and Web Pages
To keep up with the changing market, and to make the Internet available to all, Microsoft and
Netscape have made versions of their Web browsers for all commercially available computer

2 H T M L & W e b D e s i g n T i p s & T e c h n i q u e s

Figure 1-1 A Web server handling a request for Web content

platforms and operating systems. Because the Web browser must interpret the HTML code in order
to display the Web page onscreen, the brand and version of browser used by visitors to your Web
site determine which features in HTML will work for them. In short, the version of the browser used
determines what the visitor will see onscreen. Therefore, using HTML’s latest, most advanced features
and page formatting capabilities in your Web page design does not guarantee that everyone viewing
the page will be able to see everything that HTML lets you put on the page.

When you design a Web page, keep in mind that not all your site visitors will be using the latest
version of Internet Explorer or Netscape Navigator. Stick with the basic HTML you will learn in this
chapter for the majority of the content you place on your Web pages. Then, use some of HTML’s more
advanced features to add pizzazz and keep site visitors coming back for another look. By combining
basic and advanced HTML capabilities on the same page, you make it possible for everyone to access
the important information you want to publish and for those with the latest browsers to have a truly
memorable experience.

A Web page consists of a series of HTML instructions that you can enter into a file using any text
editor. As mentioned previously, Web browsers such as Netscape Navigator and Internet Explorer follow
the instructions in the text document you create to display the Web page content onscreen. (Web page
content is the text, graphics, and other things [such as video and sound] that you use HTML to place
on a Web page.)

If you think creating a Web page document is easy, you are right. In fact, Web site creation began
with the simplest of intentions. The original HTML standard described an uncomplicated, easy-to-learn
language that let you create text-only documents, which were viewable by anyone who had access to
the Internet. Although the HTML standards committee, the World Wide Web Consortium (or W3C),
has added many new instructions (called tags and attributes) to the HTML language, you can still
create even the most feature-rich Web page by typing simple HTML commands into a document
you create with a text editor (such as Windows Notepad). You can visit the W3C’s Web site at
http://www.w3.org/ for a complete description of various Internet technologies including HTTP,
HTML, Extensible Hypertext Markup Language (XHTML), Extensible Markup Language (XML),
Cascading Style Sheets (CSS), and so on.

Now that you know what a Web page is and (in general terms) how to create one, let’s
take a quick look at some Web page HTML. If you do not have a permanent (that is, always-on)
connection to the Internet, establish a dial-up connection through your ISP. Next, start your Web
browser and display your favorite Web page by entering the URL (Uniform Resource Locator;
that is, the Web page address) into your Web browser’s Address field. For example, you might
type http://www.Osborne.com in the browser’s Address field. Then, press ENTER.

The Web browser, in turn, will send an HTTP request to the Web server for the Web page whose
address you entered. After the Web server responds by sending the Web page to your browser, the
browser will display the page onscreen and request any embedded objects (such as graphics images)
inserted on the page. After your browser has retrieved and displayed all the page content, select
View | Source to display the HTML used to describe the page. (If you are using Netscape Navigator,
select View | Page Source.) Internet Explorer, in turn, will use Windows Notepad to display the Web
page HTML, whereas Netscape Navigator simply displays the HTML statements in a new window
onscreen. Do not worry about what the individual HTML statements mean; you will learn all about
them as you read this book. For now, the important point to remember is that you can view the source
of any Web page.

C h a p t e r 1 : H T M L B a s i c s 3

HTML Container Tags
Essentially, a Web page is a text file that contains instructions in the form of HTML codes (called
tags) and attributes. The tags are the commands the Web browser later follows to format the text and
insert the graphics images you want on the Web page. Some, but not all, HTML commands require
both a start and an end tag. Those that do are called container tags, because the instruction in the start
tag applies to everything the Web page contains between the start tag and the end tag.

Each HTML command (that is, each HTML tag) starts with a less-than sign (<) followed by the
tag’s name and any attributes, and ends with a greater-than sign (>). To create an end tag for a start
tag, you insert a forward slash (/) in front of the tag’s name. Thus, a start tag has the form <tagname
[attributes]> and an end tag has the form </tagname>. The tag’s name tells the Web browser the tag’s
purpose; the attributes (if any) that follow the tagname give the Web browser additional information
the browser needs to carry out the tag’s instructions.

For example, the following code illustrates how the start and end paragraph tags (<p> </p>) enclose,
or contain, a section of text. In this example, the <p> tag instructs the Web browser to display the text
up to the </p> tag using the default formatting rules:

<p> This is an example of paragraph text. </p>

If you want the browser to display the paragraph text using a specific font and color, you would add
attributes that specified such things as the color, typeface, size, and so on to a tag that follows
the <p> tag and precedes the text whose look you want to specify. (You will learn about attributes
after you read more about tags in the next two sections.)

HTML Section Tags
To organize the various parts of the HTML that describes a Web page, you use a set of section tags.
The types of HTML tags in each section of the Web page definition have a specific purpose:

• <html> </html> These occur at the start and end of an HTML document. As such, start and
end HTML tags enclose all the other HTML tags you use to describe the Web page.

• <head> </head> Start and end header tags immediately follow the start HTML tags (<html>)
and denote the Web page header. You can use tags in the Web page header to include such
information as the name of the author and the date the author created the page. In addition,
you insert tags with information that describes your page so that Web search engines can add
references to your page to their search indexes. Of the HTML tags and information you place
in the header section, the visitor’s browser displays only the Web page title. You insert the Web
page title in the header section between start and end title tags (<title></title>), as shown in the
code sample that follows this list of section tags.

• <body> </body> Start and end body tags immediately follow the Web page header section
and denote the Web page body. The body section of the Web page contains the tags that tell the
Web browser what to display onscreen and how you want it to look.

The following code illustrates the correct placement of the HTML section tags:

4 H T M L & W e b D e s i g n T i p s & T e c h n i q u e s

<html>

<head>

<title> The Web Page's Title </title>

</head>

<body>

Text content and body tags inserted here

</body>

</html>

Note that you can write HTML tags as all uppercase, all lowercase, or a combination of the two,
because Web browsers are currently case-insensitive. However, standards such as the XHTML and
XML specification require that you use lowercase tags—even if Web browsers continue to support
both lower and uppercase tags for a time. As such, write all your HTML tags and attributes in lowercase.
That way, as Web browsers force Web designers to comply with newer standards, the Web browsers
will still render correctly the Web pages you create now.

HTML Empty Tags
In addition to container tags (refer to “HTML Container Tags” earlier in this chapter), HTML uses a
second type of tag called an empty tag. Whereas container tags enclose page content, such as a line of
text within a start and end tag, empty tags do not require an end tag. Think of an empty tag as a single
command or statement such as “go here” or “do this.” For example, the following HTML code uses
the line break tag (
) to instruct the Web browser to drop down to the next line before displaying
the next item on the page (in this example, a second line of text):

<html>

<head>

<title> Example of the line break tag </title>

</head>

<body>

<p> This text is displayed on line one

This text is displayed on line two </p>

</body>

</html>

Creating a Web Page
HTML text documents are actually quite simple to create. To create an HTML document, you open a
text-editing program and then type in the HTML code. After you have entered the HTML statements,
you save your document as a text file with an .htm or .html extension. For example, start your favorite
text editor (such as Windows Notepad) now, and enter the following HTML:

<html>

<head>

<title>Example of a Simple HTML Document</title>

C h a p t e r 1 : H T M L B a s i c s 5

</head>

<body>

<p>HELLO WORLD! Here I am.</p>

</body>

</html>

Now, save your work to a Web page file (that is, a file with an .htm or .html extension) on your
hard drive. Because you will likely download from the Osborne Web site or enter into your text
editor and save many of the Web pages you encounter throughout this book, create a folder (such as
C:\HTMLExamples) in which to store the Web pages. Then, save the code you entered for this example
as TestPage.htm in the folder you create.

To take your first Web page for a test drive, start your Web browser, and type File:// followed
by the drive letter and pathname of your Web page into the browser’s Address field. For example,
if you saved the Web page in this example as TestPage.htm in the C:\HTMLExamples folder, type
File://c:/HTMLExamples/TestPage.htm into the browser’s Address field. Then, press ENTER. Your
Web browser, in turn, will display the Web page shown in Figure 1-2. That is all there is to it! You are
now officially a Web page author.

Controlling the Format of Text
In standard word processing, a paragraph defines a group of sentences. Typically, a blank line or an
indented first word identifies the start of a new paragraph. For example, each paragraph in this book

6 H T M L & W e b D e s i g n T i p s & T e c h n i q u e s

Figure 1-2 Simple Web page displayed by Internet Explorer

begins with the first line indented. The indented first line (or blank line) is a visual cue that lets the
reader know another paragraph is starting.

When you insert text into a Web page, the </p> tag controls the end of text and the subsequent
beginning of the next paragraph. The </p> tag instructs the Web browser to move down one line,
insert a blank line, and then to begin the next paragraph on the line below the blank line for the text
following the </p> tag.

In this following code, the start and end paragraph tags (<p></p>) mark the beginning and end of
each paragraph, as shown in Figure 1-3.

<html>

<head>

<title>Welcome to Lots of Text </title>

</head>

<body>

<p>The text between the two paragraph tags defines a single

paragraph. Paragraphs contain one or more sentences</p>

<p>The next paragraph starts here with a blank line inserted

between the two paragraphs</p>

</body>

</html>

C h a p t e r 1 : H T M L B a s i c s 7

Figure 1-3 The paragraph tags organize text into groups separated by blank lines

HTML also has several text formatting tags you can use to change the appearance of text, usually
for emphasis. To apply a formatting style, place the format’s start tag at the beginning of the text you
want to style. The following list describes three of the most common formatting tags.

• Text placed between the Bold tags is displayed in bold font.

• <i></i> Text placed between the Italic tags is displayed in italic font.

• <u></u> Text placed between the Underline tags is displayed with an underline.

The following HTML code displays text in the bold, italic, and underlined style, as shown in
Figure 1-4.

<html>

<head>

<title> Welcome to Basic Font Styles </title>

</head>

<body>

This text displays bold

<i>This text displays in italic</i>

<u>This text displays underlined</u>

</body>

</html>

8 H T M L & W e b D e s i g n T i p s & T e c h n i q u e s

Figure 1-4 HTML formatting tags let you change the style of the text

TE
AM
FL
Y

Team-Fly®

HTML Attributes
You insert one or more attributes in an HTML tag to give the Web browser additional information
about the way in which the browser is to carry out the tag’s instruction. For example, a tag
tells the Web browser you want to change the appearance of the text that follows the tag. The color
and face attributes that follow the tag’s name in the following code tell the browser the color (red)
and typeface (Helvetica) that the browser is to use in order to change the appearance of the text that
follows the tag:

<p>

This text is red, Helvetica text. </p>

Attributes, which you always insert after the tag’s name in either start tags or empty tags, consist
of three components: the attribute’s name, followed by the equal sign (=), followed by the attribute’s
value enclosed in quotes—either double (“”) or single (‘’).

� NOTE

By the way, the Web browser ignores any spaces you place on either side of the equal sign (=)
between an attribute and the attribute’s quoted value. As such, you will see some Web documents
with no spaces (as shown by the HTML statement in the preceding example) and some documents
with spaces on either one or both sides of the equal (=) sign. When writing your HTML tags, select
whichever looks best to you; just be consistent.

The Web browser will continue to apply the attribute(s) you specify within a start tag until the browser
reads the associated end tag. In this example, the Web browser will continue to make text look as specified
by the color and font attributes in the tag until the browser encounters the tag in the Web
page HTML. Figure 1-5 illustrates the components of an HTML tag with two attributes.

C h a p t e r 1 : H T M L B a s i c s 9

Figure 1-5 The components of a tag containing two attributes

Working with Fonts
Unless you specify otherwise in the Web page HTML, visitors to your Web site view page text
using their default typeface, style, color, and character size. The visitor’s Web browser controls
the default settings for the text displayed onscreen by the browser. Using the start and end font tags
(), you control how text looks when displayed by the visitor’s Web browser. Note that
the font tag is deprecated, which means that future versions of the Web browsers that conform to the
latest HTML standard may no longer support, and therefore ignore, the tag and its attributes.
Although you can use attributes within the tag to affect the appearance of text, you can achieve
the same effects (and more) by creating CSS rules as you will learn to do in Chapter 4.

The following attributes you can place within the start font tag instruct the Web browser how to
display the text in the Web document:

• The color attribute defines the color of the text. Color values can be
names (such as “red”, “green”, “yellow”, “blue”, and so on) or hexadecimal triplets (such as
#FF0000, #008000, #FFFF00, #0000FF, and so on) that represent the amount of red, green,
and blue the Web browser is to mix to produce the color of text you want.

• The size attribute defines the size of the text (relative to a base font size)
using values from –7 to 7. The lower the value, the smaller the size of the font.

• The face attribute defines the name of the font’s typeface (Times
New Roman, Helvetica, and Arial are a few examples of typefaces found on most computer
systems). If the font defined in the face attribute is not available on the visitor’s computer, the
Web browser ignores the face attribute and substitutes the browser’s default typeface.

The Web browser controls the default values for color, size, and typeface. To return text to the
browser’s default values, place a tag at the end of the text whose appearance you changed
with attributes in a tag. The following code instructs the Web browser to display the text in
red using the Helvetica typeface, and then returns to displaying text (following the tag) using
the browser’s default text characteristics:

<html>

<head>

<title>Font Color Example </title>

</head>

<body>

<p> This is red text in Helvetica</p>

<p>This is normal text</p>

</body>

</html>

1 0 H T M L & W e b D e s i g n T i p s & T e c h n i q u e s

Assigning the Same Set of Attributes
to Multiple Page Elements
When you want to assign the same set of attributes to several adjacent Web page elements at once,
enclose the elements you want to affect with start and end division tags (<div></div>). Say, for
example, that you want to center two lines of text and a graphic image between the left and right
margins on the Web page. Rather than add the align attribute to each of the three HTML tags, place
a <div> tag before the first element and a </div> tag after the end of the last element, as shown in the
following code:

<div align="center">

<p> This text is centered ABOVE the picture.</p>

<p> This text is centered BELOW the picture. </p>

</div>

The <div> tag lets you assign one or more formatting attributes to a group of HTML tags. The </div>
tag instructs the Web browser to again use the default values for attributes specified in the <div> tag.

Creating Web Pages Using Text Editors, Word Processors,
and Web Layout Applications
Creating an “exceptional” Web page requires good design technique and a thorough understanding of
HTML tags and attributes. Setting the concepts of “good” and “bad” page design aside, making a Web page
boils down to one thing, creating a document (that is, a text file) that contains the HTML code necessary
to tell the Web browser to display what you want onscreen. Although this chapter discusses the ins and
outs of basic HTML code, it is a good idea to familiarize yourself with the programs available for creating
text documents in which you write and store your Web page HTML.

A Web page is nothing more than a text document that contains all of the text content and HTML
(tags and attributes) the Web browser needs to display the information you want onscreen. As such,
you do not need a specialized program to generate a Web page. You need only a general knowledge
of HTML and a program that lets you save a text-only file. Three types of programs let you create
HTML documents: text editors, word processors, and HTML layout programs (such as Dreamweaver
and FrontPage). All three have their advantages and, in some cases, disadvantages.

Text Editors
A text editor is the simplest (and perhaps easiest to use) of the three types of programs that let you
create a text document. A text editor is a no-frills application that lets you enter text into the computer

C h a p t e r 1 : H T M L B a s i c s 1 1

and save what you type to a file on the hard drive or on a floppy disk. On a Windows computer,
Microsoft supplies a text editor called Notepad, and on the Macintosh, the text editor is called
SimpleText.

Typically, text editors do not have a spell check module or advanced formatting tools, such as
style sheets and paragraph rules. Text editors do however let you type information onto an electronic
sheet of paper and save what you type to a file. The major disadvantage of using a text editor to create
a Web page is that text editors provide little help in writing tags that conform to HTML syntax rules.
You type the HTML; the text editor records the text. However, the text editor will not alert you to
misspelled words or HTML syntax errors. The advantage in using a text editor to create a Web page
is that text editors force you to learn the HTML more quickly, because they provide no crutch on
which you can lean. Figure 1-6 shows an HTML document written using Microsoft Notepad.

After you type your HTML into Notepad, select File | Save and enter a filename to save your
Web page to disk. Be sure to give your filename an .htm or .html (and not the default .txt) extension.

Word Processors
The two most popular word processors on the market are Microsoft Word and Corel WordPerfect.
Word processors give you an advantage over simple text editors in that you can call the word processor
to spell check what you type. However, unless you use a spell check module designed to check

1 2 H T M L & W e b D e s i g n T i p s & T e c h n i q u e s

Figure 1-6 Notepad lets you create an HTML document

HTML, you will spend a lot of time instructing the word processor to ignore the spelling of HTML
tags, because most tag names are only abbreviations and not correctly spelled words in English.

If your word processor does not have an HTML spell check module, you can instruct the application
to learn new words. For example, the word processor will mark the image tag as being a
misspelled word. However, when you instruct the word processor to learn that the character string
““ is spelled correctly, the word processor will accept subsequent occurrences of it in the
document as spelled correctly. A word of caution, make sure that the HTML tag you type is syntactically
correct before you click the spell check program’s learn button.

Thus, a word processor has two advantages. First, you can tell the word processor to check the
spelling of words and tags you enter into your Web page HTML; and second, you still have to learn
HTML quickly because must you still type the HTML you want the browser to execute into the document.

When you save the file, be sure to use the word processor’s “save as” function to save the
document as a text-only file. Word processors do something that text editors do not; they insert special
codes into a document. These embedded codes can affect how the Web browser interprets the document
and worst case, can prevent the Web browser from displaying your Web page at all, or even cause the
browser to crash. Because HTML documents do not require embedded text formatting codes, tell
the word processor to save your HTML file using the text-only option.

Web Layout Applications
Web layout applications let you create Web pages in much the same way as page layout applications
such as PageMaker and QuarkXPress let you lay out and print a paper document. Although dozens of
Web layout applications are on the market, the three most popular programs for creating Web pages
are Adobe’s GoLive, Macromedia’s Dreamweaver, and Microsoft’s FrontPage.

When you use a Web layout program such as GoLive, you open a new document, and begin
typing text and dragging graphics onto the blank layout window. As you add text and graphics to
the Web page, the program generates the HTML code for you. The advantage of using a Web layout
program is that you see how the page will look in a Web browser as you create the page. Figure 1-7
shows a Web page under construction in GoLive.

The disadvantage in using Web layout programs is that they do the entire HTML coding for you.
Although that may seem like a good thing, you never get a chance to learn any HTML, and therefore you
may never advance beyond what the layout program is capable of doing. Suppose, for example, you want
to add a specific feature to your Web page and the layout program does not have a button to make it
happen. That means you are stuck because you do not know how to code the feature yourself. In addition,
Web layout programs are not perfect. Sometimes they generate additional HTML code that is not
necessary to your Web page. If you do not know HTML, you cannot make a decision as to what
you need and what you should remove.

If you are new to Web design, it is a good idea to start by using a simple text editor or word processor.
After you understand HTML, move on to a Web layout program such as Dreamweaver or GoLive.
If you understand HTML, using a Web layout program gives you the best of both worlds. The Web
layout program generates all the HTML code quickly and on the fly, while at any time letting you
stop and modify the code to fit your specific needs.

C h a p t e r 1 : H T M L B a s i c s 1 3

Working with Relative vs. Absolute Pathnames for Files
When you create a new Web site, you will have to move the Web content (that is, the HTML documents,
graphics, animation, sound, and other support files) from your development computer to the Web server.
If your Web pages contain links to pages stored in the same or related folders (such as a subfolder or
parent folder), you can save yourself considerable time and work by using relative pathnames when
referencing files in the Web page HTML tags.

When a site visitor clicks on a hypertext link, the Web browser uses the pathname given by the
hyperlink’s href attribute to locate the file the browser is to retrieve. When specifying the location of
a file, you can use either an absolute or a relative pathname. Suppose, for example, that you have a
graphics file named clock.jpg located in the folder named Folder_B, and that Folder_B, in turn, is
located within a folder named Folder_A, as illustrated in Figure 1-8.

A relative path consists of the folder names the browser needs to navigate to get to the file starting
at the location of the Web page with the hyperlink that references the external file. For example, if
clock.jpg is located in the Folder_B (as shown in Figure 1-8), and the Web page that references clock.jpg
is located in Folder_A, the relative pathname for clock.jpg in the current Web page is Folder_B/clock.jpg.
In other words, the current folder contains Folder_B, which in turn, contains the file clock.jpg. The
following tag uses a src attribute with a relative pathname.

1 4 H T M L & W e b D e s i g n T i p s & T e c h n i q u e s

Figure 1-7 Web layout programs let you design a page visually

A relative pathname instructs the Web browser to start looking for the file within the folder that
contains the current HTML document. Say for example that the HTML document that contains the
image in the tag in the preceding example is located in a folder named idx_folder. The relative
pathname in the src attribute then implies the folder named Folder_A is located within the idx_folder.

Absolute paths, on the other hand, locate a file by starting at the top level of the folder hierarchy
and moving downward through all the intervening folders to reach the file—without regard to the
location of the current Web document. Absolute paths always begin with a slash (/) to differentiate
them from relative paths.

Suppose, for example, that clock.jpg is located on the D drive in the folder named Folder_B, which
is located within the folder named Folder_A. To specify an absolute pathname, you must tell the browser
where to look for the file starting with the drive on which the folder with the file is located. The following
code shows the absolute pathname for clock.jpg in the current example:

Using absolute pathnames makes moving Web site files from a local drive to a Web server or from
one Web server to another difficult. For example, to use relative pathnames successfully, you need
only create on the Web server a main folder for the site and then place all the documents and support
files into subfolders within the main folder—as they are on your development machine. The relative
pathnames will be as valid on the Web server as they are on your system—even if the remainder of

C h a p t e r 1 : H T M L B a s i c s 1 5

Figure 1-8 The folder hierarchy of the file named clock.jpg

the Web server’s folder hierarchy is nothing like yours. Conversely, if you use absolute addresses, the
Web server must have exactly the same folder hierarchy as that found on your development system in
order for the Web server to be able to find the files referenced in hyperlinks within your Web pages.

Downloading and Installing the Personal Web Server
As you learned earlier in this chapter, you can display within your Web browser the Web pages you
create and save to a local or network drive—without first connecting to the Internet or a Web server.
Simply enter the pathname of the .html (Web page) file as File://<.html file pathname> into the Web
browser’s Address field. Thus, if you save a Web page name TestPage.htm in the MyWebs folder at
the root (that is, top) folder on your C drive, you can display the page in your Web browser by entering
File://C:/MyWebs/TestPage.htm.

To make your Web pages available to others across the Internet, you must have a Web server.
Further, as you will learn in Chapters 10, 11, and 12, a Web server is also required if you want to
execute server-side scripts (programs that the server runs on the behalf of your Web page). If you are
using one of the Windows operating systems (Windows 95, 98, Me, NT, or XP) you can install the
Personal Web Server (PWS) on your personal PC or network workstation free of charge. After you
install the PWS and establish an Internet connection, other users on the Web can view the Web pages
you publish on your system. In addition, you can use the PWS to test Web pages that submit form
results and pages with server-side scripts, such as those embedded in PHP and Active Server Pages
(which you will learn about in Chapters 10 and 11, respectively).

If you have a Windows 98 CD, insert the CD in your CD-ROM drive and skip the
download-procedure discussion that follows; you will find the PWS in the \Add-Ons\

PWS\ folder on the Windows 98 CD. Otherwise, you must install the PWS from the Windows NT 4
Option Pack, which you can download from the Microsoft’s Web site on the Internet by performing
the following steps:

1. If you do not have a permanent (that is, always-on) connection to the Internet, use your modem
to establish a dial-up connection through your ISP.

2. Start your Web browser, and type the following URL into the browser’s Address field:
http://www.microsoft.com/msdownload/ntoptionpack/askwiz.asp and press ENTER.

3. Within the Windows NT Option Pack Web page, click the Option 1 hyperlink. Your browser,
in turn, will display the Download Step 2 Web page, which lets you select the operating system
for which you want to download the NT 4 Option Pack download program.

4. Within the Download Step 2 page, use the drop-down menu on the Web page to select your
operating system. Unless you are installing the PWS on an NT Workstation or NT Server,
select the Windows 95 option. For NT Workstation, select the NT Workstation option and
for NT Server install the Internet Information Server (IIS) instead of the PWS. Then, click
Next. Your Web browser, in turn, will display the Download Step 3 Web page.

1 6 H T M L & W e b D e s i g n T i p s & T e c h n i q u e s

5. Within the Download Step 3 page, click the download.exe link near the bottom right-hand
corner of the Web page. Windows, in turn, will display the File Download dialog box.

6. Within the File Download dialog box, click the Save This Program To Disk radio button and
then click OK. Windows, in turn, will display the Save As dialog box.

7. Within the Save As dialog box, use the drop-down list button to the right of the Save In field
to select the folder in which you want to save the download.exe program file. For example,
you might use the drop-down list button to navigate to the C:\My Download Files folder.
Then, click Save.

8. Within Windows, use the Explorer to navigate to the folder in which you saved download.exe.
Run the application. Download.exe, in turn, will display the Windows NT 4.0 Option Pack
license agreement.

9. Read the terms of the agreement. Then, click Yes to continue with the installation. The download
program, in turn, will display a Download Options dialog box.

10. Within the Download Options dialog box, click the Download Only radio button and then click
Next button. The download program, in turn, will display the Language and CPU/Operating
System Options screen.

11. Within the Language and CPU/Operating System screen, select the Language and CPU/
Operating System, and then click Next. The download program, in turn, will display the
Installation Options screen.

12. Within the Installation Options screen, click the Full Installation radio button and then click
Next. The download program, in turn, will display the Save In Folder screen.

13. Within the Save In Folder screen, enter the folder in which you want the download program
to store the NT 4 Option pack’s files. (For example, you might enter C:\PWSSetupFiles into
the Save In Folder field.) Then, click Next. The download program, in turn, will display the
Download Location dialog box with a list of sites from which you can download the NT 4
Option Pack.

14. Within the Download Location dialog box, select the download site nearest your geographical
location (if more than one site is on the list). Then, click Next. The download program will
present you with the download site’s Security Certificate. Click Yes to accept the certificate
and complete the NT 4 Option Pack download.

After you complete Step 14, the download program will retrieve the NT 4 Option Pack from the
location you selected and store the NT 4 Option Pack files within the folder you entered in Step 13.

Before you can start the PWS, you must install the application on your computer. Whether you
downloaded the NT 4 Option Pack or are using your Windows 98 CD, perform the following steps
to complete the PWS installation:

1. Execute setup.exe either within the Windows 98 CD-ROM (x:\Add-Ons\PWS\Setup.exe,
where x is the letter of your CD-ROM drive) or within the folder you entered in Step 13 of
the preceding download procedure.

C h a p t e r 1 : H T M L B a s i c s 1 7

2. On the setup program’s initial installation screen, click Next. Setup.exe, in turn, will display the
PWS End User License Agreement. Read the agreement and then click Accept to continue with
the installation. The setup program, in turn, will display either the Installation Options dialog box
or the Select Components Dialog box. (Which dialog box the program displays is not important
and depends on whether you are upgrading an older version [or reinstalling the current version]
of PWS or if you are installing the Web server for the first time.)

3. Within the Installation Options or the Select Components dialog box, click Next to accept the
default installation options.

After you complete Step 3, the setup program will finish installing the PWS software and prompt
you to restart the computer. While restarting your computer, Windows will load and start the PWS
for you. As such, when you next see your Windows desktop, look in the system tray at the right-hand
side of the Windows status bar and you will see the icon for the PWS. The following Tip will show
you how to manage the Web server and teach you how to publish your Web pages on the company
intranet and/or the Internet itself.

Managing the Personal Web Server and
Publishing Your Web Pages
After successfully installing the Personal Web Server (PWS), as you learned to do in the preceding
Tip, you have to work out how to stop and start the Web server and determine the location of the
server’s home directory. The tool you will use for this purpose is Personal Web Manager, which
you can open in different ways depending on your particular operating system.

The easiest way to start the Personal Web Manager is to double-click the program’s icon
in the Windows system tray (on the right-hand end of the Windows status bar). Or, on a

Windows 98 system, select Start | Programs | Microsoft Personal Web Server and then choose Personal
Web Manager.

After you start the application, the Personal Web Manager will display the program’s Main screen,
which contains the name of your Web server and the server’s home directory, similar to that shown in
Figure 1-9.

The Web manager displays the name of your Web server in blue text near the top of the page. Anyone
working at your computer or using another workstation on your local area network can use the Web
server name to view Web pages on your PWS. (You can change the name of your Web server simply
by changing the name of your PC on the Identification tab of the Control Panel, Network Properties
dialog box.) The Main screen of the Personal Web Manager also shows you the PWS’s root folder in
blue text just beneath the name of your Web server.

Knowing the name of the Web server and the home directory, you are ready to publish your Web
pages. Suppose, for example, that your computer’s name (and hence your PWS’s name) is konrad,
and the server’s home directory is C:\WebShare\wwwroot. If you place a Web page such as TestPage
.htm, for example, into the C:\WebShare\wwwroot folder on your computer, you (and anyone using a

1 8 H T M L & W e b D e s i g n T i p s & T e c h n i q u e s

TE
AM
FL
Y

Team-Fly®

workstation connected to your local area network) can display the Web page by typing http://konrad/
TestPage.htm into the Web browser’s Address field and then pressing ENTER.

Now, suppose you create a folder beneath your Web server’s home (root) directory, say HTDocs,
and then place inside the folder a Web page, such as TestPage2.htm. The pathname of TestPage2.htm
would be c:\WebShare\wwwroot\htdocs\TestPage2.htm. However, using a browser, you would display
the page by typing into the browser’s Address field the URL http://konrad/htdocs/TestPage2.htm
and then pressing ENTER.

In addition to browsers running on workstations attached to your local area network, you can let
computers anywhere in the world access your Web pages on the Internet. To do this, you will have to
connect your computer to the Internet and give those who want to visit your IP address. Bear in mind
that unless your ISP assigns to you a permanent IP address (normally at a monthly fee), your PWS
may have a different IP address assigned to it each time you connect your computer (and the Web
server) to the Internet.

If your ISP has not assigned your computer a static IP address, you can find out your current
IP address by executing ipconfig.exe. Ipconfig.exe runs under the MS-DOS command shell. To
start an MS-DOS session, select Start | Run. Windows, in turn, will display the Run dialog box. Within
the Run dialog box, type command.com into the Open field. Then, press ENTER or click OK. At the
MS-DOS command prompt type ipconfig.exe and then press ENTER. The ipconfig application, in turn,
will list your computer’s IP address directly above the Subnet Mask, as shown in Figure 1-10.

(You can run the Windows version of ipconfig.exe by selecting Start | Run and typing winipcfg.exe
into the Open field of the Run dialog box.) After you know the computer’s IP address, substitute the

C h a p t e r 1 : H T M L B a s i c s 1 9

Figure 1-9 The Main Screen of the Personal Web Manager program

IP address for the Web server name to access the server’s Web pages on the Internet. For example, given
a PC with an IP address of 24.234.31.218, to display the Web pages in the preceding example across the
Internet, you would use either of the following:

http://24.234.31.218/TestPage.htm

http://24.234.31.218/HTDocs/TestPage2.htm

After you determine the computer’s IP address, you can give this address to others. Bear in mind,
however, that unless your ISP allocates a static, permanent IP address to your computer, the IP address
will change each time you disconnect from and reconnect to the Internet. Moreover, the IP address might
change without your knowledge, even if you have a permanent (that is, always-on) Internet connection.
When your Web server’s IP address changes, those trying to view your Web pages using the old IP
address will no longer be able to do so—even though the PWS is running and your computer is connected
to the Internet.

The solution is to contact your ISP and ask for a static IP address. At present, your ISP cannot
assign your computer a static IP address if you are connecting to the Internet through a dial-up
connection on a standard phone line—you need an ISDN, DSL, or cable modem Internet connection.
After you receive your static IP address, you must enter the address into the TCP/IP Properties dialog
box on your computer. To do so, perform the following steps:

1. Select Start | Settings and then choose Control Panel. Windows, in turn, will open the Control Panel.

2. Within the Control Panel window, double-click the Network icon. Windows, in turn, will
display the Network dialog box.

2 0 H T M L & W e b D e s i g n T i p s & T e c h n i q u e s

Figure 1-10 The ipconfig program showing the computer’s IP address

3. Within the Configuration tab of the Network dialog box, click TCP/IP to select the protocol.
(If you are working on a Windows NT machine, you will find the TCP/IP protocol on the Protocols
tab of the Network dialog box instead.) Then, click Properties. Windows, in turn, will display
the TCP/IP Properties dialog box.

4. Within the Address tab of the TCP/IP Properties dialog box, click the Specify An IP Address
radio button. Then, enter the IP address and Subnet mask given to you by your ISP.

After you complete Step 4, click OK at the bottom of the TCP/IP Properties Dialog box and then click
OK at the bottom of the Network dialog box. Windows will then update your system settings and prompt
you to reset your computer. After your computer resets and you again connect your computer to the Internet,
the PWS will be accessible at the same (static) IP address on a permanent basis.

Once your computer has a static IP address, you can then purchase a domain name, either through
your ISP or from a domain name registrar such as VeriSign (http://www.NetSol.com). After you purchase
a domain name, such as MyWebServerName.com for example, ask your ISP to associate your domain
name with your static IP address in the ISP’s Domain Name Server (DNS). With the domain name
pointing in place, visitors throughout the Internet will be able to view the Web pages on your PWS
by using either your IP address (as shown previously) or by addressing the Web server with your
domain name as either of the following:

http://www.MyWebServerName.com/TestPage.htm

http://www.MyWebServerName.com/HTDocs/TestPage2.htm

If you have a dial-up connection to the Internet or would rather not pay for a static IP address and
use one of your computers as a Web server, you can have your ISP host your Web site for you. Many
ISP’s offer 5–10MB (or more) of Web space as part of your monthly fee for Internet access. Contact
your ISP or a domain name registrar (such as VeriSign) for information on the Web-site hosting options
they offer. If you have your ISP or another company host your site, you will simply copy the Web pages
you want to publish to your site’s folder hierarchy on the host company’s hard drive instead of the
PWS’s root folder (and root subfolders) on your hard drive.

Note that after you install the PWS, Windows automatically starts the Web server each time you
restart your computer. To stop the Web server, click the Stop button below the Web server name in
the upper half of the Main section of the Personal Web Manager. (After you stop the PWS, the server
will remain halted until you manually restart the Web server—even if you restart your computer in the
interim.) To restart the PWS, click the Start button that replaced the Stop button on which you clicked
to stop the Web server. (You can also stop or pause the PWS by selecting Properties | Stop Service or
Properties | Pause Service, and then restart the Web server by selecting Properties | Start Service
or Properties | Continue Service.)

Describing Web Page Contents with a Title
As you surf the Web, your browser displays the title of each Web page you view within the browser’s
title bar (across the top of the browser application window). The Web page title gives the name and
describes, in a few words, the purpose of the Web page, as shown in Figure 1-11.

C h a p t e r 1 : H T M L B a s i c s 2 1

To create a Web page title, insert the title’s text between start and end title tags (<title>
</title>) in the header section of the Web page HTML, as shown in the following code:

<html>

<head>

<title>Welcome to Andy's Photoshop Book - Welcome Page</title>

</head>

<body>

... Content the Web browser displays goes here ...

</body>

</html>

Each Web page title should describe the contents of the page to your site visitors. Every time a
visitor glances at the application window’s title bar, the page title should remind him or her of the
name and purpose of the Web page currently displayed by the browser. On a Web site containing
many pages, page titles act as road signs.

However, titles do more that remind visitors of their current location on your Web site. Titles are
also used for the following:

2 2 H T M L & W e b D e s i g n T i p s & T e c h n i q u e s

Figure 1-11 The title of a Web page appears in the title bar section of the browser window

This is a
Web page
title

• Web browsers use title text when a visitor bookmarks a page, that is, when the visitor adds a
Web page to the list of Favorites in Internet Explorer or to the list of Bookmarks in Netscape
Navigator. Using a title like Home Page does not help to identify your site among the other
bookmarks on the visitor’s system.

• Spiders (automated Web search programs) use title text when listing your Web page on search
engines. Again, a title like Home Page does not provide useful information. Use descriptive
wording in your titles—words visitors might enter into the search field for a search engine
when trying to find your Web site.

• Title text helps you, the Web author, manage and control large multipage sites. Think of a title
as a heading that identifies the page. If your Web site contains fifteen pages, the titles help you
to locate quickly the page with which you want to work. For example, a real estate site might
use the title to indicate pages with Houses for Rent, or Houses for Sale.

In addition to these roles, the W3C considers a Web page without a title as invalid or illegal. The
term “illegal” as used here does not mean that someone will arrest you for creating pages without
titles. However, the use of titles helps all Web authors create standardized pages, and someday,
when titles become a required part of a Web page, your Web content will already comply with
the new standard.

Identifying Web Documents Using
the Document Type Definition
One of the best ways to learn HTML tricks and techniques is to view the HTML statements used
in Web pages you encounter as you surf the Web. To view the HTML source code for a Web page,
select View | Source from within your browser. (If you are using Netscape Navigator, select View |
Page Source.) As you examine Web pages, you will find that many HTML documents have a document
type tag (<!doctype>) at the start of the Web page.

The Document Type Definition (DTD) identifies the version of HTML used to create the
Web page. This information is important to Web browsers, HTML validation programs,

and to other software programs used for Web design and layout. To validate an existing HTML document
go to http://validator.w3c.org. The HTML validation program checks the organization and syntax of
the Web document based on the information supplied within the DTD. When the declaration indicates
that the document adheres to a strict version of HTML 4.01, the validator judges the Web page based
on the HTML 4.01 standard and generates a report with the results of the examination.

In the future, knowing the version of HTML used to create a page will help Web browsers and other
programs display Web pages with greater accuracy. In fact, the W3C considers a Web page created
with HTML version 4 as invalid unless the HTML document starts with a DTD. The DTD goes at
the top of the HTML document before the <html> tag. The following shows the correct format for
a typical DTD:

<!doctype html public "version name" "url">

C h a p t e r 1 : H T M L B a s i c s 2 3

• html Identifies the code as a version of the HTML.

• public Identifies the language as accessible by the public.

• version name Identifies the complete name for the specific version of HTML. For example,
the complete name for HTML 4.0 is -//W3C//DTD HTML 4.01 Transitional//EN.

• url Indicates where on the World Wide Web a public definition of the HTML code resides,
such as www.w3.org/TR/html4/loose.dtd.

A valid DTD for a Web page described using HTML version 4.01 would be as follows:

<!doctype html public "-//W3C//DTD HTML 4.01 Transitional//EN"

"www.w3.org/TR/html4/loose.dtd">

The loose.dtd option in the previous code declares that the document may include all the elements
allowed in the HTML 4 “strict” standard, additional presentation description attributes, and may include
deprecated elements. Conversely, using strict.dtd in the DTD would declare that the document strictly
adheres to the HTML 4 standard. The strict version of HTML 4.01 emphasizes the structure of the
HTML document over the presentation of the page within the Web browser. This does not mean that
strict version of HTML 4.01 downplays the presentation of the Web page; it simply focuses on the
structure of the HTML markup code. Deprecated tags and elements such as frames and link targets
are not allowed in HTML strict. A third Document Type Definition, frameset.dtd, is used when
validating HTML documents containing frames.

Currently, neither Netscape Navigator nor Internet Explorer require that you include a DTD
before the start of your Web page HTML, that is, before the start HTML tag (<html>) at the top of
your Web document. However, you should include one at the start of any Web page you code using
HTML version 4.0 or later. The W3C is giving you a hint here. What is optional today may be required
in the near future. Therefore, stay ahead of the game and use the DTD in all your Web pages now. (In
the interest of conserving space and reducing the complexity of example code, we omit the Document
Type Definition in the examples shown in this book.)

Inserting Comments into a Web Document
HTML comments are a way to remind you and anyone who works on your HTML documents of
what exactly you were thinking when you created a particular Web page. You can use comments to
explain specific portions of a document. You can also use comments to insert personal information
like your name, address, and phone number in the Web page HTML, so anyone interested in obtaining
your services as a Web designer will know how to contact you.

In addition, you might use comments to temporarily hide some of the Web document’s HTML
statements from the Web browser. Suppose, for example, you want to add a section of HTML code
to an existing document, but you do not want the browser to display the new content until management
gives permission to proceed. Placing HTML comment tags (<!– – – –>) around the statements you
want to hide instructs the Web browser to ignore the statements until you remove you comment tags.

2 4 H T M L & W e b D e s i g n T i p s & T e c h n i q u e s

To create a comment, enclose the informational text (or the HTML statements you want
to comment out) within the start and end comment tags, such as <! – – comment – –>.

Placing a begin comment tag before each line of text or HTML statement is not necessary; the Web
browser will ignore anything it finds after the start comment tag and before the next end comment
tag. For example, the following code shows three lines of comments inserted within the Web page
header section:

<head>

<title> A document containing comments </title>

<! -- Author Andy Anderson

Company One-of-a-Kind Productions, Inc.

Contact Info 316 333 4444 -- >

</head>

Although the Web browser does not display the information you place between start and end
comment tags onscreen, a site visitor can still read the comments by instructing the Web browser to
display the Web page HTML. The browser, in turn, will display the source code (including comments)
for the HTML document in a separate document window.

Besides using comments to identify personal information, you can use comments in a training
environment to help explain the purpose of specific HTML tags and attributes to your students. In
addition, you might use comments to prevent the display of embedded scripts onscreen when the
Web browser does not support the script tag, as shown in the following code:

<html>

<head>

<script language="JavaScript">

<!--

function displayIt()

{

alert("This JavaScript function displays this text in the browser window!")

return;

}

//-->

</script>

</head>

<body>

... Web Page Content the Browser is to Display Goes Here ...

</body>

</html>

Without the comment tags around the JavaScript function definition in this example, Web browsers
that do not support the script tag may ignore the tag and display the JavaScript code as text onscreen.
Conversely browsers supporting scripts ignore the HTML comment tags because scripts use // and
/* */ to denote comments.

C h a p t e r 1 : H T M L B a s i c s 2 5

Specifying the Typeface for Web Page Text
When displaying Web page text, a Web browser uses the browser’s default typeface and font size,
unless you specify a size and typeface within the Web page HTML. Controlling the size and appearance
of text is important, because the way text looks sets the mood for the page. Understand that typography
does not end with the words themselves; the presentation is equally important. For example, designers
use typeface and size to indicate the importance of certain text passages, which is why headlines are
larger and often in a different typeface than body text.

The typeface you choose conveys mood and creates the atmosphere in which the visitor reads the
message. Using the wrong typeface confuses the reader, because the content “feels” out of place. For
example, several studies (one conducted by Yale) indicate that serif typefaces convey a more serious
mood than sans (that is, without) serif typefaces. Therefore, you would use a typeface like Helvetica
or Times New Roman for a formal document and a typeface like Comic Sans or Arial for a less serious
or more casual message, as the examples show here:

To change the typeface of a font, enclose the text between the start and end font tags in
the form:

... Web page text displayed using the specified typeface ...

The face attribute tells the Web browser which typeface to use when displaying Web page text
onscreen. For example, the start font tag instructs the Web browser to display text following
the tag using the Helvetica typeface until the browser encounters a tag:

 This text displays in Helvetica

When the browser reads a tag in the Web page HTML, the browser reverts to displaying
Web page text in the browser’s default typeface.

2 6 H T M L & W e b D e s i g n T i p s & T e c h n i q u e s

Thus, the face attribute instructs the Web browser to search the host computer for a specific typeface
(such as Helvetica in this example). The Web browser will use the typeface when displaying text placed
between the start and end font tags (). However, if the visitor has not installed on his
or her computer the typeface you specify in the tag, the Web browser will use the browser’s
default typeface instead.

Understand the site visitor can select the browser’s default typeface by working with the Web
browser’s preferences. For example, to change the default typeface in Internet Explorer 5, select
Tools | Internet Options. Then, click the Fonts button. Internet Explorer, in turn, will display the
Fonts dialog box, on which you can select the browser’s default Web page (and view source) font.
(Internet Explorer refers to the typeface selection as the “font.”) The default typeface tells the
visitor’s Web browser what character style to use when the Web document does not specify a
typeface or when the visitor’s computer does not have the typeface specified.

In addition to specifying a primary typeface, the face attribute lets you select a second, third, or
even a fourth typeface. Say, for example, you want your document text displayed using the Helvetica
typeface. However, if Helvetica is not available, Georgia is an acceptable substitute. The following
code illustrates how you can specify an alternative typeface to use if the primary typeface is unavailable
on the visitor’s computer:

The primary typeface is Helvetica. The browser will use the

Georgia typeface if Helvetica is not available.

The face attribute instructs the Web browser to display the text between the start and end font tags
() using the Helvetica typeface, and if Helvetica is not available, use the Georgia typeface
instead. If neither the primary nor any of the alternative typefaces are available, the Web browser will
use its default typeface.

When specifying fonts, use lowercase font names because then the system will look for the font
name in both lowercase and uppercase. By contrast, if you use uppercase names, and the visitor’s
system has the font installed in lowercase, the Web browser will not find the desired font.

Controlling the Flow of Text with
Paragraph and Line Break Tags
When you place unformatted text on a Web page, the width of the browser’s application window
controls the number of words the browser displays on each line onscreen. Unformatted text is simply

C h a p t e r 1 : H T M L B a s i c s 2 7

text entered into an HTML document between the start and end body tags (<body> </body>), such as
that shown in the following code:

<html>

<head>

<title> Example of unformatted text </title>

</head>

<body>

When you insert unformatted text

into an HTML document. It does not matter

how the text appears within the

HTML document because the Web browser

does not recognize the carriage return or

enter key as a valid

formatting tool.

</body>

</html>

Web browsers ignore the carriage return and line feed characters you insert into the Web page HTML
by pressing ENTER to move down to the next line when typing. By default, Web browsers define the
length of each line to be the width of the Web browser application window and not the number of
characters on each line in the Web page HTML. The following illustrates how the Web browser sets
the length of each line of unformatted text in the preceding HTML to the width of the browser’s
application window.

To group lines of text into paragraphs and to control the last word on each line, HTML
provides the start and end paragraph tags (<p></p>) and the
 tag. When it encounters

a <p> tag, the Web browser moves to the next line onscreen, inserts a blank line, and then displays

2 8 H T M L & W e b D e s i g n T i p s & T e c h n i q u e s

TE
AM
FL
Y

Team-Fly®

the text that follows the <p> tag on the next line below the blank line. Therefore, to group related
sentences into “blocks” of paragraph text, place a <p> tag before the first word in the paragraph and
a </p> tag after the last. For example, if the Web page HTML has three lines of text, each enclosed
by start and end paragraph tags (<p></p>), the Web browser will display the text as three paragraphs
with a blank line between each line of text.

Unlike the <p> tag, the
 tag has no end tag. After the Web browser encounters a
 tag in
the Web page HTML, the browser moves down to the next line onscreen before displaying additional
text. Thus, you can use either the
 tag or the <p> tag to tell the Web browser to move to a new
line before displaying more text. When you only want to move to the next line, use the
 tag; when
you want to move to the next line and insert a blank line between the current line of text and the next,
use the <p> tag in the Web page HTML.

The text in the following HTML describes the effect of the <p> tag and the
 tag and how the
text will appear in a Web browser as shown in Figure 1-12:

<html>

<head>

<title> Example of formatted text </title>

</head>

<body>

<p>When you insert formatted text

into an HTML document.</p>

<p>The placement of the paragraph and line break tags

within the HTML document

determines the line breaks for the text.</p>

<p>The paragraph tags leave a blank line between lines

of text</p>

and the line break tags break the text without inserting

an additional blank line.

</body>

</html>

Formatting tags (such as the <p> tag and the
 tag) determine where a line of text ends in
the browser’s application window. In word-processing terms, the
 tag inserts a hard return,
and the <p> tag inserts two hard returns on the page.

The Web browser (like a word processor) executes a soft return to break the text at the right-hand
margin on each page. Remember, in a Web document the right-hand side of the browser’s application
window represents the right-hand margin of the Web page. As such, you can use formatting tags to
specify the last word on a line, but the Web browser will still insert soft returns as necessary to make
each line of text fit within the width of the browser’s application window.

C h a p t e r 1 : H T M L B a s i c s 2 9

Although, as previously stated, the width of the browser window controls the width of a line of
text, there are occasions where you will not want the browser to break the line of text. In that case,
insert a no break space () between the words you want the browser to display together on the
same line. Say for example you create a subheading for a paragraph of text and you want the heading
to remain on one line. To force the browser to keep the words on one line, insert the no break space
between the words of the subheading, as shown here:

<html>

<head>

<title>Example of using a no break space</title>

</head>

<body>

A Message from Abraham Lincoln

<p>This country, with its institutions belongs

to the people who inhabit it.</p>

<p>Whenever they shall grow weary of the existing

government, they can execute their constitutional

right of amending it, or their constitutional

right to dismember it or overthrow it.</p>

3 0 H T M L & W e b D e s i g n T i p s & T e c h n i q u e s

Figure 1-12 The text formats in the Web browser window based on the use of the paragraph
and break tags

<cite>Abraham Lincoln</cite>

</body>

</html>

In this example, the no break space inserted between “Abraham” and “Lincoln” prevents the Web
browser from splitting the president’s name onto two lines. If the browser does not have enough space
remaining on the current line to display both the first and last name together, the browser will display
both names on the next line onscreen, as shown in Figure 1-13.

If there were only a space (as opposed to a no break space) between the first and last names, in this
example, the browser would have displayed the first name on one line and the last name on the next.

C h a p t e r 1 : H T M L B a s i c s 3 1

Figure 1-13 The no break space prevents the name from displaying on two lines

Changing the Size of Text Using Heading Level Tags
and the Font Tag size Attribute
When you create a Web document without specifying the font size, the Web browser displays the text
using the browser’s default text size. The default values that browsers use for the size of characters vary,
but on average run between 12 and 14 points, or approximately the point size of the text in this book.

To insert and control the size of heading text on a Web page, enclose the heading text within start
and end heading level tags (<h1> … </h1> to <h6> … </h6>). The number that follows the letter “h”
in a start heading tag specifies the size of the heading text in relative terms. When using the heading
tags, the lower the number that follows the “h,” the larger the heading will be onscreen.

To use heading tags to specify the size of text on a page, place the text between the start
and end heading tags. When a Web browser encounters an end heading tag in the Web

page HTML, the browser automatically places the text following the end heading tag on the next line,
and reverts to using the browser’s default font size. The following illustrates the six heading level
sizes you can specify using the start heading tag by showing how the text in each heading size appears
in the browser application Window.

A second way to change the size of text in an HTML document is to use the size attribute in the
 tag in the form (where n is a number from 1 to 7). When you use the size
attribute, the larger the value, the greater the size of the text—the opposite of the heading tags in
which increasing the size of n decreases the size of the letters.

To set the text using the size attribute, place the text between the start and end font tags
(). The following illustrates the HTML code for the font tag using the size attribute,
and shows how the text in each size will appear in the Web browser’s application window.

3 2 H T M L & W e b D e s i g n T i p s & T e c h n i q u e s

Both the start heading tag and the size attribute in the tag let you specify the size of text;
the start heading tag also tells the Web browser to display the text in boldface.

Bear in mind that the resolution of the visitor’s monitor affects the size of text displayed within the
Web browser’s application window. Text on a monitor running at a resolution of 1024×768 pixels appears
smaller than the same “size” text on a monitor using a lower resolution such as 800×600 pixels. Moreover,
different platforms may also display text in different sizes even at the same resolution. The Mac, for
example, displays text about two point sizes smaller than text displayed at the same resolution on an
Intel-based machine.

The W3C deprecated the font tag and its attributes in the HTML 4 standard. As such, future version
releases of HTML-compliant Web browsers may no longer support the font tag. A better way to control
text formatting is to use CSSs, which you will learn about in Chapter 4 of this book.

Changing the Color of Text in an HTML Document
If you do not specify the color of text on a page, a Web browser will display the text in the browser’s
default text color, usually black. If you want to change the color of a word or a group of words, use
the color attribute in the tag to tell the Web browser what color to use.

Suppose, for example, that you want to change the color of one sentence in a paragraph
of text. Insert a tag with a color attribute in the form just

before the beginning of the text whose color you want to change. The color attribute instructs the browser
to display the text following the tag in the specified color. Later in the text, insert a tag at the
point where you want to Web browser to start using the browser’s default text color again.

For example, the color attribute in the tag after the first sentence in the following HTML
tells the Web browser to display the second sentence in red, as shown here:

Then, the tag, after the end of the second sentence, tells the Web browser to stop using red,
which causes the Web browser to use the default text color again when displaying the remaining
Web page text:

<html>

<head>

<title>Changing the color of text </title>

</head>

<body>

<p> To change the color of the text in the next sentence.

 Insert the FONT tag with the color

C h a p t e r 1 : H T M L B a s i c s 3 3

attribute at the beginning and end of the line.

The color changes and then reverts back to a default

color of black.</p>

</body>

</html>

You can specify the value of the color attribute either by name or by number. As you saw in the
preceding example, you can use color names such as red, green, blue, and so on. Or, you can use the
hexadecimal triplet that represents a color. For example, the hexadecimal triplet for red is #FF0000.
Therefore, you can tell the browser to start displaying text in red with either or .

When you specify a color as a hexadecimal triplet, the numbers in the triplet represent the amount
of red, green, and blue the browser is to “mix” to create the color you want. For example, the color
black has a hexadecimal triplet value of “#000000”. Each two-digit number in the triplet represents
the amount of one of the three primary colors red, green, and blue the browser is to use to create the
composite color. Thus, for black (#000000), the browser is to mix “00” red, “00” green, and “00” blue.
Conversely, to create the color white, the browser must use the maximum amount of red, green, and
blue. Hence, the hexadecimal triplet for white is “#FFFFFF”.

In the print world, there are few limitations on the range of colors available to enhance brochures
and magazine advertisements. Most computers too have video cards capable of displaying thousands,
if not millions, of colors. Both Macintosh and Windows-based computers have a color lookup table
that instructs the monitor how to display color. When you assign a color using a hexadecimal value,
the Web browser works with the video card’s lookup table; if the color is available in the table, then
the system will display the color correctly onscreen. If the lookup table does not contain the correct
color, the system creates the color by mixing (dithering) existing color pixels together to produce a
visual equivalent of the requested color.

Many years ago, when video cards were only capable of displaying a maximum of 256 colors, deciding
which colors to use was an easier job (fewer colors) but more restricting. To complicate matters, computer
operating systems reserved some of these colors for their visual interface (that is, for use in displaying
the system’s desktop). Because the Windows and Macintosh operating systems choose a different set
of colors for their visual interface (40 colors) that leaves 216 colors (256 – 40 = 216) that are displayed
the same way in Macintosh and Windows Web browsers.

Today, you have a greater range of color from which to choose when creating a Web page, because
video cards in both Macintosh and Windows computers can display millions of colors. However, you
still create each color as a combination of red, green, and blue values (a triplet). For a complete listing
of browser-safe colors that shows both the color names and corresponding hexadecimal triplet values,
visit http://www.htmlhelp.com/cgi-bin/color.cgi.

3 4 H T M L & W e b D e s i g n T i p s & T e c h n i q u e s

Although most visitors will leave the browser’s default text color set to black, some may have
selected another default text color. As such, it is a good idea to specify the color you want the browser
to use when displaying your Web page text, even if the color you want is black. Do not assume that
all your visitors use black as the browser’s default text color. In Chapter 4 of this book, you will learn
how to set the color of all text on a page with a few CSS rules.

Adding Graphics to a Web Page Using a Basic Tag
Visiting Web sites without encountering pages that contain pictures and drawings is virtually impossible.
Graphics images help to explain complicated procedures or actions that would be difficult to describe
using text alone. In addition, most visitors to your Web site feel intimidated when they see a Web page
with nothing but text. Inserting an occasional graphic into a long body of the text gives visitors a break
from reading, and if used correctly, helps explain the text. Suppose, for example, you want to create a
Web page that explains the steps necessary to change the ink cartridge on an Epson 1520 inkjet printer.
A few well-designed illustrations would explain the process better than several paragraphs of text.

In addition, site visitors have the option to change the default typeface used to display text on a
Web page by working with the browser’s preferences. That means that the Web page text will look
different to a visitor using the Arial typeface as the browser default than the text looks in your Web
browser that defaults to the Helvetica typeface. Although this is frustrating, you learned how to
prevent this change in typeface by specifying the font the browser is to use rather than leaving the
typeface selection as the browser default. The real problem with typeface selection comes into play
when you use a specialized or custom typeface, such as those often used to write the company name
in a logo. Remember, if the specified typeface is not available on the visitor’s computer, the Web
browser will display the text using the browser’s default font.

Say, for example, your site has a logo whose text is written in the Skia typeface. If you type the logo
on the Web page as text and the visitor’s system does not have the Skia typeface installed, the visitor’s
Web browser will substitute the browser’s default typeface, which will change the entire look of the logo.
Fortunately, you can preserve the exact appearance of a logo (or other text) by converting the text into a
graphics image (using an image-editing program like Photoshop). If you insert a picture of the text on the
Web page, the text will look the same in all Web browsers—even those on systems without the typeface
you use to create the text. When you convert text to a graphics image, the visitor’s settings that control
font usage have no effect on the text in the picture, as shown in Figure 1-14.

C h a p t e r 1 : H T M L B a s i c s 3 5

The tag lets you place a graphics image (whether of converted text or a picture or
drawing), on a Web page. A typical tag contains a single src attribute, which tells

the Web browser the pathname of the graphics file. Therefore, most of your image tags will be of the
form . Note the value of the src attribute contains both the path and filename
of the graphics file. For example, the following code instructs the Web browser to retrieve and display
the picture in the file named photo.jpg stored in the images folder on the Web server.

Proper HTML coding requires that you place all tags between the start and end body tags
(<body></body>) that enclose the Web page content the browser displays onscreen. The following
simple HTML code, when processed by a Web browser will display the graphics image house.jpg:

<html>

<head><title>Image of a House</title>

</head>

<body>

<center></center>

</body>

</html>

3 6 H T M L & W e b D e s i g n T i p s & T e c h n i q u e s

Figure 1-14 Logos with text converted into a graphic image display correctly in the Web browser

In addition to placing a simple image tag within an HTML document, you have several attributes
that control the image within the browser window:

• alt The alt attribute supplies alternate text for browsers that do not display graphics or
for browsers where the user has turned off the display of graphics. Alternate text is also
used by browsers as a tool tip (the text displays in a box near the mouse pointer, when the
mouse hovers over the image) and by reader programs for the visually impaired.

• height and width The width and height attributes define the size of the image displayed
within the browser window. Always specify the width and height attributes in your image tags
so the browser can display the remainder of your Web page text while waiting for images to
download. When you specify the width and height attributes in an tag, the browser reserves
space for the images, even if they load slowly, and the document text will flow around where
the images are supposed to go.

• border The border attribute gives the pixel-width of the border the Web browser is to draw
around an image. If you use an image as the anchor for a hyperlink, the browser will draw a
border around the picture. As such, drawing a border around pictures may make the visitor
think the picture is a hyperlink. Therefore, it is recommended that you set the border attribute
to zero (0).

Working with graphics as well as using animations and video clips on a Web page is discussed in
detail in Chapters 6 and 7.

� NOTE

Images are an indispensable part of a Web page. However, Web pages with many graphics take
longer to download and display than Web pages with only text. Take care not to overload your Web
pages with too many graphics. A picture may be worth a thousand words, but if your Web page takes
too long to load, no one will wait around to see the message.

Changing the Alignment of Text and Graphics
Because most Web pages have both graphics images and text, aligning graphics and text within the
browser application window is a basic element of Web page design. By default, the Web browser will
display objects in the HTML document in the order in which the browser finds them. Moreover, the
browser places the objects one after another onscreen from left to right, top to bottom.

C h a p t e r 1 : H T M L B a s i c s 3 7

Suppose, for example, that you want the browser to display an image above a line of text that
describes the image. If you simply place an tag in the HTML document and then type the
line of text, the browser will display the text next to (that is, to the right of) and not below the image.
Remember, the Web browser displays the items in the HTML document onscreen one after another
moving from left to right. The browser puts an item at the left-hand margin of a new line only when
the browser reaches the right-hand margin of the current line on the page.

The following code shows the order of the graphic and text elements. The <p> tag instructs the
browser to display the text that follows the image on the line below the image onscreen:

<html>

<head>

<title> Example of text and graphic placement </title>

</head>

<body>

<p> The illustrated flowers grow wild on the

flat plains of Kansas </p>

</body>

</html>

Placing the tag in the HTML document ahead of the text tells the Web browser to display
the picture before the browser displays the text. Inserting the <p> tag between the image and the text
tells the Web browser to display a line break (that is, to move to the next line on the page) and insert
a blank line after displaying the image and before displaying the text that follows the image in the
Web page HTML. Figure 1-15 shows how a Web browser will display the image in relation to
the text in this example.

3 8 H T M L & W e b D e s i g n T i p s & T e c h n i q u e s

Figure 1-15 Without alignment, text and graphics move to the left side of the browser window

TE
AM
FL
Y

Team-Fly®

Notice that inserting the <p> tag correctly aligns the graphics image and text vertically. However,
you may also want the browser to center both the picture and the text between the left and right-hand
margins of the Web page. HTML provides the start and end center tags (<center></center>) to let you
work with the horizontal alignment of objects on the Web page. Understand that although the center
alignment tags are still used, they are deprecated tags, which means Web browsers may no longer
support them at some point in the future. The preferred method of aligning text and graphics is with
rules in a CSS, which you will learn about in Chapter 4.

By default, the Web browser aligns the first object on each line flush with the left-hand
margin on the Web page. As such, you would use the <center> tag to change the default

alignment and thereby change the horizontal position of an object on a line or group of lines. The
start and end center tags (<center></center>)in the following HTML tell the Web browser to center
the graphics image and text (enclosed within the tags) between the left and right margins of the Web
page, as shown in Figure 1-16:

<html>

<head>

<title> Example of text and graphic placement </title>

</head>

<body>

<center>

<p>The illustrated flowers

grow wild on the flat plains of Kansas</p>

</center>

</body>

</html>

C h a p t e r 1 : H T M L B a s i c s 3 9

Figure 1-16 The start and end center tags instruct the Web browser to display the graphic and
text elements centered between the left and right Web page margins

Adding a Hypertext Link to a Web Page
Web pages have a distinct advantage over paper documents: Web pages, unlike paper documents, can
have hypertext links to other pages, either on the same Web site or on other sites. Rather than turning
pages as they would when reading a book, site visitors click on hypertext links to move from page to
page (or site to site). A hypertext link is a single word or a group of words upon which a visitor clicks
to instruct the Web browser to retrieve a Web page (or other file) from the Web server.

To a site visitor, a typical hypertext link appears on the Web page as underlined text. Normally, the
Web browser uses one color (such as blue) to represent hypertext links to Web pages not yet visited,
and another color (such as purple) for links to pages the browser recently retrieved.

To create a hypertext link, place a set of start and end anchor tags (<a>) around
the text on which the visitor is to click to activate the link. (Hypertext is the text between

the start and end anchor tags.) Then, set the href attribute in the <a> to the pathname of the file the browser
is to retrieve when the visitor clicks on the hypertext. For example, the words “Click here to move to
the next page” in the following HTML statement are the “hypertext” in a hypertext link, and the Web
browser will underline the words on the Web page:

Click here to move to the next page.

When the visitor clicks on the underlined words (or between them) in this example, the Web
browser will load the Web page in the file named info.htm. Notice that you place the href attribute
within the <a> tag and the hypertext itself outside the <a> tag between the start and end anchor tags
(<a>).

To create a hyperlink to a Web page on another Web site, include the site’s URL along with the
Web page filename in the href attribute. For example, the following code creates a hypertext link to
the index page (that is, the home page) at www.anywhere.com:

Click here to go to Anywhere.com

When the site visitor clicks anywhere within “Click here to go to Anywhere.com” (that is,
anywhere on hyperlink’s anchor text), the Web browser will retrieve (and display) the homepage
document (index.html) from the www.anywhere.com Web site. Thus, in this example, the value of
the href attribute (href =“http://www.anywhere.com/index.html”) creates a hypertext link between
a Web page on your site and the index.html (homepage) document on the www.anywhere.com Web
site. Note that you can also create a hyperlink to a Web site’s homepage by supplying only the site’s
URL (without the index page filename) in the href attribute as:

Click here to go to Anywhere.com

In addition to using hypertext links to move from document to document, or site to site, you can
use hypertext links to let the visitor download files from the Web site. For example, the following

4 0 H T M L & W e b D e s i g n T i p s & T e c h n i q u e s

code tells the Web browser to download an image file named corvette.zip when visitors click on
either of the words in “Click here”:

Click here to download a photo of my new Corvette.

The href attribute tells the Web browser to retrieve the picture of the Corvette (corvette.zip) from
the cars folder on the www.home.com Web site.

You can make your Web pages interactive and user-friendly by adding hypertext links that let visitors
download files and navigate the pages on your site or onto other sites. When you create hypertext
links, make sure the hypertext or the text that precedes or follows the hyperlink explains, in easy-to-
understand wording, exactly what will occur when a visitor clicks on the text to activate the hyperlink.

In addition, because most Web surfers associate underlined text with hypertext links, avoid the use
of the start and end underline tags (<u></u>) to emphasize text within a Web document. To emphasize
a word or group of words within a Web document choose styles such as bold, italic, or change the
typeface, color, or size of the text.

Enhancing Individual Letters and Words
Using Character Formatting Tags
When you want the Web browser to display text on a Web page, you simply type the text you want
displayed between the start and end body tags (<body></body>) of the Web page HTML. As the
Web browser reads the HTML document, the browser displays any text it finds onscreen. To tell
the browser how you want the text to look, enclose the text between a pair of formatting tags. (HTML
provides tags you can use to instruct the browser to apply such formatting options as bold, italic, and
strikethrough.) You need to understand that Web browsers do not recognize normal formatting codes
embedded in documents by word processors like Microsoft Word.

Suppose, for example, that you want specific words in your Web document to appear in
boldface. To boldface a letter, word, or group of words, enclose the desired text between

start and end bold tags () such as those shown around the word “bold” in the following:

The last word in this sentence is bold

Character formatting tags are container tags, meaning they require both a start and an end tag.
The Web browser will apply the formatting instruction to all the text within the “container,” that is
to all the text between the start and end formatting tags. In this example, the start and end bold tags
(<bold> </bold>) that enclose the word “bold” instruct the Web browser to display the word in
boldface type as bold. As mentioned previously, you can use character formatting tags to specify
the appearance of several sentences (or even paragraphs), groups of words, individual words, or
even a single letter within a word. For example, when the browser displays the text in the following
HTML, only the letter “B” in the word “Bold” will display in boldface.

C h a p t e r 1 : H T M L B a s i c s 4 1

The first letter is Bold

In addition to the start and end bold tags (), you can use the following tags to enhance the
look of text on a Web page:

• <cite> </cite> The citation tags emphasize text, usually in italics.

• <code> </code> The code tag sets the enclosed text in a monospace font such as Courier to
set off the text. Use the code tags to identify a piece of HTML code within a training document.

• The deleted text tags mark text as deleted by striking through the text.
For example, use the deleted tags to mark through information in a legal document.

• <q> </q> The quotation tags surround the enclosed text with quotation marks.

• The subscript tags create a subscript, or display the text slightly lower
than the surrounding text.

• The superscript tags create a superscript, or display the text slightly higher
than the surrounding text.

• The emphasis tags highlight text by changing the enclosed words into italic font.

• The strong tags highlight text by bolding and italicizing the enclosed words.

• <i> </i> The italic tags highlight text by italicizing the enclosed words.

• <u> </u> The underline tags highlight text by underlining the enclosed words. This tag
is deprecated.

You can use formatting tags singularly or in combination. The following example combines the
start and end bold tags () and the start and end superscript tags (<super></super>) to make
the word “super” stand out on the page.

Character formatting tags are a <super>super</super> way

to grab the attention of a visitor to your Web page.

Although character formatting tags visually changes text within the browser window, a more
efficient way to change text styles and adhere to the W3C recommendations is to use CSS rules.

Using Symbols and Special Characters
in an HTML Document
Placing ordinary text on a Web page is as simple as creating an HTML document and entering the
text between the document’s HTML tags. A Web browser has no trouble reading and displaying

4 2 H T M L & W e b D e s i g n T i p s & T e c h n i q u e s

letters (A–Z, a–z) and numbers (0–9) it finds in the HTML document. There are, however, certain
special characters and symbols that text-editor applications let you type into the document, but the
Web browser will not display on the Web page. Fortunately, HTML provides a text notation you can
use to tell the Web browser to display certain commonly used special characters and lets you enter a
numerical code for the rest.

Say, for example, you create a Web page, and you want to display a copyright symbol
() to indicate that certain items on the page and perhaps the overall design are protected

under United States copyright laws. To get the Web browser to display the copyright symbol, you
must enter the specific numeric value that represents the symbol. In a computer, each letter, number,
and symbol is stored as a unique numeric value known as the character’s ASCII code. To display a
symbol such as the copyright on a Web page, you enter the symbol’s unique value (that is, its ASCII
code) into the Web page HTML.

For example, the numeric value of the copyright symbol is 169. To instruct the Web browser to
display the character represented by the ASCII value 169, precede the character value with an ampersand
(&) pound sign (#) combination and place a semicolon (;) after the code. Thus, to tell the Web browser
to display the copyright symbol on the Web page, you would enter © into the Web page HTML.
For the more commonly used symbols, HTML simplifies the process by letting you use a text code
as opposed to a number to represent the symbol. For example, the character notation for the copyright
symbol is ©.

The following code illustrates the use of the copyright symbol in an HTML document. To display
a special character, the &#xxx; (where xxx represents the ASCII value of the special character) informs
the browser which special character to display within the Web document onscreen. Figure 1-17 shows
the results of using a Web browser to display the following HTML:

<html>

<head>

<title> Copyright example </title>

</head>

<body>

<p>The copyright symbol © indicates the

product falls under the protective umbrella

of copyright as defined by the United States.</p>

</body>

</html>

� NOTE

For a listing of special character codes and their corresponding values,
visit http://www.htmlhelp.com/reference/charset/.

C h a p t e r 1 : H T M L B a s i c s 4 3

Tip&Tec / HTML & Web Design Tips & Techniques / Anderson, King, Jamsa / 9394-8 / Chapter 1

P:\010Comp\Tip&Tec\394-8\ch01.vp
Friday, January 04, 2002 1:08:35 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Using Horizontal Rules to Organize Web Content
When you create a Web page, organizing the page content into groups of related information is
important. For example, you might organize the contents of a Web page that deals with vehicle sales
into sections on cars, trucks, and vans. Or, you might organize the page by separating rental vehicle
data from information about cars available for lease or direct sale.

One way to organize a Web page is to use horizontal rules (that is, horizontal lines) to separate different
types of content. Suppose, for example, that you create a Web page to display research data, and you
want to separate the research results from the footnotes. To create a horizontal rule that separates the
research text from the footnotes, use the <hr> tag. The <hr> tags in the following HTML instruct the Web
browser to place ruled lines horizontally (that is, left to right) across the browser’s application window,
as shown in Figure 1-18.

<html>

<head>

<title>Use of the Horizontal Rule</title>

</head>

<body>

<center>

<h2>Using ImageReady to Slice an Image</h2>

</center>

4 4 H T M L & W e b D e s i g n T i p s & T e c h n i q u e s

Tip&Tec / HTML & Web Design Tips & Techniques / Anderson, King, Jamsa / 9394-8 / Chapter 1

Figure 1-17 The ASCII value © in the HTML code instructs the Web browser to display
a copyright symbol in the text

P:\010Comp\Tip&Tec\394-8\ch01.vp
Friday, January 04, 2002 1:08:35 PM

Color profile: Generic CMYK printer profile
Composite Default screen

<p>When you slice an image . . . remainder of text</p>
<p>Slicing an image has . . . remainder of text </p>

<p>Treat each individual . . . remainder of text </p>

<p>However, it is just as . . . remainder of text </p>

<p>You can accomplish this . . . remainder of text </p>

<hr width="75%">

<hr width="50%">

<h3>Footnotes</h3>

<cite>1001 Photoshop Tips: Andy Anderson 2001</cite>

<hr align="left" noshade size="2" width="25">

<cite>Web Design & HTML: Konrad King, Andy Anderson</cite>

</body>

</html>

C h a p t e r 1 : H T M L B a s i c s 4 5

Tip&Tec / HTML & Web Design Tips & Techniques / Anderson, King, Jamsa / 9394-8 / Chapter 1

Figure 1-18 A Web page that contains body text and footnotes

P:\010Comp\Tip&Tec\394-8\ch01.vp
Friday, January 04, 2002 1:08:36 PM

Color profile: Generic CMYK printer profile
Composite Default screen

In addition to creating a horizontal rule using the <hr> tag, you can create attractive rules by using
graphics images. The following illustrates the use of the picture of a line in place of a horizontal rule
drawn by the Web browser.

You can use the following attributes to control the appearance of a horizontal rule:

• align The align attribute instructs the Web browser to align the horizontal rule to the right,
left, or center of the browser application window.

• noshade The noshade attribute instructs the Web browser to display the horizontal line
without shading the line.

• size The size attribute (measured in pixels) controls the thickness of the horizontal rule.

• width The width attribute defines the length of the line. You can specify the horizontal rule’s
width either in pixels or as a percentage of the browser application window’s width. For example,
if you set the width to 50 percent (width=“50%”), the browser will draw a horizontal rule with
a length equal to half the width of the browser window.

If you place a horizontal rule in a table cell or within a position box, the browser uses the width
and align attributes to set the length and horizontal position of the line relative to the vertical sides
of the cell or position box (and not relative to the width of the Web page as a whole). The following
illustrates the horizontal rule tag using various width, size, and alignment options.

4 6 H T M L & W e b D e s i g n T i p s & T e c h n i q u e s

Tip&Tec / HTML & Web Design Tips & Techniques / Anderson, King, Jamsa / 9394-8 / Chapter 1

No shade

Width changed

Height changed

Left

Normal horizontal rule

Center
Right

P:\010Comp\Tip&Tec\394-8\ch01.vp
Friday, January 04, 2002 1:08:36 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Using Blockquote Tags to Control
Left and Right Text Margins
One of the more difficult things to accomplish in HTML is controlling the distance between text and the
left and right text margins of a Web document. By default, the Web browser adjusts the left and right-hand
page margins (that is, the width of the Web page) such that the page fits within the width of the browser’s
application window. (The alternative would be to allow a portion of the Web page to extend “beneath”
the right-hand side of the application window and provide a horizontal scrollbar the visitor could use
to display content that falls outside the viewable area within the application window.)

Of course, Web authors understand that Web browsers will shift text content from one line to the
next as necessary. As such, developers create Web pages using a variety of text formatting/positioning
options such as CSS or placing text into the cells of an HTML table. Without specific formatting
instructions, the Web browser will place the first character of text right next to the left-hand margin
and will wrap (move down to the next line) only when the browser reaches the right-hand margin on
the Web page. Remember, the width of the browser application window on the visitor’s computer
determines the distance between the left and right-hand margins on a Web page. Moreover, the browser
wraps text to the next line when the browser encounters the right-hand side the application window.
A blockquote formats text by indenting, or increasing the margins on the right and left sides of the
blockquoted text. As such, using blockquotes to indent a portion of text document makes text stand
out and thereby helps to organize the content on the page.

For example, the following HTML defines a Web page with a title followed by
two paragraphs of blockquote style text, as shown in Figure 1-19:

<html>

<head>

<title>Example of the Blockquote tag</title>

</head>

<body>

<p>This is regular text</p>

<blockquote>The text in this paragraph is

blockquoted. Notice how the text indents

on the left side of the page, and wraps

when it encounters the right margin

</blockquote>

<p>This is more regular text; see what happens

when the regular text reaches a margin.</p>

<blockquote>The text in this paragraph

is blockquoted. Notice how the text

indents on the left side of the page,

and wraps when it encounters the right

margin

</blockquote>

</body>

</html>

C h a p t e r 1 : H T M L B a s i c s 4 7

Tip&Tec / HTML & Web Design Tips & Techniques / Anderson, King, Jamsa / 9394-8 / Chapter 1

P:\010Comp\Tip&Tec\394-8\ch01.vp
Friday, January 04, 2002 1:08:37 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Creating Ordered and Unordered Lists
Previously in this chapter, you learned several ways in which to lay out content on a Web page.
Ordered and unordered lists provide yet another tool you can use to organize related text into groups
of either bulleted or numbered items in a list. Lists are very useful because they provide information
in a structured format. Ordered lists use an alphabetical or numerical system to organize Web content,
and unordered lists use symbols, or bullets, to identify each item in the list. Figure 1-20 shows a Web
page—with an ordered and unordered list.

Use ordered, or numbered, lists to create step-by-step instructions, where the order of the
elements in the list is important. The following HTML code describes the ordered list

shown in Figure 1-20.

4 8 H T M L & W e b D e s i g n T i p s & T e c h n i q u e s

Tip&Tec / HTML & Web Design Tips & Techniques / Anderson, King, Jamsa / 9394-8 / Chapter 1

Figure 1-19 A Web page displaying regular and text enclosed within blockquotes

P:\010Comp\Tip&Tec\394-8\ch01.vp
Friday, January 04, 2002 1:08:37 PM

Color profile: Generic CMYK printer profile
Composite Default screen

TE
AM
FL
Y

Team-Fly®

<html>

<head>

<title>Example of ordered list</title>

</head>

<body>

<h2>Program Load</h2>

Insert CD into Computer

Click the Start Icon

Load the Program

Play the Game<

</body>

</html>

C h a p t e r 1 : H T M L B a s i c s 4 9

Tip&Tec / HTML & Web Design Tips & Techniques / Anderson, King, Jamsa / 9394-8 / Chapter 1

Figure 1-20 A Web page displaying an ordered list (left) and unordered list (right)

P:\010Comp\Tip&Tec\394-8\ch01.vp
Friday, January 04, 2002 1:08:38 PM

Color profile: Generic CMYK printer profile
Composite Default screen

As shown in this example, to denote an ordered list within the Web page HTML, place the list’s
items between start and end ordered list tags (). Then, to add items to the list, place the text
for each item between start and end list item tags ().

By default, the Web browser will display an Arabic numeral (1, 2, 3, 4…) before each item in
the list—with the first item numbered 1. If you wish to use letters or roman numerals instead, insert
a type attribute in the start ordered list tag as follows:

• <ol type=“1”> Displays items using Arabic numerals (default)

• <ol type=“a”> Displays items using lowercase letters

• <ol type=“A”> Displays items using uppercase letters

• <ol type=“i”> Displays items using lowercase roman numerals

• <ol type=“I”> Displays items using uppercase roman numerals

To begin an ordered list at a number other than “1” (or alphabetically with a letter other than “a”)
insert a start attribute with a value other than “1” in the tag. For example, an ordered list that
starts with the following tag would begin the list with the letter “e”, because “e” is the fifth
letter of the alphabet:

<ol type="a" start="5">

Similarly, if you assign a “1” to the type attribute in order to indicate the browser is to place an
Arabic numeral before each item in the list, the browser would start the list with the first list item
numbered 5.

Unordered lists let you create groups of text items where the order of the items in the list is not
important, such as in a shopping list. The following HTML code will create the unordered list shown
previously in Figure 1-20:

<html>

<head>

<title>Example of unordered list</title>

</head>

<body>

<h2>Shopping List</h2>

Bread

Milk

Butter

Tea<

</body>

</html>

5 0 H T M L & W e b D e s i g n T i p s & T e c h n i q u e s

Tip&Tec / HTML & Web Design Tips & Techniques / Anderson, King, Jamsa / 9394-8 / Chapter 1

P:\010Comp\Tip&Tec\394-8\ch01.vp
Friday, January 04, 2002 1:08:38 PM

Color profile: Generic CMYK printer profile
Composite Default screen

To denote an unordered list within the Web page HTML, place the list’s items between start and
end unordered list tags (). As is the case with an ordered list, you add items to an unordered
list by placing the text for each item between start and end list tags ().

By default, the Web browser will display a solid black dot (●) as the bullet character before each
item in the unordered list. If you want the browser to use a different bullet character, use the type
attribute in the tag to select the bullet symbol as follows:

• <ul type=“disc”> Displays items using a solid black dot (default)

• <ul type=“square”> Displays items using a black outlined square

• <ul type=“circle”> Displays items using a black outlined dot (that is, an unfilled circle)

Creating Nested Lists
In the preceding Tip, you learned the how to create ordered and unordered lists. You can also create
an ordered or unordered list within another list; that is, you can create a nested list. You might use a
nested list to display a set of actions that are important to a specific step in the outer list, as shown here:

Step 3 of the list shown requires more explanation than a simple, “Load the Program”
statement. Therefore, you might insert a nested list to describe the steps necessary to load

the program. The following HTML code describes the insertion of the nested list shown previously:

<html>

<head>

<title>Example of Ordered List</title>

</head>

<body>

<h2>Program Load</h2>

Insert CD into Computer

Click the Start Icon

C h a p t e r 1 : H T M L B a s i c s 5 1

Tip&Tec / HTML & Web Design Tips & Techniques / Anderson, King, Jamsa / 9394-8 / Chapter 1

P:\010Comp\Tip&Tec\394-8\ch01.vp
Friday, January 04, 2002 1:08:39 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Load the Program

<ol type="a">

Double-click the game icon

Enter serial number

Click the Finish button

Play the Game<

</body>

</html>

In this example, the nested list is an ordered list defined by start and end ordered list tags (
). The ordered list is nested, because the start and end ordered list tags () occur within
(that is, are nested in) an outer set of start and end ordered list tags(). (The text phrases
between the start and end list item tags [] appear onscreen as the items in each list [both
outer and nested]).

Although the coding of a nested list may appear complicated, you follow the same rules when
creating a nested list as when creating the outer list. Define the nested list between a set of start and
end ordered list tags () or between a set of start and end unordered list tags ().
Then add items to the nested list by inserting text between sets of start and end list item tags ()
you inserted after the definition for a list item in the outer list. Keep in mind that you can nest both
ordered lists and unordered lists in an outer list (which may be an ordered list or an unordered list).

Creating Definition Listings
Earlier in this chapter, you learned how to create ordered and unordered lists and how to nest one list
within another. In addition to items arranged in bulleted lists and numbered lists, HTML also lets you
create a definition list. As its name implies, a definition list is a list of terms, each followed by a definition.
The Web browser indents each definition on the next line below the term being defined, as shown in
Figure 1-21.

A definition list is the only type of list that does not identify the individual list items using the start
and end list item tags (). Instead, the definition list uses two new tags:

• <dt></dt> Start and end definition term tags denote the term to be described or defined. (The
start and end definition term tags are similar in function to the start and end list item tags used
to denote individual items in ordered and unordered lists.)

• <dd></dd> The start and end definition description tags denote one or more paragraphs of
indented descriptive text.

To create a definition list within the Web page HTML, insert the terms and definitions
between start and end definition list tags (<dl></dl>). For example, the following HTML

will create a two-term definition list as shown previously:

5 2 H T M L & W e b D e s i g n T i p s & T e c h n i q u e s

Tip&Tec / HTML & Web Design Tips & Techniques / Anderson, King, Jamsa / 9394-8 / Chapter 1

P:\010Comp\Tip&Tec\394-8\ch01.vp
Friday, January 04, 2002 1:08:39 PM

Color profile: Generic CMYK printer profile
Composite Default screen

<html>

<head>

<title>Example of a Definition List</title>

</head>

<body>

<center><h2>Basic HTML</h2></center>

<dl>

<dt>Basic HTML Tags </dt>

<dd>HTML tags are commands used by a Web browser to

display information in a browser window.

HTML tags are accepted by both Mac and Win versions

of the standard browser applications.</dd>

<dt>The Importance of the Title Tag </dt>

<dd>The title tag represents the description

of a Web page to visitors to your Web site.

The title to a Web page appears in the title

bar of the Web browser window.</dd>

</dl>

</body>

</html>

C h a p t e r 1 : H T M L B a s i c s 5 3

Tip&Tec / HTML & Web Design Tips & Techniques / Anderson, King, Jamsa / 9394-8 / Chapter 1

Figure 1-21 A definition list with two items and descriptions

P:\010Comp\Tip&Tec\394-8\ch01.vp
Friday, January 04, 2002 1:08:40 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Using Preformatted Text Tags to Control
the Display of Web Content
Previously, in this chapter, you learned how to change the appearance of text by using formatting
tags. For example, if you want the browser to display a word in boldface, you enclose the word
within start and end boldface tags () in the Web page HTML. Similarly, to move text down
one or more lines, you insert one or more
 tags. Thus, when creating a Web page, you often use
one set of HTML tags to control how the text looks, and another set of tags to control the layout of
the text on the page. Unfortunately, when the Web browser displays the text, the browser ignores
multiple spaces and new lines you may have entered in the HTML document to space or align page
content, as shown in Figure 1-22.

You can, however use the start and end preformatted text tags (<pre></pre>) to combine both
format and layout functions in a single set of HTML tags. The start and end preformatted text tags

5 4 H T M L & W e b D e s i g n T i p s & T e c h n i q u e s

Tip&Tec / HTML & Web Design Tips & Techniques / Anderson, King, Jamsa / 9394-8 / Chapter 1

Figure 1-22 The Web browser ignores the additional formatting (spaces and carriage returns)
entered into the body of the HTML document

P:\010Comp\Tip&Tec\394-8\ch01.vp
Friday, January 04, 2002 1:08:40 PM

Color profile: Generic CMYK printer profile
Composite Default screen

(<pre></pre>) tell the Web browser to use a fixed pitch font and to display onscreen all the spaces,
and new lines, the browser finds within the preformatted text in the Web page HTML. (To avoid
misaligned paragraph text in the browser window, uses spaces and not the TAB key to line things up,
because not all browsers interpret the TAB key the same way.)

You might use preformatted text to display such things as program listings and recipes.
Figure 1-23, for example, shows a Web page with preformatted text.

Normally, you use preformatted text when you want to control the length of each line of text and
the spacing of the words within a line. Unfortunately, you cannot use tags to insert pictures, or
<object> tags to insert ActiveX controls or Java applets within preformatted text. Although the start and
end preformatted text tags (<pre></pre>) let you control the placement of text, you must use HTML
tables or CSS rules to control the location of elements other than text.

C h a p t e r 1 : H T M L B a s i c s 5 5

Tip&Tec / HTML & Web Design Tips & Techniques / Anderson, King, Jamsa / 9394-8 / Chapter 1

Figure 1-23 The preformatted tags control the line breaks within a Web document without the
use of HTML formatting tags

P:\010Comp\Tip&Tec\394-8\ch01.vp
Friday, January 04, 2002 1:08:41 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Displaying a Navigation Menu Within a Web Page Frame
You use HTML frames when you want to display more than one Web page in a single application
window. Because the Web browser maintains a separate URL for each frame, the browser can load
a new Web page into any of the frames without changing the contents of the others. One of the most
common uses of a framed Web page is to display a Web site’s navigation menu while the visitor moves
from page to page on the site. A typical navigation menu consists of graphics in the form of buttons
or simply hypertext links that connect to all the pages in a Web site. A well-designed navigation menu
guides the user through the twists and turns of a site like a road map.

An important consideration when designing a navigation menu is where on the Web page to place the
menu. Most Web pages place the navigation menu horizontally across the top, or vertically down the left
side of the application window. Whatever placement you choose, be consistent. If you place the navigation
menu vertically down the left side of the site’s index page (that is, the site’s homepage), place the menu
in the same place on the site’s remaining pages. Consistent placement helps the user feel comfortable
with navigation, and comfortable visitors will spend more time exploring your site. On a marketing
site, increased visitor comfort with the site’s navigation translates into increased sales, and on information
sites, visitors will remember more and be more likely to return to the site for more information.

Frames give you way of keeping a navigation menu in view at all times while the visitor travels
around the pages on your Web site. Suppose, for example, that you create a Web page with two frames,
such as that shown in Figure 1-24.

Place the navigation menu in the thin, 100-pixel rectangular frame along the left-hand
side of the page and display new Web pages in the larger frame on the right. Because the

frame with the navigation bar remains in place along the left side of the browser application window
as the browser loads selected Web pages into the frame on the right, the visitor never loses sight of
the road map of your site. The following code creates the framed Web page shown in Figure 1-24:

<html>

<head>

<title>Welcome to Product Review</title>

</head>

<frameset cols="100,400,*">

<frame src="n_nav.html" name="left">

<frame src="h_main.html" name="right">

</frameset>

</html>

As you can see from the code in this example, the frameset page does not include the HTML from
all the Web pages displayed onscreen together. The frameset Web page simply instructs the Web browser
to display Web pages in the frames defined by the start frameset tag (<frameset>).

In this example, the frameset page instructs the Web browser to display the HTML documents
n_nav.html, and h_main.html (the site’s navigation menu and index page, respectively) within two
frames onscreen. The Web browser loads the n_nav.html document into the first frame of 100 pixels

5 6 H T M L & W e b D e s i g n T i p s & T e c h n i q u e s

Tip&Tec / HTML & Web Design Tips & Techniques / Anderson, King, Jamsa / 9394-8 / Chapter 1

P:\010Comp\Tip&Tec\394-8\ch01.vp
Friday, January 04, 2002 1:08:42 PM

Color profile: Generic CMYK printer profile
Composite Default screen

in width and the h_main.html document into the second frame of 400 pixels in width. HTML tags
used to define Web pages loaded into frames perform exactly as they do when a Web browser displays
one of the pages at a time. Frames simply arrange multiple Web pages within a single document window.

Displaying Multiple Web Pages Onscreen
at the Same Time
Frames provide a way to have a Web browser display multiple Web pages onscreen at the same time.
A typical Web page that contains frames might have two frames—one frame in which to display a
navigation bar and a second in which to display a Web page with content you want the visitor to view.
When the visitor clicks on a button or hyperlink on the navigation bar in one frame, the Web browser
loads and displays a Web page in the second content frame.

To create a Web page with frames, you need at least three Web pages. First, you need the
two or more Web pages you want to display onscreen at the same time. (If you have only

C h a p t e r 1 : H T M L B a s i c s 5 7

Tip&Tec / HTML & Web Design Tips & Techniques / Anderson, King, Jamsa / 9394-8 / Chapter 1

Figure 1-24 The document window contains two frames that hold the navigation menu and the
site information

P:\010Comp\Tip&Tec\394-8\ch01.vp
Friday, January 04, 2002 1:08:42 PM

Color profile: Generic CMYK printer profile
Composite Default screen

5 8 H T M L & W e b D e s i g n T i p s & T e c h n i q u e s

Tip&Tec / HTML & Web Design Tips & Techniques / Anderson, King, Jamsa / 9394-8 / Chapter 1

one Web page to display, there is no reason to split the browser’s application window into frames.)
Second, you need a frameset page whose job it is to tell the Web browser the size and number of
frames as well as the names of the Web page to display in each frame.

Suppose, for example, that you have a Web page with a navigation bar that you have stored in a
file named n_menu.html. Moreover, you have a Web page with company information that you have
saved to a file named opendoc.html. You could use a frames page such as that defined by the following
HTML to display both pages (n_menu.html and opendoc.html) onscreen at once:

<!doctype html public "-//W3C//DTD HTML 4.01 Frameset//EN"

"http://www.w3.org/TR/html4/frameset.dtd">

<html>

<head>

<title> Example of a frame document </title>

</head>

<frameset cols="80,400">

<frame name="menu" src="n_menu.html">

<frame name="content" src="opendoc.html">

</frameset>

</html>

Notice that in the HTML document containing the frames, the start and end frameset tags
(<frameset></frameset>) replace the start and end body tags (<body></body>) you see in a Web
page without frames. This is because the frames page has no “body” or “content” to display. The
sole purpose of the frames page is to divide the browser’s application window into frames (like
picture frames), and to give the Web browser the pathname or URL of the Web page to display
in each of the frames.

In this example, the cols attribute in the <frameset> tag tells the Web browser to draw two frames
and to make the first frame 80 pixels wide and the second 400 pixels wide. Thus, the cols attribute
tells the Web browser not only the number of frames to draw (by the number of column widths listed
in the attribute’s value) but also the pixel-width of each frame. (For example, if you have three fames,
the cols attribute would have three values and appear as cols=“n,n,n”; if you have four frames, the
cols attribute would have four values and appear as: cols=“n,n,n,n”, and so on.)

The src attribute in a frame’s <frame> tag tells the Web browser the name of the Web page to display
within the frame when the browser initially loads the frames page. In the current example, the Web
browser will load n_menu.html into the first frame (named menu) and opendoc.htm into the second
frame (named content), as shown in Figure 1-25.

When the site visitor clicks on a hyperlink in the menu frame, the target attribute in the <a> tag
tells the Web browser into which frame to load the Web page given by the <a> tag’s href attribute.
For example, the following hyperlink tells the Web browser to display the document aboutus.html
in the frame named content when the visitor clicks anywhere within the “About us” hypertext link:

About Us

P:\010Comp\Tip&Tec\394-8\ch01.vp
Friday, January 04, 2002 1:08:43 PM

Color profile: Generic CMYK printer profile
Composite Default screen

TE
AM
FL
Y

Team-Fly®

Thus, when the visitor clicks on the “About Us” hypertext link, the Web browser will replace the
document (opendoc.html, from the previous example) displayed in the target frame (content) with
aboutus.html (named by the href attribute in this example). If a hyperlink’s <a> tag has no target attribute,
the browser will load the hyperlinked document into the frame used to display the Web page whose
hyperlink the visitor activated. For example, the following HTML will cause the Web browser to replace
n_menu.html with aboutus.html in the menu frame (given that “About Us” is a hypertext link on the
menu bar displayed within the menu frame):

About Us

Similarly, when the visitor clicks on a hyperlink in the content frame, the hyperlink will have either
a target attribute that tells the browser to load the linked page into the content frame, or no target attribute,
in which case the browser will load the linked page into the content frame anyway. By displaying
linked pages the browser retrieves within the content frame, you can leave the navigation menu (in
the menu frame) onscreen at all times.

Web page frames provide an excellent way to organize your Web site. However, because framed
Web documents require the browser to load and display three or more Web pages, it takes the Web
browser longer to display a Web page with frames than one without. Moreover, not all Web browsers

C h a p t e r 1 : H T M L B a s i c s 5 9

Tip&Tec / HTML & Web Design Tips & Techniques / Anderson, King, Jamsa / 9394-8 / Chapter 1

Figure 1-25 The Web browser window contains two frames, with each frame holding a separate
HTML document

opendoc.html
loads in
frame 2

n_array.html
loads in
frame 1

P:\010Comp\Tip&Tec\394-8\ch01.vp
Friday, January 04, 2002 1:08:43 PM

Color profile: Generic CMYK printer profile
Composite Default screen

support frames. Those that do not support frames will display neither the Web pages in the frames
nor the frames defined by the frameset page.

To handle browsers that do not support frames, include the start and end no frames tags
(<noframes></noframes>) within your frameset document, as illustrated in the following code:

<!doctype html public "-//W3C//DTD HTML 4.01 Frameset//EN"

"http://www.w3.org/TR/html4/frameset.dtd">

<html>

<head>

<title>A frameset document with NOFRAMES</title>

</head>

<frameset cols="80,400">

<frame name="menu" src="n_menu.html">

<frame name="content" src="opendoc.html">

<noframes>

Click to view

a non-frame based version of the document.

</noframes>

</frameset>

</html>

If the Web browser does not support frames, the hypertext link appears within the browser
window, instructing the user to click on the link to load a non-framed version of the Web page.

6 0 H T M L & W e b D e s i g n T i p s & T e c h n i q u e s

Tip&Tec / HTML & Web Design Tips & Techniques / Anderson, King, Jamsa / 9394-8 / Chapter 1

P:\010Comp\Tip&Tec\394-8\ch01.vp
Friday, January 04, 2002 1:08:44 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Tip&Tec / HTML & Web Design Tips & Techniques / Anderson, King, Jamsa / 9394-8 /
Blind Folio 61

P:\010Comp\Tip&Tec\394-8\ch01.vp
Friday, January 04, 2002 1:08:44 PM

Color profile: Generic CMYK printer profile
Composite Default screen

CHAPTER 2

HTML Tables

Tip&Tec / HTML & Web Design Tips & Techniques / Anderson, King, Jamsa / 9394-8 / Front Matter

TIPS IN THIS CHAPTER

� Creating a Table with Cells that Span Multiple Columns or Multiple Rows 72

� Working with Table and Cell Border Widths 75

� Working with Table and Cell Border Colors 76

� Working with Background Images and Colors 78

� Determining a Color Attribute’s Value 81

� Working with Cell Padding and Cell Spacing 83

� Setting Table Dimensions Using Relative or Absolute Values 84

� Setting Cell Dimensions Using Relative or Absolute Values 85

� Aligning Cell Content Horizontally and Vertically 86

� Aligning a Table on a Web Page 89

� Controlling the Width and Height of a Cell by Inserting a Transparent GIF 89

� Wrapping Text Around an Image 91

� Displaying a Gallery of Thumbnails Within a Table 93

� Creating Bullets and Lists with Tables and Graphics 96

� Creating a Navigation Sidebar Using a Table 97

� Adding Images and Links to Table Cells 98

P:\010Comp\Tip&Tec\394-8\ch02.vp
Friday, January 04, 2002 2:32:44 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Copyright 2002 by The McGraw-Hill Companies, Inc. Click Here for Terms of Use.

63

Tip&Tec / HTML & Web Design Tips & Techniques / Anderson, King, Jamsa / 9394-8 /

HTML tables provide the Web designer with two valuable tools—a tool to place text and numerical
information in a tabular form and a way to position objects on a Web page precisely. Although

you will occasionally use tables to display tabular data, the true power of tables lies in their utility as
a page layout tool. HTML tables let you lay out Web pages in ways that were difficult if not impossible
to do prior to the introduction of tables with the release of HTML 3 in 1995. In fact, using tables for
page layout has become so widespread that the World Wide Web Consortium (W3C) has worked
hard to standardize the way in which browsers across multiple platforms render tables. As a result,
today’s Web designers can use tables and be sure of consistent performance and display of information
in all but the oldest Web browsers.

When you work with tables, the most obvious use for a table is to display text and numeric information
in columnar form. Say, for example, that you want to display a listing of all the executives within a
company and their corresponding office phone numbers. You would create a two-column table with
the individual cells in the left column containing the names of the executives. The corresponding cells
in the right column contain the executive’s office phone number. As shown in Figure 2-1, you might
increase the information the table provides, by adding a third column that contains e-mail address, and
a fourth, fifth, and sixth column for address, city, and state.

Because the cells in the table read from left to right, the table orders the information you place in
its cells in an easy-to-read format, and distills the complexity of the information into a user-friendly
spreadsheet format.

The second (and perhaps most important) application of tables is to place Web content (that is, text,
numbers, graphics images, or blank space) into individual table cells, and then control the design of
the Web page by placing the cells into organized rows and columns. In fact, for many designers, creating
a structured Web page starts with drawing a row and column matrix (in other words, a table) that fits

� Nesting Tables to Control Borders on a Web Page 99

� Approximating an Image Map by Placing Pieces of an Image Within a Table 100

� Slicing a Graphic Image into Table Cells to Create a Quick Loading Web Graphic 102

� Reducing the Amount of Time a Web Browser Spends Drawing a Table 103

� Simulating Web Page Frames Using a Table 104

� Focusing the Viewer’s Attention with Cell Background Colors 107

� Aligning Web Page Content Visually with Visible Table Borders 108

� Controlling Gutter Size and Margin Width of Text on a Web Page 110

P:\010Comp\Tip&Tec\394-8\ch02.vp
Friday, January 04, 2002 2:32:44 PM

Color profile: Generic CMYK printer profile
Composite Default screen

6 4 H T M L & W e b D e s i g n T i p s & T e c h n i q u e s

Tip&Tec / HTML & Web Design Tips & Techniques / Anderson, King, Jamsa / 9394-8 / Chapter 2

the width and height of the entire page. The designer then lays out the Web page by placing the page
content into the table’s row and column cell structure at the location where the designer wants each
element (or object) to appear on the Web page.

Suppose, for example, that you want to place a graphic element in the upper-right corner of a Web
page. All that is required to do so is to create a table with a cell in the upper-right corner of the page,
and then place the graphics image into that cell. Similarly, if you want to place text in the lower-right
corner of the page, simply make sure the table’s structure creates a cell where you want the text to
appear and then place the text you want into the cell.

When the Web browser, in turn, displays the Web page with the table, the dimensions of the table
and its cells hold the graphics image(s) and text in position on the page. Because each cell in a table can
hold any Web page object at a specific spot on the Web page, you can use tables to control the placement
of everything from simple text to interactive graphics buttons and background images. Figure 2-2, for
example, shows a Web page in which a table with zero-width cell borders provides an invisible grid
of cells that hold the page content in place.

Saying that the introduction of HTML tables completely changed the way in which Web designers
create Web pages would not be an exaggeration.

� NOTE

Due to the complexity and amount of HTML required to create extensive page layout tables, you may
want to use one of the Web design tools, such as Dreamweaver or GoLive. These programs not only
generate well-written and efficient HTML code but they can also save you hours of time by letting
you use the mouse pointer to “draw” the table you want onscreen.

In addition to using tables to place graphics and text on a Web page, you can also use tables to
group a set of navigation buttons along the top, bottom, or sides of a page. Using a table to organize
navigation buttons into an ordered pattern at the same relative location on each page makes the site

Figure 2-1 Table used to display numeric and text data in tabular form

P:\010Comp\Tip&Tec\394-8\ch02.vp
Friday, January 04, 2002 2:32:44 PM

Color profile: Generic CMYK printer profile
Composite Default screen

C h a p t e r 2 : H T M L T a b l e s 6 5

Tip&Tec / HTML & Web Design Tips & Techniques / Anderson, King, Jamsa / 9394-8 / Chapter 2

easier to navigate. Moreover, by painting groups of cells with different background colors you can
create a visually organized Web page.

Suppose, for example, that you create a column of navigation buttons along the left side of a Web
page. Use the same background color for each of the table’s cells that hold the navigation buttons, as
shown in Figure 2-3.

Then, by using a contrasting color for the backgrounds of the remaining cells in the table, you will
draw the visitor’s eyes to the group of cells that are the site’s navigation menu—thereby making it easier
for the visitor to find the buttons necessary to move from page to page on the site. Moreover, by using
the same background color for the navigation button cells on all Web pages, you give the visitor a
visual cue as to where to look for help with navigating to specific pages of interest on the site. In general,
using background color to group table cells that perform a single function creates a visually pleasing,
visitor-friendly Web site.

Tables also provide an excellent way to divide a single graphics image into multiple parts to
approximate an image map on Web browsers that do not support image maps. Image maps are graphics
images subdivided into clickable regions. Depending on a site’s purpose and tone, you might use an
image map as a unique navigation tool. Suppose, for example, that you create a historical Web site
for your family. The graphics image on the index page might be that of a large tree with extended

Figure 2-2 Web page content held in place within the cells of a table

P:\010Comp\Tip&Tec\394-8\ch02.vp
Friday, January 04, 2002 2:32:45 PM

Color profile: Generic CMYK printer profile
Composite Default screen

branches, with each branch of the (family) tree named after a particular branch of your family. By
dividing the picture of the tree into separate pieces and then placing each part into a separate cell in
a table such that each cell holds a branch of the tree, you can turn each branch of the tree into a “hotspot,”
such as those you find on an image map. After you do this, the visitor will be able to click on a branch
on the tree to access information about a particular set of relatives. Although the visitor sees a complete
tree with extending branches, in reality the graphics image on the Web page is broken and divided
into separate pieces and then reassembled into a single image using an HTML table.

Oddly enough, most Web designers that use tables as a design tool do not consider the actual coding
of the tables to be the most difficult part. Instead, it is visualizing the Web page broken into a table
format of rows and columns of cells that they find difficult. For example, in the previous paragraph, a
tree with extending branches creates the image map for an historical Web site. However, if you want
to create an image map of the United States, you need only to look at a map of the country to see that
dividing the United States among the cells of an HTML table will not work, simply because the borders
of the individual states do not form perfect rectangles. Sketching the Web page on paper and then
dividing the images and text into the framework of horizontal and vertical lines is a quick way to
ensure that a design is workable. In other words, the sketch (or storyboard) will show you if you can
divide the objects on a Web page into the individual cells of the brick-like structure of an HTML table.
Always analyze the project before doing the actual coding.

6 6 H T M L & W e b D e s i g n T i p s & T e c h n i q u e s

Tip&Tec / HTML & Web Design Tips & Techniques / Anderson, King, Jamsa / 9394-8 / Chapter 2

Figure 2-3 Web page with table cell background colors used to organize content

P:\010Comp\Tip&Tec\394-8\ch02.vp
Friday, January 04, 2002 2:32:46 PM

Color profile: Generic CMYK printer profile
Composite Default screen

C h a p t e r 2 : H T M L T a b l e s 6 7

Tip&Tec / HTML & Web Design Tips & Techniques / Anderson, King, Jamsa / 9394-8 / Chapter 2

Understanding the HTML Tags that Create a Table
The HTML tables you use to display content on a Web page, like the tables you see in printed materials
(books, magazines, newspapers, and so on), consist of columns of data arranged in rows. Not surprisingly
then, the basic HTML tags used to create a table tell the Web browser which part of an HTML file to
include in the table and group individual data items in that part of the file into rows of cells:

• <table></table> Alert the Web browser that it is to treat the text between the start and end
tags as a table

• <tr></tr> (table row) Alert the Web browser that it is to put the data items and perhaps headings
between the start and end tags on a single, new row in the table

• <td></td> (table data) Alert the Web browser that the HTML tags, attributes, and text (if any)
between the start and end tags is content (in other words, the data) that the Web browser is to
display in a table column

For example, you would write the following HTML code to have a Web browser display the simple
three-column, two-row table shown here:

<table border="1">

<tr><td>1</td>

<td>2</td>

<td>3</td></tr>

<tr><td>4</td>

<td>5</td>

<td>6</td></tr>

</table>

As mentioned in the bulleted list that precedes the table’s HTML, the start and end table tags
(<table></table>) at the beginning and end of the code tell the Web browser that the HTML code

P:\010Comp\Tip&Tec\394-8\ch02.vp
Friday, January 04, 2002 2:32:46 PM

Color profile: Generic CMYK printer profile
Composite Default screen

6 8 H T M L & W e b D e s i g n T i p s & T e c h n i q u e s

Tip&Tec / HTML & Web Design Tips & Techniques / Anderson, King, Jamsa / 9394-8 / Chapter 2

and other text between the tags describes a table. (Ignore the border attribute for now; we discuss
this attribute in the next section of this chapter.) Each pair of the start and end table row tags (<tr></tr>)
tell the Web browser to display the content between them on the same, new (horizontal) row in the
table. Meanwhile, each pair of start and end table data tags (<td></td>) defines each of the table’s
cells, and the content between them tells the Web browser what to place in the cell.

Thus, to create the two-column, three-row table shown next, you would use three sets of start and
end table row tags (<tr></tr>) and two sets of start and end table data tags (<td></td>) per row (six
sets in total) as shown here:

<table border="1">

<tr><td>A</td>

<td>B</td></tr>

<tr><td>C</td>

<td>D</td></tr>

<tr><td>E</td>

<td>F</td></tr>

</table>

As was the case in the previous example, the first line of code in the current example contains a
<table> tag, which tells the Web browser all subsequent HTML code the browser reads until it has
processed the </table> tag is part of an HTML table definition.

The second line of code reads like this:

<tr><td>A</td>

Each time the Web browser reads a <tr> tag within a table definition, the browser knows to move
to a new row in the table. The <td> tag that follows the <tr> tag, meanwhile, tells the browser to put

P:\010Comp\Tip&Tec\394-8\ch02.vp
Friday, January 04, 2002 2:32:46 PM

Color profile: Generic CMYK printer profile
Composite Default screen

TE
AM
FL
Y

Team-Fly®

everything it sees prior to the </td> tag into a single cell within the table. Therefore, in the current
example, the first <td> tag tells the Web browser to place an “A” into the first cell on the left in
the new table row the browser starts after processing the <tr> tag that precedes the <td> tag.

The third line of code in the table HTML for the current example reads like this:

<td>B</td></tr>

Because there is no <tr> tag in front of the second <td> tag in the code, the Web browser puts
everything between the second pair of start and end table data tags (<td></td>) (“B”, in the current
example), into the second cell (to the right) in the first row of the table. (If there were a third pair
of start and end table data tags [<td></td>] prior to the </tr> tag, the Web browser would place
everything between those tags into the third cell [to the right] in the first row of the table, and so on.)
The </tr> tag tells the Web browser: “That’s it. There are no more cells in the current row,” at which
point the browser expects to see either a new <tr> tag, or a </table> tag. In the current example, the
<tr><td></td><td></td></tr> pattern repeats twice more (thus telling the browser to create two more
rows of two cells [or columns] each), before the </table> tag signals the end of the HTML table’s
definition in the last row of code.

Adding Borders, Headings, and a Caption
When you want to use an HTML table to display tabular data (instead of using a table as a page
layout tool, as you will learn how to do later in this chapter), you may want to draw borders around
the table and around each of its cells and include a caption (or title) that summarizes the table’s data.
Moreover, most tabular data includes a row and/or column of headings that tells the viewer the meaning
of (or relationship among) the items in the same column or row. Figure 2-4, for example, shows a table
with visible borders, headings, and a caption.

HTML provides a border attribute you can use to tell the Web browser to display a border
around a table and around each of its cells. Moreover, you can use start and end caption tags

C h a p t e r 2 : H T M L T a b l e s 6 9

Tip&Tec / HTML & Web Design Tips & Techniques / Anderson, King, Jamsa / 9394-8 / Chapter 2

Figure 2-4 A table used to display information in a tabular format

P:\010Comp\Tip&Tec\394-8\ch02.vp
Friday, January 04, 2002 2:32:47 PM

Color profile: Generic CMYK printer profile
Composite Default screen

7 0 H T M L & W e b D e s i g n T i p s & T e c h n i q u e s

Tip&Tec / HTML & Web Design Tips & Techniques / Anderson, King, Jamsa / 9394-8 / Chapter 2

(<caption></caption>) to specify the table’s title (or caption), and start and end table heading
tags (<th></th>) to tell the Web browser to format a cell’s content as a heading:

• border Attribute in a <table> tag that tells the Web browser the number of pixels wide to draw
the border around the perimeter of the table and each of the table’s cells

• <caption> </caption> Alert the Web browser that it is to style the text between the start and
end tags as a caption (most browsers use a boldface font)

• <th></th> (table heading) Alert the Web browser that the text between the start and end tags is
to be formatted as heading text (most browsers use a boldface font)

The table heading and caption tags are extremely helpful for the visually impaired, because browsers
designed for blind users will speak differently to differentiate the table caption and table headings from
the table data. In addition, you might include a summary attribute within the <table> tag to provide a
longer description of the table’s purpose for the benefit of visitors using speech- or Braille-based browsers.

To display a table with borders, a title, and headings such as that shown in Figure 2-4, you would
first change the table’s <table> tag to include a border attribute to which you assign the pixel width
of the table’s border. For example, to draw one-pixel wide borders (such as those shown around the
table and its cells shown in Figure 2-4), you would code the table’s <table> tag as follows:

<table border="1">

Then, to give the table a title (or caption), you would insert start and end caption tags
(<caption></caption>) in the table definition immediately after the <table> tag. Thus, the first line
of code (with only a <table> tag) in the previous example becomes the following two lines of code
that tell the Web browser to draw a table with both one-pixel-wide borders and a caption:

<table border="1">

<caption>Tags and Attributes Used to Create a Table</caption>

Note that newer HTML specifications (starting with the HTML 4.01 standard) state that the caption
element, if present, must immediately follow the opening <table> tag.

Next, to put a heading at the top of each of the table’s columns, insert start and end table heading
tags (<th></th>) that enclose “heading” text after the <tr> tag that starts the row in which you want
the heading(s) to appear. For example, to add a heading atop each column in a two-column table, you
would write the following:

<table border="1" >

<caption>Tags and Attributes Used to Create a Table</caption>

<tr><th>HTML Tag</th>

<th>Description</th></tr>

To add a column of headings instead of the row of headings, add one set of start and end table
heading tags (<th></th>) that enclose heading text to each row of data items designated by the

P:\010Comp\Tip&Tec\394-8\ch02.vp
Friday, January 04, 2002 2:32:47 PM

Color profile: Generic CMYK printer profile
Composite Default screen

C h a p t e r 2 : H T M L T a b l e s 7 1

Tip&Tec / HTML & Web Design Tips & Techniques / Anderson, King, Jamsa / 9394-8 / Chapter 2

table’s start and end table row tags (<tr></tr>). For example, the following HTML with two sets
of start and end table heading tags (<th></th>) following a single <tr> tag tells the Web browser
to create a table with two headings in different columns of the same row in the table:

<table border="1" >

<caption>Headings in a Row</caption>

<tr><th>Heading 1</th>

<th>Heading 2</th></tr>

<tr><td>Row 1, Item 1</td>

<td>Row 1, Item 2</td></tr>

<tr><td>Row 2, Item 1</td>

<td>Row 2, Item 2</td></tr>

</table>

Conversely, the following HTML with a single set of start and end table heading tags (<th></th>)
after each <tr> tag tells the Web browser to create a table with the same two headings, but to place
the headings in the same column on different rows in the table:

<table border="1" >

<caption>Headings in a Column</caption>

<tr><th>Heading 1</th>

<td>Row 1, Item 1</td>

<td>Row 1, Item 2</td></tr>

<tr><th>Heading 2</th>

<td>Row 2, Item 1</td>

<td>Row 2, Item 2</td></tr>

</table>

Figure 2-5 shows the tables produced by table definitions in the two preceding examples side-by-side,
so you can compare the appearance of a table with its headings across a row to a table with its headings
down a column.

Figure 2-5 Table headings can be in rows (as on the left) or in columns (as on the right)

P:\010Comp\Tip&Tec\394-8\ch02.vp
Friday, January 04, 2002 2:32:47 PM

Color profile: Generic CMYK printer profile
Composite Default screen

7 2 H T M L & W e b D e s i g n T i p s & T e c h n i q u e s

Tip&Tec / HTML & Web Design Tips & Techniques / Anderson, King, Jamsa / 9394-8 / Chapter 2

Using a Table for Page Layout
When using an HTML table to display tabular data, you can let the data in the table dictate the
dimensions of the table’s cells and therefore the dimensions of the table itself. However, to use an
HTML table as a “grid” of cells that let you position graphics images and text at specific locations
on a Web page, you need to do two things. First, you need to “hide” the table’s borders. Second,
you need to control the dimensions of the table and the dimensions of the cells within the table.

You already know how to make a table’s borders invisible—simply omit the border attribute from
the table’s <table> tag. Or, if you prefer to make the “invisible” (in other words, the zero-pixel width)
borders an explicit instead of an implicit setting, write the <table> tag as follows:

<table border="0">

If you do not specify the width and height of a table’s cells, the Web browser changes their
dimensions according to the data you put into them. The browser will set the width of each column
to the width of the widest object in one of the column’s cells. Similarly, the Web browser will set the
height of each row to the height of the “tallest” object in the row. The minimum height and width of
a cell with a graphics images are the dimensions of the graphics image. The minimum width for a cell
with only text data is the number of characters in the longest word or number, and the minimum height
is the height of the tallest character.

Creating a Table with Cells that
Span Multiple Columns or Multiple Rows
Previously in this chapter, you learned how to use the start and end table heading tags (<th></th>) and
start and end table data tags (<td></td>) to create cells in a table. You also learned how to set the width
and height attributes in a <th> tag or a <td> tag to specify a cell’s dimensions. If you define the cells
in a table without using the cellspan attribute or the rowspan attribute, all cells in a row will have the
same height, and all cells in a column will have the same width, such as the cells in the table shown
in Figure 2-6.

Sometimes, however, you want cells that span multiple rows and/or multiple columns, such as three
of the cells shown in Figure 2-7. HTML provides two attributes (colspan and rowspan) you can use
to specify the width and/or height of a cell as a number of columns and/or rows of adjacent cells.

To specify a cell that spans multiple rows, such as the second cell from the top in the first
column of Figure 2-7, set the rowspan attribute in the cell’s <td> tag or <th> tag. For the

current example, in which the cell spans two rows, you would write the cell’s definition as follows:

<td rowspan="2">Row 1 & 2, Col 1</td>

P:\010Comp\Tip&Tec\394-8\ch02.vp
Friday, January 04, 2002 2:32:48 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Tip&Tec / HTML & Web Design Tips & Techniques / Anderson, King, Jamsa / 9394-8 / Chapter 2

C h a p t e r 2 : H T M L T a b l e s 7 3

If the cell spanned three rows, you would set the value of the rowspan attribute to “3”, and so on.
One important thing to remember is that if you set the rowspan attribute for a cell to “2”, you must type
one less set of <td></td> tags between the next set of start and end table row tags (<tr></tr>) in the

Figure 2-6 A table in which all cells in a row have the same height and all cells in a column
have the same width

Figure 2-7 A table with cells of variable widths and heights within a single row or column

P:\010Comp\Tip&Tec\394-8\ch02.vp
Friday, January 04, 2002 2:32:48 PM

Color profile: Generic CMYK printer profile
Composite Default screen

table definition, because the “next” row has one less column. For example, row 2 in the following
3-row, 2-column table has only one set of start and end table data tags (<td></td>) because the first
cell from row 1 extends into the second row:

<table>

<tr><td rowspan=2>r1&2,c1</td><td>r1,c2</td></tr>

<tr><!--- no cell needed --> <td>r2,c2</td></tr>

<tr><td>r3,c1</td> <td>r3,c2</td></tr>

</table>

Similarly, if you want to create a cell that spans multiple columns, such as the second cell from the
left in the bottom row of the table in Figure 2-7, set the colspan attribute in the cell’s <td> tag or <th>
tag. For the current example, in which the cell spans two columns, you would write the cell’s definition
as follows:

<td colspan="2">Row 4, Col 2 & 3</td>

If the cell spanned three columns, you would set the value of the colspan attribute to “3”, and
so on. Remember, if you set the colspan attribute for a cell to “2”, you must type one less set of
<td></td> tags or <td></td> tags between the start and end table row tags (<tr></tr>) for the current
row, because the row has one less than the normal number of cells (or columns). For example, row 2
in the following 3-row, 3-column table has only two sets of start and end table data tags (<td></td>)
because the first cell in the row is two cells wide:

<table>

<tr><td>r1,c1</td><td>r1,c2</td><td>r1,c3</td></tr>

<tr><td colspan=2>r2,c1&2</td> <td>r2,c2</td></tr>

<tr><td>r3,c1</td><td>r3,c2</td><td>r3,c3</td></tr>

</table>

Finally, you can create a cell that spans both multiple rows and multiple columns, such as that
shown by the second cell from the top on the right side of the table in Figure 2-7, by setting both the
rowspan and colspan attributes in the cell’s <td> tag or <th> tag. For the current example, in which
the cell spans two rows and two columns, you would write the cell’s definition as follows:

<td rowspan="2" colspan="2">Row 1 & 2, Col 3 & 4</td>

Perhaps the easiest way to lay out a table with cells that span multiple columns and/or rows is to
draw the table on paper and then type its definition into your text editor. If you add descriptive text
such as that shown in the cells of the table in Figure 2-7, you can easily correct errors in the table’s
definition. (One such error that numbering the cells will let you find and easily correct is typing too
many sets of <td></td> tags between the start and end table row tags [<tr></tr>] for the row below the
one in which you created a cell that spans two rows.)

7 4 H T M L & W e b D e s i g n T i p s & T e c h n i q u e s

Tip&Tec / HTML & Web Design Tips & Techniques / Anderson, King, Jamsa / 9394-8 / Chapter 2

P:\010Comp\Tip&Tec\394-8\ch02.vp
Friday, January 04, 2002 2:32:49 PM

Color profile: Generic CMYK printer profile
Composite Default screen

C h a p t e r 2 : H T M L T a b l e s 7 5

Tip&Tec / HTML & Web Design Tips & Techniques / Anderson, King, Jamsa / 9394-8 / Chapter 2

Working with Table and Cell Border Widths
A border is a visible line around the perimeter of a table and around each of the cells within the table.
Unlike table and cell backgrounds, which are independent, table and cell borders are related. As you
will learn in the next Tip, you can set table border and cell border colors independently. However, if
you set the table’s border width to one or more pixels, the Web browser will also draw a border around
each of the table’s cells. Conversely, if you set the table’s border attribute to zero, the Web browser
neither draws a border around the outside of the table nor around the perimeters of any of the cells
within the table.

The following illustration shows two tables. The table on the left has no borders because the border
attribute in its <table> tag is set to “0”. Meanwhile, the table on the right in the figure has a one-pixel
border around the perimeter of the table and around each of its cells, because the border attribute in
its <table> tag is set to “1”.

Note that the HTML standard refers to the border around a table as the table’s frame and to the
border around individual cells within the table as rules. Setting the bordercolor and/or border attribute
within the <table> tag affects both the table frame and its cell rules. For example, setting border=“0”
implies frame=“void” and rules=“none”—which in effect, makes all borders within and around the
table invisible. When you examine Cascading Style Sheets (CSS) in Chapter 4, you will see that newer
Web browsers let you control cell attributes separately from those of the table overall. As such, you
will learn how to create CSS rules (not to be confused with table cell rules, which are lines) that let
you specify the width and color of a table’s frame independently of the rules (that is, borders) around
the table’s cells.

Earlier in this chapter you learned how to draw a one-pixel border around a table and the
cells within the table by setting the border attribute in the table’s <table> tag as follows:

<table border="1">

To increase the width of the table’s border, simply increase the number of pixels assigned to the
border attribute in the table’s <table> tag. For example, to draw a 10-pixel border around a table, such
as that shown next, set the border attribute’s value to “10” within a <table> tag that reads as follows:

Table
without
borders

Table with
one-pixel
borders

P:\010Comp\Tip&Tec\394-8\ch02.vp
Friday, January 04, 2002 2:32:49 PM

Color profile: Generic CMYK printer profile
Composite Default screen

7 6 H T M L & W e b D e s i g n T i p s & T e c h n i q u e s

Tip&Tec / HTML & Web Design Tips & Techniques / Anderson, King, Jamsa / 9394-8 / Chapter 2

<table border="10">

Please take note of two interesting things about the effect of changing the value of the border attribute.
First, although the width of the border around the perimeter of the table increases as you increase the
value assigned to the border attribute, each of the borders around the cells within the table, meanwhile,
remains one pixel in width. No matter how wide you make the border around the table, most Web
browsers will draw a one-pixel-wide border around each of the cells in the table—unless you set the
border attribute’s value to zero, in which case neither the table nor its cells will have borders. Second,
by default, Web browsers draw both table and cell borders using two colors, in an attempt to give the
table (and its cells) a three-dimensional look. If using the default, gray border, the Web browser will
draw the left and top sides of table using light-gray and the bottom and right side of the table as dark
gray. The Web browser also uses two colors—although they’re not easy to see, given their usual
one-pixel width—when drawing the borders around the cells within the table. The left side and top of
each cell is dark gray, while the bottom and right side of the cell is light-gray. You can learn how to set
the table and cell borders to something other than the default, gray colors by reading the next Tip.

Working with Table and Cell Border Colors
As you learned previously, a border is a visible line around the perimeter of a table and around each
of the cells within the table. Table and cell borders have two attributes you can set—width (which
you worked with in the preceding Tip) and color. To adjust the colors of cell and table borders, insert
a bordercolor attribute in the table’s <table> tag. For example, to have the Web browser draw a 10-pixel-
wide navy (dark) blue border around the table and a one-pixel-wide navy (dark) blue border around
each of its cells, set the bordercolor attribute in the table’s <table> tag as follows:

<table bordercolor="#00008B">

Unfortunately, the bordercolor attribute’s setting does not have the same effect in all Web browsers.
Setting the bordercolor attribute to “#00008B”, for example, will cause Netscape Navigator to draw
the table and cell borders using two colors—two sides light blue and two sides dark blue. Internet
Explorer, meanwhile, supports two additional attributes to control border colors: bordercolorlight
and bordercolordark. If you specify only a bordercolor setting, Internet Explorer will draw the table
and cell borders using a single color—navy (dark) blue, in the current example. (In Chapter 4, which
discusses CSSs, you will learn how to create CSS rules that let you control attributes of the frame [that is,
the border around the table] independently of the attributes of the borders around the table’s cells.)

If you want Internet Explorer to use two different colors for a table’s borders, you must
either omit the bordercolor attribute from the <table> tag (so the Web browser will use

the default light-gray/dark-gray borders), or specify bordercolorlight and bordercolordark settings
in the <table> tag. For example, Internet Explorer will ignore the bordercolor setting in the following

P:\010Comp\Tip&Tec\394-8\ch02.vp
Friday, January 04, 2002 2:32:50 PM

Color profile: Generic CMYK printer profile
Composite Default screen

C h a p t e r 2 : H T M L T a b l e s 7 7

Tip&Tec / HTML & Web Design Tips & Techniques / Anderson, King, Jamsa / 9394-8 / Chapter 2

<table> tag and use the values assigned to the bordercolorlight and bordercolordark attributes to draw
the top and left sides of the table’s border using blue and the bottom and right sides of the table’s
border using navy (dark) blue:

<table border="10" bordercolor="#00008B"

bordercolorlight="#0000FF" bordercolordark=" #00008B">

The bordercolorlight and bordercolordark attribute settings in the preceding code also tell Internet
Explorer to draw the top and left sides of the border around each cell using navy (dark) blue and the
bottom and right sides of the border in blue.

� NOTE

By including both bordercolor and bordercolorlight/bordercolordark attributes in the <table> tag,
you can display two-color borders in both Internet Explorer and Netscape Navigator. Internet Explorer
will ignore the bordercolor attribute setting, and will use the bordercolorlight and bordercolordark
settings. Netscape Navigator, meanwhile, will ignore the bordercolorlight and bordercolordark attributes
and use the bordercolor attribute to set the table and cell border colors.

If your site’s visitors use Internet Explorer version 5 and later or Netscape Navigator version 6.1 and
later, you can use the style attribute to specify the color of each side of a table and its cells independently.
For example, use a style attribute in the <table> tag as shown here to color the top and left sides of
a table dark blue while coloring the bottom and right sides of the table light blue:

<table border="10" style="border-top-color:#0000FF;

border-left-color:#0000FF; border-bottom-color:#00008B;

border-right-color:#00008B">

Although the style attribute in this example sets the top and left sides to one color and the bottom
and right sides of the table to another color, you can set each of the four border-color properties
within the style attribute to different colors. To set all four sides of the table to the same color, set
the border-color property to the color you want as follows:

<table border="10" style="border-color:#006400">

Just as you insert a style attribute in the <table> tag to work with the colors of a table’s sides, you
insert a style within a <td> tag to exert the same control over the colors used for the sides of a cell.
For example, to color the sides of a cell red, blue, green, and magenta, you might use the setting for
the style attribute in a <td> tag:

<td style="border-left-color:#FF0000; border-top-color:#0000FF;

border-right-color:#008000; border-bottom-color:#FF00FF">

P:\010Comp\Tip&Tec\394-8\ch02.vp
Friday, January 04, 2002 2:32:50 PM

Color profile: Generic CMYK printer profile
Composite Default screen

7 8 H T M L & W e b D e s i g n T i p s & T e c h n i q u e s

Tip&Tec / HTML & Web Design Tips & Techniques / Anderson, King, Jamsa / 9394-8 / Chapter 2

Similarly, to set all four sides of a cell to the same color, such as red for example, use the border-color
property as follows:

<td style="border-color:#FF0000">

Bear in mind that using the border-color property to set all four sides of a table or all four sides
of a cell to the same color actually gets you two colors. For table borders, both Internet Explorer and
Netscape Navigator set the top and left sides of the table to the color you specify and the bottom
and right sides of the table to a darker version of the same color. Similarly, when you use border-color
to set the sides of a cell to a single color, both browsers display the bottom and right sides of the cell to
the color you specify and the top and left sides of the cell to a darker version of the same color.

Working with Background Images and Colors
The value you assign to the bordercolor attribute in the <table> tag changes the color of the border
around the table and the borders around the cells within the table—with the exception of those cells
whose <td> tags include bordercolor settings of their own. Therefore, if you want the Web browser
to draw a green border around a particular cell within the table—without regard to the color of the borders
around other cells in the table or around the table itself—add a bordercolor attribute to the cell’s <td>
tag. For example, to tell a Web browser to draw a green border around a cell you would write the
cell’s <td> tag as follows:

<td bordercolor="#008000">

For Internet Explorer in particular, you might specify a cell’s border colors as follows to draw the
cell using green along the top and left sides and a lime (light) green along the bottom and right sides
of the cell:

<td bordercolorlight="#00FF00" bordercolordark="#008000">

� NOTE

Although all Web browsers support the use of the bordercolor attribute in the <table> tag, many
do not support the use of bordercolor, bordercolorlight, and bordercolordark attributes in <td> tags.
Therefore, design your tables under the assumption that many of your Web site’s visitors will see the
border around every cell in the same color(s) as the border around the perimeter of the table itself.

Because background images and colors are “attributes” of a table or of a cell within a table, you
specify them (like the border attribute) as part of an HTML tag. (Web page elements, such as tables,
rows, data, and so on, have HTML tags of their own, whereas attribute settings are always found within
HTML tags.) Because both a table and each of its cells have a background, which you can set

P:\010Comp\Tip&Tec\394-8\ch02.vp
Friday, January 04, 2002 2:32:50 PM

Color profile: Generic CMYK printer profile
Composite Default screen

TE
AM
FL
Y

Team-Fly®

independently, perhaps the easiest way to understand the interaction between the table background
and the background of each of its cells is to think of them as layered. Figure 2-8, for example, shows
four tables. The two tables at the top of the Figure show a table with a background color and a table
with a background image. The two tables at the bottom of the figure show what happens when you
tell the Web browser to draw some of the table’s cells with a background color or background image.

A table background is a rectangular object that lies on top of the Web page like a mat within a
picture frame. The individual rectangular-shaped data areas within the table—defined by start and
end table data tags (<td></td>)— are called cells. A table lies on top of the Web page background;
each of the table’s cells is a rectangular object that lies on top of the table’s background. The content
you place within a cell (by placing text and/or HTML tags between the cell’s start and end table data
tags [<td></td>]), in turn, lies on top of the cell’s background.

C h a p t e r 2 : H T M L T a b l e s 7 9

Tip&Tec / HTML & Web Design Tips & Techniques / Anderson, King, Jamsa / 9394-8 / Chapter 2

Figure 2-8 Tables with background colors and images covered by cells with background colors
and images

Cell background color
and image on a table
background image

Table background imageTable background color

Cell background color
and image on a table
background color

P:\010Comp\Tip&Tec\394-8\ch02.vp
Friday, January 04, 2002 2:32:51 PM

Color profile: Generic CMYK printer profile
Composite Default screen

When you specify a table’s background color by setting the bgcolor attribute in the
table’s <table> tag, the Web browser will “paint” the color assigned to the attribute

onto the table’s otherwise transparent background. For example, setting the bgcolor attribute to
the hexadecimal value “#0000FF” in the following <table> tag tells the Web browser to paint the
table background blue:

<table border="1" bgcolor="#0000FF">

Similarly, if you set the background attribute in the <table> tag, the Web browser will use the
graphics file assigned to the attribute as “wallpaper” to cover the table’s background. For example,
the background setting in the following code tells the Web browser to cover the table background
with the picture in the file named picture1.gif stored in the Web site’s images subfolder:

<table border="1" background="images/picture.GIF">

Because each of the table’s cells, like the table itself, has a background, you specify a cell’s background
color or background image as an attribute within the cell’s <td> tag. Therefore, independent of the
background image or color (if any) that you specified for the table, you can tell the Web browser to
paint a cell’s background with a color by assigning the color’s value as a hexadecimal number to the
bgcolor attribute in the cell’s <td> tag. For example, the hexadecimal value “#00008B” assigned to
the bgcolor attribute in the following <td> tag tells the Web browser to paint the cell’s background
navy (dark) blue:

<td bgcolor="#00008B">

Similarly, if you set the background attribute in a cell’s <td> tag, the Web browser will use the
picture in the file assigned to the attribute as “wallpaper” to cover the cell’s background. For example,
the background setting in the following <td> tag tells the Web browser to cover the cell’s background
with the graphics image in the file picture1.gif stored in the Web site’s images subfolder:

<td background="images/picture.gif">

Although HTML syntax does not prevent you from doing so, it does not make sense to specify both
a background color and a background image for the same table or cell. If you specify both, whichever
appears last in the <table> tag “wins”—sort of like wallpapering a painted wall, or painting over
wallpaper. Whatever is applied to the background last (in other words, the layer on top) is what the
viewer sees. Because they are “layered”, a cell’s background color or background image will obscure
the table’s background color or image. Conversely, if a cell’s <td> tag has neither a background attribute
nor a bgcolor attribute, the Web browser will draw the cell’s background as if it were a transparent
pane of glass laying atop the table’s background. Consequently, you will see the table background
“through” the cell’s transparent background.

Similarly, because the table’s background sits on top of the Web page background, the table’s
background image or color obscures the color or picture used as the Web page background. Conversely,
if you set neither the background attribute nor the bgcolor attribute in the table’s <table> tag, the Web
browser will draw the table’s background as if it were a transparent pane of glass lying on top of the
Web page background. As a result, you will see the Web page background “through” the table’s
transparent background. By the way, although it would be a “cool” effect, if you specify neither a color

8 0 H T M L & W e b D e s i g n T i p s & T e c h n i q u e s

Tip&Tec / HTML & Web Design Tips & Techniques / Anderson, King, Jamsa / 9394-8 / Chapter 2

P:\010Comp\Tip&Tec\394-8\ch02.vp
Friday, January 04, 2002 2:32:52 PM

Color profile: Generic CMYK printer profile
Composite Default screen

nor an image for the Web page background, you will not see the inside of your monitor. Instead, the
Web browser will set the background color of the Web page to either gray or white—depending on
the browser’s default settings.

Although currently supported by Web browsers, the HTML standard does not allow you to use the
background attribute with either the <table> or <td> tag. Moreover, the bgcolor attribute—deprecated
since HTML 4.01—is officially illegal in the XHTML 1.0 standard. To specify the background image
for a table or cell, current HTML (and XHTML) standards require that you use the CSS background-
image property. For example, to specify an image you want the browser to use as the table
background, insert a style attribute within the <table> tag as follows:

<table border="1"

style="background-image:url(images/picture.GIF)">

Similarly, to specify the background image for a cell, use a style attribute in the <td> tag to set the
background-image property as shown here:

<td style="background-image:url(images/picture.GIF)">

The CSS background-color property lets you select the background color for the table background
and/or the background color of any of its cells. For example, to set the table’s background to aqua, you
would set the background-color property in the <table> tag as shown here:

<table border="1" style="background-color:#00FFFF">

Similarly, to set the background color for a table cell to dark blue, for example, use the style attribute
to set the background-color property within the <td> tag as follows:

<td style="background-color:#00008B">

Determining a Color Attribute’s Value
Whenever you use one of the color selection attributes such as bordercolor, bgcolor, bordercolorlight,
bordercolordark, and so on in an HTML tag to set an element’s color, you specify the color you want
as a hexadecimal number. For example, to create a table with a light yellow background, you would
set the bgcolor attribute in the table’s <table> tag as follows:

<table bgcolor="#FFFFE0">

Similarly, to draw a dark blue border around the perimeter of a table and around each of the cells
within the table, you would set the bordercolor attribute in the table’s <table> tag as follows:

<table bordercolor="#00008B">

The attribute value that tells the Web browser what color to use when drawing a Web page element
or painting a background color is called a hexadecimal (base 16) red-green-blue triplet. In other words,

C h a p t e r 2 : H T M L T a b l e s 8 1

Tip&Tec / HTML & Web Design Tips & Techniques / Anderson, King, Jamsa / 9394-8 / Chapter 2

P:\010Comp\Tip&Tec\394-8\ch02.vp
Friday, January 04, 2002 2:32:52 PM

Color profile: Generic CMYK printer profile
Composite Default screen

the one large hexadecimal number is actually three separate hexadecimal values (hence the term “triplet”
in its name). These values tell the browser “how much” red, green, and blue to mix in order to create
the color you want the browser to use when drawing the element or painting the background.

When creating a color, each of the three primary colors (red, green, blue) can have a value from
0–255 (inclusive), where “0” means none and 255 is the maximum amount. Therefore, in the second
example in the current Tip in which the bordercolor attribute in the <table> tag sets the table borders
to dark blue, the “#00008B” bordercolor setting tells the Web browser to create the border color by
mixing 0 red with 0 green and 139 blue. (A hexadecimal value of 8B equals a decimal value of 139.)
Thus, the Web browser creates the shade of dark blue you specified by mixing no red, with no green,
and just over half the maximum amount of blue.

To determine the hexadecimal red-green-blue triplet for the color you want the Web browser
to use, visit http://www.htmlhelp.com/cgi-bin/color.cgi, or check the font or background

color menu in your favorite image editor. Most graphics programs will provide the RGB (that is, the
red, green, blue) values used to create the color you select from a palette of color swatches or mix on
a “custom colors” screen within the application. Or, if you use the Microsoft Office suite of programs,
click the drop-down list button to the right of the Font Color button on the standard toolbar in Microsoft
PowerPoint or Microsoft Word. Then, click More Colors at the bottom of the drop-down menu. The
Office application, in turn, will display a Colors dialog box similar to that shown in Figure 2-9.

If the Custom tab’s contents are not visible, click the Custom tab on the Colors dialog box. To
“mix” a custom color, click on the color you want in the color palette at the top of the Custom tab
and then on the color saturation slide-bar to the right of the palette. Each time you create a color,
the dialog box will show you the color in the color swatch in the lower-right corner of the dialog box

8 2 H T M L & W e b D e s i g n T i p s & T e c h n i q u e s

Tip&Tec / HTML & Web Design Tips & Techniques / Anderson, King, Jamsa / 9394-8 / Chapter 2

Figure 2-9 The Custom tab of the Microsoft Word Colors dialog box

P:\010Comp\Tip&Tec\394-8\ch02.vp
Friday, January 04, 2002 2:32:52 PM

Color profile: Generic CMYK printer profile
Composite Default screen

and the color’s RGB value in the Red, Green, and Blue fields. If the RGB values are decimal and not
hexadecimal numbers, you must convert each one to its hexadecimal equivalent. Then, combine the
three hexadecimal RGB values into a single hexadecimal triplet as “#RRGGBB” (where RR, GG,
and BB are the hexadecimal red, green, and blue values of the color you mixed).

� NOTE

You can view a list of hexadecimal triplets at http://www.htmlhelp.com/cgi-bin/color.cgi. In addition,
you will find a slightly longer list of hexadecimal triplets and an example of the color each represents
at http://www.hypersolutions.org/pages/rgbhex.html.

Working with Cell Padding and Cell Spacing
Whereas cell padding tells the Web browser the number of pixels of blank space to leave between the
sides of a cell and its contents, cell spacing tells the Web browser the amount of blank space to leave
between cells and between the border around a table and its cells. Figure 2-10 illustrates the difference
between cell padding and cell spacing.

Because cellspacing and cellpadding affect the overall placement of cells within a table, you set
both attributes in the table’s <table> tag. By default, both cellspacing and cellpadding have a value
greater than zero (0). For example, if you omit both attributes from the <table> tag, Internet Explorer
will leave a two-pixel space between each cell and between the table’s borders and its cells. Thus,
Internet Explorer’s default cellspacing is two (2). Similarly, with cellpadding unset, Internet Explorer
will leave a one-pixel space between each cell’s border and its contents.

C h a p t e r 2 : H T M L T a b l e s 8 3

Tip&Tec / HTML & Web Design Tips & Techniques / Anderson, King, Jamsa / 9394-8 / Chapter 2

Figure 2-10 Cell spacing controls the space between cells, and cell padding controls the space
between a cell’s border and its content

Table light border

Cell light border

Cell dark border

Table dark border

Content boundary
Cell border

Cell spacing

Cell contents
Cell contents

Cell padding

P:\010Comp\Tip&Tec\394-8\ch02.vp
Friday, January 04, 2002 2:32:53 PM

Color profile: Generic CMYK printer profile
Composite Default screen

To increase the blank space between cells in a table, set the cellspacing attribute in the
table’s <table> tag to a value greater than one (1). For example, setting the cellspacing

attribute to ten (10) in the following code tells the Web browser to leave a 10-pixel blank space between
each of the table’s cells and between the table’s border and its cells:

<table border="1" cellspacing="10">

Similarly, if you want to increase the blank space between the sides of a cell and its contents, set
the value of the cellpadding attribute accordingly. (In the current example, the Web browser will still
leave only a one-pixel space between the border of a cell and its contents because the <table> tag has
no cellpadding attribute.) To have the Web browser leave a five-pixel blank space between the sides
of a cell (that is, the border around a cell) and its contents, for example, write the preceding <table>
tag as follows:

<table border="1" cellspacing="10" cellpadding="5">

Although the <table> tag in this example has both cellspacing and cellpadding attributes, you do
not have to set one to set the other. Just keep in mind that most Web browsers will use a default value
of one (1) or two (2) pixels for either attribute or for both attributes if you do not explicitly set the
attribute’s value in the <table> tag.

Setting Table Dimensions Using Relative or Absolute Values
To control a table’s dimensions, add a width and/or a height attribute to the table’s <table> tag. You
can specify table dimensions either in relative terms (using percentages) or in absolute terms (using
pixel counts).

For example, to draw the table using the Web browser’s entire application window, write
the table’s <table> tag as follows:

<table width="100%" height="100%">

The Web browser, in turn, will change the dimensions of the table (and its cells) as necessary to
take up the entire application window. In other words, the Web browser will make the table (and its
cells) larger if the Web site visitor expands the size of the browser’s application window, and will
make the table (and its cells) smaller when the site visitor reduces the window’s size.

If you do not want the Web browser to change the dimensions of a table based on the size of the
application window, set the table’s height and width to a fixed number of pixels. For example, to have
the Web browser draw a table 764 pixels wide by 558 pixels tall each time, write the <table> tag
as follows:

<table width="764" height="558">

By dropping the percent sign (%) from an attribute’s value setting, you tell the Web browser to
use the value as a number of pixels and not a percentage. When you specify the table’s dimensions
using absolute values (in other words, when you specify the table’s width and height as a number of

8 4 H T M L & W e b D e s i g n T i p s & T e c h n i q u e s

Tip&Tec / HTML & Web Design Tips & Techniques / Anderson, King, Jamsa / 9394-8 / Chapter 2

P:\010Comp\Tip&Tec\394-8\ch02.vp
Friday, January 04, 2002 2:32:54 PM

Color profile: Generic CMYK printer profile
Composite Default screen

pixels), the Web browser will change neither the table’s dimensions, nor the dimensions of its cells
when the site visitor changes the size of the Web browser’s application window. For example, given
a screen resolution of 800×600 and a table width and height of 764×558, if the Web site visitor reduces
the height of the Web browser’s application window, only a portion of the table will be visible onscreen.
The Web browser, in turn, will add a vertical scrollbar to the application window, so that the site visitor
can scroll the offscreen portion of the table into view. (Similarly, if the visitor reduces the width of
the application window, Windows will display a horizontal scrollbar to allow the visitor to scroll
screen contents horizontally.) Conversely, if the site visitor increases the screen resolution to 1024×768,
for example, the table’s size will remain constant, and the Web browser will display white space in its
application window, below and to the right of the table.

When setting the width and height attributes in a <table> tag, keep in mind that you are really
setting only the table’s minimum dimensions. The content you place in a table’s cells will determine
the table’s actual dimensions. Suppose, for example, that you specify a 764×558 table, with two rows
of two cells each. If you place a 450×350 pixel picture into each of the cells in the first row, the Web
browser will automatically expand the table’s width to 900 pixels to accommodate the width of the
data in the table—that is, the two pictures in the first row. If you then add a 450×350 pixel graphics
image to either of the cells in the table’s second row, the Web browser will increase the table’s height
to 700 pixels to accommodate the height of the two pictures in the table’s column.

Setting Cell Dimensions Using Relative or Absolute Values
In addition to (or instead of) specifying a table’s dimensions by setting the table’s height and width
attributes in the <table> tag, you can create a table of a specific height and width by specifying the
dimensions of the table’s cells.

For example, if you want to create an 800×600 table with two rows of four columns each,
you can specify each cell as 200×300 pixels by writing the <td> tag for each cell as follows:

<td width="200" height="300">

(To specify the dimensions of a cell with heading data, set the width and height attributes in the heading
cell’s <th> tag.)

� NOTE

If you specify a table’s width by setting the width attribute in the table’s <table> tag, make sure that
the width of the cells in each row add up to exactly the width of the table to avoid browser-specific
“strange” behavior. Each browser handles malformed tables in its own way. Therefore, if you want
to control the way your table looks in every browser, do not write table HTML in which the table’s
dimensions conflict with the dimensions of its cells.

Rather than set a cell’s dimensions to a fixed number of pixels, you can tell the Web browser to
draw each cell as a percentage of the table’s overall width and height. Suppose, for example, that you
want the Web browser to draw a table that fills the application window and has three equal-width

C h a p t e r 2 : H T M L T a b l e s 8 5

Tip&Tec / HTML & Web Design Tips & Techniques / Anderson, King, Jamsa / 9394-8 / Chapter 2

P:\010Comp\Tip&Tec\394-8\ch02.vp
Friday, January 04, 2002 2:32:54 PM

Color profile: Generic CMYK printer profile
Composite Default screen

8 6 H T M L & W e b D e s i g n T i p s & T e c h n i q u e s

Tip&Tec / HTML & Web Design Tips & Techniques / Anderson, King, Jamsa / 9394-8 / Chapter 2

columns. You would write the table’s HTML as follows with both a relative width (set by the value
of the width attribute in the <table> tag) and relative width columns (set by the value of the width
attributes in the <th> tags and <td> tags):

<table width="100%">

<tr><th width="33%" >Heading 1</th>

<th width="33%" >Heading 2</th>

<th width="33%" >Heading 3</th></tr>

<tr><td width="33%" >Column 1 Data</td>

<td width="33%" >Column 2 Data</td>

<td width="33%" >Column 3 Data</td></tr>

</table>

Or, if you want to specify a table with a fixed width and two columns that take up 80 percent of the
table’s width and one that takes up 20 percent of the width, you would write the table’s HTML as follows:

<table width="600">

<tr><th width="40%" >Heading 1</th>

<th width="40%" >Heading 2</th>

<th width="20%" >Heading 3</th></tr>

<tr><td width="40%" >Column 1 Data</td>

<td width="40%" >Column 2 Data</td>

<td width="20%" >Column 3 Data</td></tr>

</table>

If you specify the widths of the table’s cells as percentages of the table’s width, make sure that
the sum of the widths specified in the <th> tags (if any) and in the <td> tags for a single row does not
exceed 100 percent. Should the sum of the percentages be less than 100 percent, the Web browser
will split the remainder evenly among the cells in the row.

When specifying cell (or table) dimensions, you can specify a width without specifying a height,
or vice versa. However, if you are specifying the dimensions of a cell as a percentage of the table’s
width, make sure you set the table’s width as a number of pixels or as a percentage of the Web browser’s
application window by setting the width attribute in the table’s <table> tag. Similarly, if you specify
the height of the cells in the table as a percentage of the table’s overall height, be sure you set the table’s
height as well. To specify the table’s height, set the height attribute in the table’s <table> tag to either
a number of pixels or a percentage of the browser application window’s height.

Aligning Cell Content Horizontally and Vertically
If a cell is wider than its contents, the Web browser will, by default, align the content in the cell flush
with the cell’s left side.

To change the default horizontal (that is, left-to-right) alignment of a cell’s content, add
an align attribute to the cell’s <td> tag. The align attribute has three possible settings:

P:\010Comp\Tip&Tec\394-8\ch02.vp
Friday, January 04, 2002 2:32:55 PM

Color profile: Generic CMYK printer profile
Composite Default screen

• left Align the content flush against the left side of the cell

• right Align the content flush against the right side of the cell

• center Center the content between the left and right sides of the cell

Figure 2-11 shows the way in which Internet Explorer will render a table defined by the following
HTML with each of the align attribute value settings used in the table cell <td> tags:

<table border="1" width="100%" height="100%">

<tr><th width="33%">Alignment - Center</th>

<th width="33%">Alignment - Left</th>

<th width="33%">Alignment - Right</th></tr>

<tr><td width="33%" align="center">Center</td>

<td width="33%" align="left">Left</td>

<td width="33%" align="right">Right</td></tr>

</table>

When a cell is taller than then height of its content, the Web browser will by default, center the
content vertically between the top and bottom of the cell. To change the default vertical (that is,
top-to-bottom) alignment of a cell’s content, add a valign attribute to the cell’s <td> tag. The valign
attribute has four possible settings:

• top Display the content such that it starts flush with the top of the cell.

• middle Center the content vertically between the top and bottom of the cell.

• baseline In Netscape Navigator, display the content such that it ends flush with the bottom of
the cell. In Internet Explorer, the “baseline” setting changes only the vertical position of text in
a cell if the cell includes both a text and an image. The “baseline” setting causes Internet Explorer
to position text such that it ends flush with the bottom edge of a picture. If the cell has no picture,
Internet Explorer will ignore the valign attribute’s “baseline” setting and start text content flush
with the top of the cell.

• bottom Display content such that it ends flush with the bottom of the cell.

Figure 2-12 shows the way in which Netscape Navigator will render a table defined by the following
HTML with each of the possible valign attribute value settings used in the table cell <td> tags:

<table border="1" width="100%" height="100%">

<tr><th width="25%">Vertical Alignment - Top</th>

<th width="25%">Vertical Alignment - Middle</th>

<th width="25%">Vertical Alignment - Baseline</th>

<th width="25%">Vertical Alignment - Bottom</th></tr>

<tr><td width="25%" valign="top">Top</td>

<td width="25%" valign="middle">Middle</td>

<td width="25%" valign="baseline">Baseline</td>

<td width="25%" valign="bottom">Bottom</td></tr>

</table>

C h a p t e r 2 : H T M L T a b l e s 8 7

Tip&Tec / HTML & Web Design Tips & Techniques / Anderson, King, Jamsa / 9394-8 / Chapter 2

P:\010Comp\Tip&Tec\394-8\ch02.vp
Friday, January 04, 2002 2:32:55 PM

Color profile: Generic CMYK printer profile
Composite Default screen

8 8 H T M L & W e b D e s i g n T i p s & T e c h n i q u e s

Tip&Tec / HTML & Web Design Tips & Techniques / Anderson, King, Jamsa / 9394-8 / Chapter 2

Figure 2-11 Table showing the effects of the three horizontal alignment settings

Figure 2-12 Table showing the effects of the four vertical alignment settings

P:\010Comp\Tip&Tec\394-8\ch02.vp
Friday, January 04, 2002 2:32:56 PM

Color profile: Generic CMYK printer profile
Composite Default screen

TE
AM
FL
Y

Team-Fly®

C h a p t e r 2 : H T M L T a b l e s 8 9

Tip&Tec / HTML & Web Design Tips & Techniques / Anderson, King, Jamsa / 9394-8 / Chapter 2

Aligning a Table on a Web Page
In a previous Tip in this chapter, you learned how to align content in a cell along the cell’s left side,
right side, or centered within the cell. As long as the cell’s content is narrower than the width of the
cell itself, you can use the value of the align attribute in the cell’s <td> tag to position the cell’s content
horizontally within the cell. Similarly, if you create a table that is narrower than the width of the Web
page on which it is displayed, you can use the align attribute to position the entire table horizontally
on the page.

By default, a Web browser will render a table flush with the left side of a Web page. To
change a table’s alignment, enclose the table definition between a set of start and end division

tags (<div></div>). Then, set the align attribute within the <div> tag to “left”, “right”, or “center”—
depending on how you want the table aligned relative to the left and right sides of the Web page.

For example, to have the Web browser display a table flush with the right side of a Web page (instead
of the default, which is the left side), enclose the table’s definition within start and end division tags
(<div></div>). Then set the align attribute in the <div> tag to “right”, such as that shown in the first
line of the following Web page HTML:

<div align="right">

<table border="1" width="50%" height="50%">

<tr><th width="50%">Heading 1</th>

<th width="50%">Heading 2</th></tr>

<tr><td width="50%">Row 1 - Column 1</td>

<td width="50%">Row 1 - Column 2</td></tr>

<tr><td width="50%">Row 2 - Column 1</td>

<td width="50%">Row 2 - Column 2</td></tr>

</table>

</div>

If you write a <table> tag that includes a width attribute set to “100%” or with a pixel value greater
than the pixel width of the browser’s application window, the Web browser will ignore the setting of the
align attribute within the <div> tag in the enclosing start and end division tags (<div></div>).

Controlling the Width and Height of a Cell
by Inserting a Transparent GIF
While drawing a table, a Web browser will expand the size of the cells (and the table overall) as necessary
to accommodate their contents. Suppose, for example, that you create a cell with a <td> tag that has
no width or height attribute. If you place a 150×100–pixel graphics image in the cell, the Web browser

P:\010Comp\Tip&Tec\394-8\ch02.vp
Friday, January 04, 2002 2:32:56 PM

Color profile: Generic CMYK printer profile
Composite Default screen

will automatically draw the cell with a width of 150 pixels and a height of 100 pixels so the picture will
fit into it. Similarly, if you insert the same 150×100–pixel image into a cell defined with a 50-pixel width
and height, for example, the Web browser will expand the cell from its defined 50×50–pixel dimensions
to accommodate the graphics image.

You can take advantage of the browser’s cell-resizing behavior by placing a one-pixel transparent
GIF (graphics image) in a cell and telling the Web browser to stretch the picture to a desired height
and/or width. The Web browser, in turn, will stretch the graphics image and expand the dimensions
of the cell to the size of the stretched GIF. Expanding the cell to the dimensions of the transparent
image in the cell will cause the browser to insert a precise amount of blank space between cells to
the left and right of the cell with the GIF and/or between those cells directly above and/or below it.

A transparent GIF is an “invisible” graphics image you can use either with or without a table to
affect the positions of objects on a Web page. The site visitor will not see the transparent GIF on the
computer screen, because the Web browser displays the GIF as if it were a pane of clear glass lying
on the cell (or Web page) background. Although the visitor can “see right through” the transparent
GIF, the graphics image still takes up space in the cell. As a result, the Web browser will make the
cell large enough to hold it.

Suppose, for example, that you create a Web page with a 100-pixel-wide menu down the left side
of the page, and you want to separate the menu from the remaining content (to its right) with 20 pixels of
blank space, similar to that shown in Figure 2-13.

9 0 H T M L & W e b D e s i g n T i p s & T e c h n i q u e s

Tip&Tec / HTML & Web Design Tips & Techniques / Anderson, King, Jamsa / 9394-8 / Chapter 2

Figure 2-13 A Web page with a 100-pixel menu bar along the left side separated by 20 pixels
of blank space from the page content on the right

P:\010Comp\Tip&Tec\394-8\ch02.vp
Friday, January 04, 2002 2:32:57 PM

Color profile: Generic CMYK printer profile
Composite Default screen

C h a p t e r 2 : H T M L T a b l e s 9 1

Tip&Tec / HTML & Web Design Tips & Techniques / Anderson, King, Jamsa / 9394-8 / Chapter 2

You can use the following code to create a three-column table in which a 20-pixel-wide
blank cell (with the stretched, transparent GIF) separates the content in the left cell from

the content in the right cell:

<table border="1" width="767" height="554"

cellspacing="0" cellpadding="0">

<tr><td valign="top" width="100">Menu Items</td>

<td></td>

<td valign="top" width="647">

Web Page Content Goes Here</td></tr>

</table>

In the current example, the tag that follows the second <td> tag (in the third line) tells the
Web browser to place the transparent GIF stored in the file spacing.gif into the second cell in the table.
The width attribute in the tag tells the Web browser to “stretch” the 1×1–pixel image such that
it appears 20 pixels wide in the cell.

The reason you would use a transparent GIF—instead of setting the width attribute in the cell’s
<td> tag to the number of pixels of blank space you want and then leaving the cell blank—is because
Web browsers handle empty table cells differently. For example, although Internet Explorer shows
the cell background color in blank cells, Netscape Navigator does not—showing the table or Web
page background color instead. Moreover, some browsers ignore the height and/or width attribute
settings in the <td> tag for empty cells and draw the cells such that they are only as tall as the tallest
nonempty cell in the row and as wide as the widest nonempty cell in the column. Finally, neither
Netscape Navigator nor Internet Explorer will draw the left and top borders on a cell that has no content—
even if the table’s border attribute has a value of one or more. However, if you put a one-pixel GIF,
stretched to the dimensions you want, into a table cell, all Web browsers will render the “blank” cell
in the same way—with the dimensions of the GIF, the cell’s specified background color, and borders
(if any)—because although the cell appears blank, it is not empty.

� NOTE

You will learn how to create transparent GIF files in the chapter on graphics later in this book. For
now, you can use the one-pixel transparent GIF in the file spacing.gif, which you can download from
this book’s Web site at http://www.osborne.com.

Wrapping Text Around an Image
When you consider the initial design of a Web page, an issue of primary importance is the layout
of the document. A well-designed Web page contains text and graphics arranged in an organized,
easy-to-understand format. Moreover, the organization of the page helps the reader’s eyes move
smoothly from graphics images to associated text, and back again.

P:\010Comp\Tip&Tec\394-8\ch02.vp
Friday, January 04, 2002 2:32:57 PM

Color profile: Generic CMYK printer profile
Composite Default screen

9 2 H T M L & W e b D e s i g n T i p s & T e c h n i q u e s

Tip&Tec / HTML & Web Design Tips & Techniques / Anderson, King, Jamsa / 9394-8 / Chapter 2

Say, for example, that you create a Web page containing three images. Each image
requires a small paragraph of information that describes the object and the item’s sales

price. By placing the graphics images, descriptive text, and the sales price into a table, you can tell
the Web browser to display text information to the right of each image and the sales price below the
picture, as shown here:

The following HTML statements will create the table shown previously, in which the first image
appears in row 1, column 1; with its associated description (next to the picture) in row 1, column 2;
and sales price (below the picture) in row 2, column 1. (Row 3, columns 1 and 2 were added to create
additional space between items, descriptions, and prices.)

<table border="4" cellpadding="0" cellspacing="2">

<tr><td width="72" align="center"><img height="32" width="32"

src="image_1.jpg"></td>

<td>Insert Description</td></tr>

<tr><td width="72" align="center">Insert Price</td>

<td></td></tr>

<tr><td width="72"></td>

P:\010Comp\Tip&Tec\394-8\ch02.vp
Friday, January 04, 2002 2:32:58 PM

Color profile: Generic CMYK printer profile
Composite Default screen

C h a p t e r 2 : H T M L T a b l e s 9 3

Tip&Tec / HTML & Web Design Tips & Techniques / Anderson, King, Jamsa / 9394-8 / Chapter 2

<td></td></tr>

<tr><td width="72" align="center"><img height="32" width="32"

src=" image_2.jpg "></td>

<td>Insert Description</td></tr>

<tr><td width="72" align="center">Insert Price</td>

<td></td></tr>

<tr><td WIDTH="72"></td>

<td></td></tr>

<tr><td width="72" align="center"><img height="32" width="32"

src=" image_3.jpg "></td>

<td>Insert Description</td></tr>

<tr><td width="72" align="center">Insert Price</td>

<td></td></tr>

<tr><td width="72"></td>

<td></td></tr>

</table>

Using a table to control the flow of text and graphics creates a visually pleasing Web page. In addition,
because text-heavy Web pages are smaller than Web pages containing an overabundance of graphics
images, using text in the description and selling price cells, as opposed to converting the text into
a graphic, creates a smaller document and therefore a faster-loading Web page.

Displaying a Gallery of Thumbnails Within a Table
The display of graphics is a part of life on the World Wide Web. Say, for example, that you own
a real-estate company and need to display photographs of the various homes you market. You want
site visitors to have the option of selecting a full-size image by first opening a Web page that contains
a thumbnail graphic of each available home. When the visitor clicks one of the thumbnails, the Web
browser loads a page containing the full-size image.

Using a table to display thumbnails serves two purposes: It organizes the images into concise rows
and columns, and it gives the visitor the option of selecting and viewing individual images with a simple
point and click of the mouse. In addition, downloading graphics takes time, and Web site visitors typically
do not like to wait. Organizing the thumbnails into a table on a separate page lets the Web site visitors
choose exactly what they want to view, as shown in Figure 2-14.

To use a table to display a group of thumbnail images, create a table with a separate cell
for each thumbnail. To link a thumbnail to its corresponding full-size image, insert an

<a> tag and href attribute in each cell that contains a thumbnail image. The <a> tag creates a link
from the thumbnail to the full-size image. For example, the following code links the thumbnail image
home_1.jpg to the Web page containing the full-size image (page_1.htm):

P:\010Comp\Tip&Tec\394-8\ch02.vp
Friday, January 04, 2002 2:32:58 PM

Color profile: Generic CMYK printer profile
Composite Default screen

When a Web site visitor clicks a thumbnail, the Web browser loads the Web page containing
a full-size image. The <a> tag and href attribute in the following code link the thumbnail (specified
by the src attribute in the tag) to its corresponding full-size image, and creates the Web page
displayed in Figure 2-14:

<table border="4" cellpadding="0" cellspacing="2"

width="137" bgcolor="#ffccff">

<tr><td align="center" valign="middle">

</td>

<td align="center" valign="middle">

</td>

<td align="center" valign="middle">

</td>

<td align="center" valign="middle">

9 4 H T M L & W e b D e s i g n T i p s & T e c h n i q u e s

Tip&Tec / HTML & Web Design Tips & Techniques / Anderson, King, Jamsa / 9394-8 / Chapter 2

Figure 2-14 The Web page displays a thumbnail for each full-size graphic

P:\010Comp\Tip&Tec\394-8\ch02.vp
Friday, January 04, 2002 2:32:59 PM

Color profile: Generic CMYK printer profile
Composite Default screen

</td></tr>

</table>

Once the Web browser displays the thumbnail page, the visitor need only click a thumbnail to display
the full-size image. For example, clicking the thumbnail in the upper-left corner of Figure 2-14 will
cause the Web browser to display the full-size image shown in Figure 2-15.

Because a thumbnail is a smaller version of the full-size image, use naming conventions that link
the thumbnail to the original image. If, for example, you create and save an image with the name
home_1.jpg, name the corresponding thumbnail home_1s.jpg. Creating associative file names helps
you identify the files quickly, because the names will display alphabetically in a standard file listing.

C h a p t e r 2 : H T M L T a b l e s 9 5

Tip&Tec / HTML & Web Design Tips & Techniques / Anderson, King, Jamsa / 9394-8 / Chapter 2

Figure 2-15 Clicking a thumbnail loads the full-size image

P:\010Comp\Tip&Tec\394-8\ch02.vp
Friday, January 04, 2002 2:33:00 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Creating Bullets and Lists with Tables and Graphics
Web designers have always been able to create lists with a square or round bullet preceding each item
in the list. Unfortunately, creating a standard bulleted (or to use the HTML term, unordered) list restricts
the Web designer to placing one of a limited number of bullet symbols next to each item in a list. For
example, the following code will generate the bulleted list shown next:

List item 1

List item 2

List item 3

The start and end unordered list tags () identify the beginning and end of the bulleted
list, and the tag identifies an item in the list.

On the other hand, tables let you use customized bullets by inserting the graphic of the bullet into
a table cell. Typically, a table used in the creation of a bulleted list contains two columns. The first
column holds the customized graphic used for the bullet, and the second column contains the text
describing the list item. A standard two-column table creates lists using eye-catching graphics as the
individual bullet symbols, such as those shown here:

Say, for example, that you create a list containing three items, and you want to use the image
of an arrow as the bullet for each of the list items. The following illustrates the coding

required to create the bulleted list shown previously:

<table border="4" cellpadding="0" cellspacing="2" width="137">

<tr><td></td>

<td>List Item 1</td></tr>

<tr><td></td>

<td>List Item 2</td></tr>

<tr><td></td>

<td>List Item 3</td></tr>

</table>

9 6 H T M L & W e b D e s i g n T i p s & T e c h n i q u e s

Tip&Tec / HTML & Web Design Tips & Techniques / Anderson, King, Jamsa / 9394-8 / Chapter 2

P:\010Comp\Tip&Tec\394-8\ch02.vp
Friday, January 04, 2002 2:33:00 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Because table cells can hold any kind of graphic, experiment by substituting common bullet graphics
with something out of the ordinary. For example, if you create a bulleted list on the steps necessary to
grow roses, substitute a standard bullet symbol with a graphic image of a red rose.

Creating a Navigation Sidebar Using a Table
When you design a multipage Web site, you need to make the navigation of the site easy for your
visitors. In the previous Tip, you learned how to create a bulleted list using the individual cells within
a table. Tables also provide an excellent way to create an organized navigation bar.

A sidebar is a simple form of a navigation bar. Typically, a sidebar consists of a list of
words displayed on the left side of the Web page. Each word is actually a link to another

Web page on the site. When you use a table to generate a sidebar, each cell in the table contains the
individual elements of the sidebar. The following code listing creates the navigation sidebar shown
in Figure 2-16:

<table border="0" cellpadding="0" cellspacing="2" width="96">

<tr><td>Home</td></tr>

<tr><td>Samples</td></tr>

<tr><td>About Us</td></tr>

<tr><td>Contact Us</td></tr>

<tr><td>Purchase</td></tr>

</table>

C h a p t e r 2 : H T M L T a b l e s 9 7

Tip&Tec / HTML & Web Design Tips & Techniques / Anderson, King, Jamsa / 9394-8 / Chapter 2

Figure 2-16 A typical navigation sidebar enclosed within a table

P:\010Comp\Tip&Tec\394-8\ch02.vp
Friday, January 04, 2002 2:33:01 PM

Color profile: Generic CMYK printer profile
Composite Default screen

9 8 H T M L & W e b D e s i g n T i p s & T e c h n i q u e s

Tip&Tec / HTML & Web Design Tips & Techniques / Anderson, King, Jamsa / 9394-8 / Chapter 2

For consistency, always place the navigation sidebar in the same location on each of the site’s Web
pages. This makes it easier for your visitors to locate and use the site’s navigation system. The two
most common areas to place navigation are as a sidebar, vertically along the left side of the Web page
(as this Tip illustrates), or as a horizontal bar across the top of the page.

Adding Images and Links to Table Cells
Each cell in a table is an individual controllable element in which you can place text, graphics, or a
combination of both text and graphics. To add a cell to a table, insert a set of start and end table data
tags (<td></td>) such as those shown in the following code, between the table’s start and end table tags
(<table></table>):

<table>

<tr>

<td> insert cell data here </td>

</tr>

</table>

To place a graphics image in a cell, insert an tag, such as the following, between
the cell’s start and end table data tags (<td></td>):

<table>

<tr>

<td> </td>

</tr>

</table>

The src attribute in the tag tells the Web browser the filename of the graphics image it is
to display in the table cell. Therefore, in the current example, the Web browser will display the picture
in image.jpg.

To convert the graphics image in a table cell to a hyperlink, enclose the tag with a set of
start and end anchor tags (<a>). For example, the following code converts the picture in the table
(from the previous example) into a hyperlink:

<table>

<tr>

<td></td>

</tr>

</table>

When processing the HTML in the current example, the Web browser displays the picture from
the file image.jpg when it draws the table initially. If the site visitor then clicks the picture, the Web
browser will display the contents of the file assigned to the <a> tag’s href attribute. Therefore, in the
current example, the Web browser will display the contents of the file info.htm when the site visitor
clicks the picture in the table.

P:\010Comp\Tip&Tec\394-8\ch02.vp
Friday, January 04, 2002 2:33:01 PM

Color profile: Generic CMYK printer profile
Composite Default screen

TE
AM
FL
Y

Team-Fly®

Nesting Tables to Control Borders on a Web Page
When you create a Web page without tables, the Web browser displays the Web page elements it
finds in the file one after another starting in the upper-left corner of the browser’s application window.
The browser places a default amount of space between the first page element and the left edge of the
application window. Unfortunately, not all Web browsers (and not even all versions of the same Web
browser) use the same default spacing values, which creates a problem when you design a Web page
that calls for precise placement of graphics and text.

Suppose, for example, that you create a Web page containing three graphic images that
require specific spacing from the left border of the Web page. To control the border of

a complicated Web page, create a table and insert a second table with the three graphic elements into
a cell in the second column of the first table. Placing a table into a cell within another table is called
nesting. When you nest tables together, it creates an organized layout, and gives you greater control
over the individual elements within a complicated Web page.

The following code illustrates the nesting of a table containing three graphics into the cell of
another table:

<table border="2" cellpadding="0" cellspacing="2">

<tr><td width ="30"></td>

<td width ="32"></td>

<td width ="30"></td></tr>

<tr><td width ="30"> </td>

<td width ="32" align="center">

<! -- The nested table begins here... -- >

<table border="4" cellpadding="0" cellspacing="2">

<tr><td width ="32"></td></tr>

<tr><td width ="32"></td></tr>

<tr><td width ="32"></td></tr>

</table></td>

<! -- The nested table ends here... -- >

<td width="30">

</td></tr>

<tr><td width ="30"></td>

<td width ="32"></td>

<td width ="30"></td></tr>

</table>

In the current example, the second column of the table contains the nested table, and the first column
of the outer table has a fixed width of 30 pixels. As a result, when the Web browser loads the Web
page, the first column in the table pushes the nested table 30 pixels to the right of the left edge of the
browser’s application window, as shown in Figure 2-17.

C h a p t e r 2 : H T M L T a b l e s 9 9

Tip&Tec / HTML & Web Design Tips & Techniques / Anderson, King, Jamsa / 9394-8 / Chapter 2

P:\010Comp\Tip&Tec\394-8\ch02.vp
Friday, January 04, 2002 2:33:02 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Approximating an Image Map by Placing Pieces
of an Image Within a Table
Image maps are an excellent way to help visitors navigate a Web site. An image map is like a group
of clickable buttons all combined into a single graphic. When visitors to your site move the mouse
pointer over the image map, the internal coding of the image map lets them click specific areas of the
graphic, called hotspots. Hotspots are invisible borders surrounding specific portions of an image. For
example, an image map of the United States would have a hotspot defining the dimensions of each state.
When a site visitor clicks the state of Kansas, the hotspot defining Kansas might load a Web page with
the current weather in Kansas, or it might send them to a Web site describing the history of Kansas.
Image maps help visitors visually navigate through a complicated Web site.

The problem with image maps is that they are complicated to code and not all versions of Web
browsers support image maps. To overcome this problem, use a table to create the flexibility of an
image map. To get the table’s cells to function like hotspots on an image map, divide the image into
rectangular pieces and place each piece in a separate cell in the table. Then, to each cell, add an <a>

1 0 0 H T M L & W e b D e s i g n T i p s & T e c h n i q u e s

Tip&Tec / HTML & Web Design Tips & Techniques / Anderson, King, Jamsa / 9394-8 / Chapter 2

Figure 2-17 The table successfully creates a border for the nested table graphics

P:\010Comp\Tip&Tec\394-8\ch02.vp
Friday, January 04, 2002 2:33:03 PM

Color profile: Generic CMYK printer profile
Composite Default screen

tag with an href attribute that tells the Web browser what action to take when the visitor clicks the
graphics image you placed in the cell.

In the following code, when the visitor clicks the graphic file named home.gif, the Web
browser links to and opens the Web page titled home.htm:

When correctly designed and placed in the cells of a table with zero width (that is, invisible) borders,
the Web browser will display the pieces of the picture next to each other, such that the visitor sees them
as a single graphics image.

The following code creates the navigation bar shown in Figure 2-18:

<table border="0" cellpadding="0" cellspacing="0" width="327">

<tr height="20">

<td width="80" height="20">

</td>

<td width="80" height="20">

</td>

<td width="80" height="20">

</td>

<td width="80" height="20">

</td>

<td width="80" height="20">

</td>

</tr>

</table>

C h a p t e r 2 : H T M L T a b l e s 1 0 1

Tip&Tec / HTML & Web Design Tips & Techniques / Anderson, King, Jamsa / 9394-8 / Chapter 2

Figure 2-18 A table with five graphics images that appear as a single, larger image on a Web page

P:\010Comp\Tip&Tec\394-8\ch02.vp
Friday, January 04, 2002 2:33:03 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Slicing a Graphic Image into Table Cells
to Create a Quick Loading Web Graphic
In the previous Tip, you learned how to create an image map by combining separate graphic elements
within a table. Tables also let you assemble graphic images to create the appearance of a single graphic.
Dividing a picture into pieces and placing the pieces into separate table cells allow the Web browser
to retrieve and display the image faster than it could if the picture were a single, large file. The speed
savings depends on the colors within the sliced images. Slices containing fewer colors, such as a bright
blue sky, create smaller file sizes than slices that contain more colors.

Say, for example, that you have a large graphic on a Web page, and the large file size of
the image creates an unacceptably long download time for the page. The image in question

is a landscape photograph containing large areas of solid blue sky, named big_sky.jpg.
If you divide the large graphics image into pieces and save each of these pieces in a separate JPEG-

formatted file on disk, you can take advantage of the relationship between file size and image color depth.
When you save a graphics image in the JPEG format, your graphics program selects a compression
method based on the amount of color contained in the image. However, no matter the compression method
used, the more color in the picture, the larger the size of the JPEG file the graphics program creates.

If you divide a large graphics image into pieces, the graphics program can select a different
compression method for different parts or slices of the image. The program will save those slices
with less color in smaller-size JPEG files, and those slices with more color in larger-size JPEG files
(see Figure 2-19). However, given a picture with varying amounts of colors in different parts of the
image, the sum of the sizes of the sliced JPEG files will be less than the number of bytes required to
store the picture in a single JPEG file. Therefore, the Web browser will be able to load and display all
of the file slices faster than it could load the single file, because the browser has to retrieve less data
from the file server. Remember, when you put the slices (that is, the pieces) of a picture into the cells
of a table with zero-width (invisible) borders, the table holds the pieces next to each other (without
a space in between) such that they appear as a single, larger image.

When the table loads the image onto the Web page, it loads faster because the browser has less
information to download from the server.

Slicing an image requires a graphic-editing program such as Adobe ImageReady 3.0. It is the only
program currently on the market that will automatically slice a photographic image, optimize each slice
according to the image’s available colors, and save the sliced images into a separate folder.

1 0 2 H T M L & W e b D e s i g n T i p s & T e c h n i q u e s

Tip&Tec / HTML & Web Design Tips & Techniques / Anderson, King, Jamsa / 9394-8 / Chapter 2

P:\010Comp\Tip&Tec\394-8\ch02.vp
Friday, January 04, 2002 2:33:04 PM

Color profile: Generic CMYK printer profile
Composite Default screen

C h a p t e r 2 : H T M L T a b l e s 1 0 3

Tip&Tec / HTML & Web Design Tips & Techniques / Anderson, King, Jamsa / 9394-8 / Chapter 2

Reducing the Amount of Time a Web Browser
Spends Drawing a Table
Although tables are an excellent way to control and display the contents of a Web document, like any
other Web element they take time to download. In the previous Tip, you leaned how to speed up the
loading of a graphic image by slicing the image into separate pieces and reassembling the pieces.
Although slicing an image enhances its download speed, the browser must also create and load the
table. When you create a table, the less complicated the table structure, the faster the table loads.

Figure 2-19 The sliced image is 32 percent smaller than the original graphic

Original image = 36.2k

Slice 1 = 4.2k Slice 2 = 4.2k

Sliced image 24.7k

Slice 3 = 8.1k Slice 4 = 8.2k

P:\010Comp\Tip&Tec\394-8\ch02.vp
Friday, January 04, 2002 2:33:05 PM

Color profile: Generic CMYK printer profile
Composite Default screen

1 0 4 H T M L & W e b D e s i g n T i p s & T e c h n i q u e s

Tip&Tec / HTML & Web Design Tips & Techniques / Anderson, King, Jamsa / 9394-8 / Chapter 2

To make a table load faster, provide the dimension of graphics images you insert within
table cells. In the following code, a graphic image named image.jpg loads into a table cell

that the browser makes the same width and height as the image:

<table>

<tr>

<td></td>
</tr>

</table>

When you omit the width and height attribute settings from an tag, the browser must
base the cell’s height and width on the dimensions of the picture it is to place in the cell. As a result,
it will take longer for the Web browser to draw the table onscreen, because it must download the
graphics image to determine the cell’s dimensions. If you provide explicit image dimensions for
all graphics images, the Web browser can draw the table, display any text in the table’s cells, and
then go back and download and insert the slower loading graphics images into the table. Because the
browser can retrieve and display text content quickly, the site visitor can read the table’s text content
while waiting for the browser to retrieve and display the larger, slower-loading images in the table.

� NOTE

When specifying image dimensions, make sure the width and height attribute values match the actual
width and height of the image the browser is to place within the cell. If the height and/or width you
specify differ from the image dimensions, the Web browser will stretch (or squash) the image to
match the height and width attribute values. As a result, the image displayed may be distorted.

Simulating Web Page Frames Using a Table
Web designers spend a lot of time organizing the information contained on a Web page. A well-
designed Web page contains information grouped into definable areas. As you design and create
Web sites, you will spend a great deal of time organizing content on each of the site’s Web pages. A
well-designed Web page has its content grouped into definable areas. For example, many sites have
pages on which a group of headings (or a banner) appears across the top of the page, a navigation bar
is available down one of the sides or across the bottom, and the actual content appears below the headings
and either to the right of or above the navigation bar.

A Web site with well-organized Web pages creates a pleasing environment that invites the visitor
to enter the site and spend some time exploring its content. One way to organize the content on a
Web page is to use frames, which divide a Web page into several windows, called a frameset, with
each window capable of displaying a separate Web document. A typical framed Web page, such as
that shown in Figure 2-20, has three frames.

The first frame runs left-to-right across the top of the page and contains heading information, such
as company name and address. The second frame contains the navigation system and runs the left side
of the page, from under the heading frame to the bottom of the page. The third frame contains organized
areas of text and graphics.

P:\010Comp\Tip&Tec\394-8\ch02.vp
Friday, January 04, 2002 2:33:05 PM

Color profile: Generic CMYK printer profile
Composite Default screen

C h a p t e r 2 : H T M L T a b l e s 1 0 5

Tip&Tec / HTML & Web Design Tips & Techniques / Anderson, King, Jamsa / 9394-8 / Chapter 2

Although frames provide an excellent tool for organizing information on a Web page, they have
two major flaws. First, frames are not fully supported by all Web browsers, and second, it takes longer
for a Web browser to load a framed Web page because the browser must load and display a separate
Web document in each of the frames on the page.

Although tables do not let you load multiple Web documents into a single browser application
window, you can use tables to create the visual look of the organization provided by

framed Web pages. For example, the following code creates a table that gives a Web page the
organized look of a framed page, as shown in Figure 2-21:

<table border="4" cellpadding="0" cellspacing="2"

width="600">

<tr height="25">

<td height="25" colspan="2" bgcolor="#9900ff">

<center>THIS IS THE HEADING AREA

Figure 2-20 A typical Web page divided into frames

The visible border
defines the frames

P:\010Comp\Tip&Tec\394-8\ch02.vp
Friday, January 04, 2002 2:33:06 PM

Color profile: Generic CMYK printer profile
Composite Default screen

</center>

</td> </tr>

<tr height="300">

<td width="100" height="300" bgcolor="#cc0000">

<center>This area holds

<p>the navigation</p>

<p>array

</center></td>

<td width="400" height="300" bgcolor="black">

<center>

This area holds the Web page content</center>

</td>

</tr>

</table>

1 0 6 H T M L & W e b D e s i g n T i p s & T e c h n i q u e s

Tip&Tec / HTML & Web Design Tips & Techniques / Anderson, King, Jamsa / 9394-8 / Chapter 2

Figure 2-21 A Web page using a table to simulate the look of frames

P:\010Comp\Tip&Tec\394-8\ch02.vp
Friday, January 04, 2002 2:33:07 PM

Color profile: Generic CMYK printer profile
Composite Default screen

C h a p t e r 2 : H T M L T a b l e s 1 0 7

Tip&Tec / HTML & Web Design Tips & Techniques / Anderson, King, Jamsa / 9394-8 / Chapter 2

By using a different background color for each division (red, blue, and black, in the current example),
you can make each of the divisions appear independent like the frames in a framed Web page.

Focusing the Viewer’s Attention
with Cell Background Colors
In this chapter, you learned that the primary uses for tables in a Web document are to display tabular
data, to organize and place content at specific locations, to create image maps, and to reduce the time
it takes the Web browser to download graphics images. You can also use tables to attract the attention
of site visitors and thereby draw their eyes to specific areas on a Web page. Color is a strong element
you can use to grab a visitor’s attention. In the previous Tip, you worked with background color to create
groups of table cells that divide the Web page into regions by purpose.

Now, suppose that you create a text-heavy document and you want the visitor to pay
particular attention to one specific paragraph. Create a multicell table and place the Web

page text in one of the table’s cells. Then color the cell to the left of the “important” paragraph and
perhaps even include some descriptive text in the colored cell, such as that shown in Figure 2-22.

Figure 2-22 A table with a colored cell that draws the eye to a specific area of the Web page

P:\010Comp\Tip&Tec\394-8\ch02.vp
Friday, January 04, 2002 2:33:07 PM

Color profile: Generic CMYK printer profile
Composite Default screen

1 0 8 H T M L & W e b D e s i g n T i p s & T e c h n i q u e s

Tip&Tec / HTML & Web Design Tips & Techniques / Anderson, King, Jamsa / 9394-8 / Chapter 2

The following code creates the Web document shown in Figure 2-22:

<table border="0" cellpadding="0" cellspacing="2" width="317"

bgcolor="black">

<tr>

<td width="89" height="20">

</td>

<td rowspan="3" valign="top">

The body text goes here

All the information you want your

Web page to display

and the important info you want

your readers to see is highlighted

in bright yellow.</td></tr>

<tr>

<td width="89" align="center" bgcolor="yellow">

Check this out..</td></tr>

<tr><td width="89"> </td></tr>

</table>

Changing the background color of the table cell containing the words Check this out to yellow (by
setting the bgcolor attribute in the cell’s <td> tag to “yellow”) draws the visitor’s attention to the cell
and emphasizes a portion of the text in the adjacent cell.

Aligning Web Page Content Visually
with Visible Table Borders
When you use a table to align graphics and text, you create an organized layout to the page, help the
visitor’s eyes move through the document, and increase the attractiveness of the page layout.

Suppose, for example, that you want to create a Web page that contains photographs of
your employees along with their names, positions in the company, and mailing addresses.

To organize the information, create a single column table with four rows, such as that shown next:

P:\010Comp\Tip&Tec\394-8\ch02.vp
Friday, January 04, 2002 2:33:08 PM

Color profile: Generic CMYK printer profile
Composite Default screen

TE
AM
FL
Y

Team-Fly®

C h a p t e r 2 : H T M L T a b l e s 1 0 9

Tip&Tec / HTML & Web Design Tips & Techniques / Anderson, King, Jamsa / 9394-8 / Chapter 2

Row 1 contains the employee’s name; row 2 holds the employee’s photograph; row three holds
their position in the company; and row 4 holds their mailing address. Not only does using a table help
to organize the information on the Web page, but using the border attribute helps to further define the
outer border of the table and separates the table from other graphics and text on the Web page.

The following code creates the table shown previously:

<table border="6" cellpadding="0" cellspacing="2" width="175">

<tr>

<td width="175" height = "30" align="center">

James Markin

</td></tr>

<tr height="90">

<td width="175" height="90" align="center" valign="middle">

</td></tr>

<tr>

<td width="175" height = "30" align="center">

Senior Designer

</td></tr>

P:\010Comp\Tip&Tec\394-8\ch02.vp
Friday, January 04, 2002 2:33:08 PM

Color profile: Generic CMYK printer profile
Composite Default screen

<tr>

<td width="175" height="93" align="center" valign="middle">

Riven Productions

433 Spaeder Street

Hollywood, CA 23435

</td></tr>

</table>

When you turn off the border attribute (border = “0”), the table cells merge, creating a solid look
to the separate cells in the table. Using the border attribute visually divides the information into definable
blocks of information that are easy to read.

Controlling Gutter Size and Margin Width
of Text on a Web Page
When you create documents using programs such as Microsoft Word, the word processor lets you
control the outside margins along the sides of each page and the gutter space between columns of
text. Unfortunately, HTML does not give you this same type of control over the placement of text on
a Web page. However, by placing text content in a table, you can simulate the outside margin and
gutter control available in a word processor.

Say, for example, that you want to create a Web page that when displayed by a Web browser resembles
a two-column word processor document with appropriate gutter spacing between the columns of text,
as shown in Figure 2-23.

In the table shown in Figure 2-23, the first and last columns of the table control the space
allocated to the left and right margins. Meanwhile, the third column controls the amount

of gutter space the browser will leave between the two columns of text. Finally, the second and fourth
columns hold the document text.

The following code will generate the table displayed in Figure 2-23 (notice that the table actually
contains five cells):

<table border="0" cellpadding="0" cellspacing="2" width="600">

<! -- Column controlling left margin -- >

<tr height="250">

<td width="20" >

</td>

<td width="200" valign="top">

<center> Heading Inserted Here

</center>

<p>Body Text Inserted Here.</p>

<p>Body Text Inserted Here.</p></td>

<! -- Column controlling gutter space -- >

<td width="15" >

1 1 0 H T M L & W e b D e s i g n T i p s & T e c h n i q u e s

Tip&Tec / HTML & Web Design Tips & Techniques / Anderson, King, Jamsa / 9394-8 / Chapter 2

P:\010Comp\Tip&Tec\394-8\ch02.vp
Friday, January 04, 2002 2:33:09 PM

Color profile: Generic CMYK printer profile
Composite Default screen

</td>

<td width="200" valign="top">

<center>Heading Inserted Here

</center>

<p> Body Text Inserted Here.</p>

<p> Body Text Inserted Here.</p></td>

<! -- Column controlling right margin -- >

<td width="20">

</td></tr>

</table>

Placing text into a table lets you organize and control how the text displays inside a Web browser
window, and well-organized text is easier to read and understand. In addition, not all browsers display
empty table cells correctly. Therefore, to ensure that the table displays as intended, insert a transparent
GIF into the margin and gutter table cells and set the width attribute within the tag to the width
of the gutter or margin you want.

C h a p t e r 2 : H T M L T a b l e s 1 1 1

Tip&Tec / HTML & Web Design Tips & Techniques / Anderson, King, Jamsa / 9394-8 / Chapter 2

Figure 2-23 A two-column text document displayed using a table

15-pixel gutter

20-pixel columns

P:\010Comp\Tip&Tec\394-8\ch02.vp
Friday, January 04, 2002 2:33:09 PM

Color profile: Generic CMYK printer profile
Composite Default screen

CHAPTER 3

HTML Forms

Tip&Tec / HTML & Web Design Tips & Techniques / Anderson, King, Jamsa / 9394-8 / Front Matter

TIPS IN THIS CHAPTER

� Creating a Single-Line Input Field on a Form 119

� Creating a Multiline Input Field on a Form 120

� Validating Text Element Data Prior to Submitting Form Results 122

� Placing Check Boxes on a Form 124

� Placing Radio Buttons on a Form 126

� Validating Radio Button Group Selections Prior to Submitting Form Results 128

� Placing a Drop-Down List (Selection Menu) on a Form 129

� Verifying the Visitor Has Made a Selection List Choice Prior to Submitting
Form Results 132

� Changing the Items Available on a Selection List Based on
Visitor Supplied Information 134

� Sending All Selection List Values to the Web Server Through a Hidden Field 136

� Adding a Reset Button to a Form 138

� Preventing a Visitor from Clearing Form Elements Accidentally 139

� Adding a Submit Button to a Form 140

� Replacing the Standard Submit and Reset Buttons on a Form with Other
Graphics Images 141

P:\010Comp\Tip&Tec\394-8\ch03.vp
Friday, January 04, 2002 3:28:09 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Copyright 2002 by The McGraw-Hill Companies, Inc. Click Here for Terms of Use.

If you have spent any time visiting Web sites on the Internet, chances are good that you have filled
out many Web-based forms. In fact, you probably work with forms (such as search engines or

login screens) every time you surf the Web. Although the majority of Web pages consist of text,
images, and hyperlinks, which let you retrieve information, almost all Web sites have at least one
form that lets you send information back to the Web site’s operator. A form might be as simple as
a login screen where you provide your username and password for access to the site, or as complex
as the user interfaces on Hotmail, E*Trade, eBay, Yahoo, and such. Figure 3-1, for example, shows
the account setup form and login form at http://www.hotmail.com.

From a designer’s viewpoint, forms let you establish a dialog with your site’s visitors. Instead of
using text and pictures to send information, forms let you use text boxes, check boxes, radio buttons,
and selection menus to retrieve information.

To process the responses (that is, the form results) you receive from the site visitor, you will
normally use some type of script running on the Web server and possibly a script the browser runs
before submitting the information the visitor entered into the form. You will learn how to implement
such scripts later in this chapter. For now, understand that the scripts that process the form results
normally serve two purposes. First, either the Web server or (preferably) the Web browser might
run a script that validates the form’s data, that is, a script that makes sure the visitor filled out all
“required” fields and that the data provided in the form is valid. Second, either the Web server will
run a script that processes the form results itself, or the script may place the form results into a file
and forward them to another program for further processing. (Some programmers refer to the form
results that the browser submits to the Web server as the form data set.)

Although they vary greatly in appearance, all forms have several elements in common. Forms
consist of one or more labeled input fields, check boxes, radio buttons, or drop-down menus Web

113

Tip&Tec / HTML & Web Design Tips & Techniques / Anderson, King, Jamsa / 9394-8 /

� Sending Form Results by E-Mail Without a CGI Script 143

� Controlling the Layout of Form Elements and Text with HTML Tables 145

� Creating a Shortcut Key for Form Navigation with a <label> Tag 148

� Instructing the Web Browser to Execute a Form Validation Function with
the onClick Attribute 149

� Passing Values to the Web Server Through Hidden Fields 151

� Hiding Visitor Input from View Within a Password Element 152

� Adding a Generic Button Object to a Form 153

� Enabling and Disabling Form Elements on-the-Fly 154

P:\010Comp\Tip&Tec\394-8\ch03.vp
Friday, January 04, 2002 3:28:10 PM

Color profile: Generic CMYK printer profile
Composite Default screen

1 1 4 H T M L & W e b D e s i g n T i p s & T e c h n i q u e s

Tip&Tec / HTML & Web Design Tips & Techniques / Anderson, King, Jamsa / 9394-8 / Chapter 3

site visitors use to enter information. All forms also have a Submit button on which a visitor clicks
to send the form results to the Web server. Most forms (especially those with many input fields) also
have a Reset button on which a visitor can click to clear all previously entered responses and start
over. Beyond these basic items (labeled input fields and two special-purpose pushbuttons), you can
include anything on a form that you can directly on the Web page (with the exception that one form
cannot contain a second form). As you will learn in this chapter, an HTML form—like an HTML
table—is a “container” that holds Web page objects. However, unlike an HTML table (which is

Figure 3-1 Examples of forms found at http://www.hotmail.com

Hotmail login screen

Hotmail new account
information form

P:\010Comp\Tip&Tec\394-8\ch03.vp
Friday, January 04, 2002 3:28:10 PM

Color profile: Generic CMYK printer profile
Composite Default screen

designed to send information to the site visitor), a form’s purpose is to retrieve responses from
the visitor.

Understanding HTML Forms Processing
The most difficult thing to understand about HTML forms processing is “what happens where.”
When a visitor views a Web page that does not contain a form, the server simply responds to the
browser’s requests for the Web page and the individual items the page contains, such as graphics
and animations. For example, when someone “visits” a Web site, the visitor’s browser requests a
Web page from the Web server. After the server returns the HTML page, the browser examines the
HTML statements and begins to display the page. When the browser encounters tags that require more
data from the server, such as an tag that specifies a graphic, the browser requests the server to
send the corresponding file. As shown in Figure 3-2, the server and browser continue this “request/
response” interaction until the browser has retrieved all the files the browser needs to display the
Web page content.

After the Web server sends the HTML document (including any referenced graphics images,
animations, sound files, or video clips as requested by the Web browser), the Web server’s job is
done. It is up to the Web browser to display the Web page text and graphics and to play back any
sound files or movie clips available on the page. When the visitor clicks one of hyperlinks on the
Web page, the browser sends another request for a Web page to the Web server, which, in turn,
sends the requested document (and support files as the files are requested) to the Web browser
for the browser to process and display.

When working with a Web page that contains a form, the browser and server perform the previous
two-way conversation to download the page and its contents (which includes the form). After the
visitor fills in the form’s entries and clicks Submit, the browser sends the form results back to the
server, which must then process the results in some way. Normally, the server will process the form
results by running a specific script. Depending on the script’s purpose, the script, for example, might
place the user’s data into a database, might use the information to start an e-commerce transaction,
or, in the case of a form at a search-engine site such as Yahoo, use the form’s contents to search the
server database for a list of related links. As you will learn later, within the HTML entries that create
the form, the designer specifies the program the server runs after the visitor submits the form results.

C h a p t e r 3 : H T M L F o r m s 1 1 5

Tip&Tec / HTML & Web Design Tips & Techniques / Anderson, King, Jamsa / 9394-8 / Chapter 3

Figure 3-2 HTTP request/response interaction between Web browser and Web server

P:\010Comp\Tip&Tec\394-8\ch03.vp
Friday, January 04, 2002 3:28:11 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Normally, behind the scenes, when the visitor clicks Submit, the browser will run a script that
resides within the same HTML file as the form. The script verifies that the visitor filled out the
form completely and may check the “correctness” of some of the responses. Then, the browser
will package up the information and send it to the Web server, telling the server the name of the
application the server should run to process the form results. Figure 3-3 shows the split of work
performed during forms processing by the Web browser and the Web server.

In summary, after the Web server sends the Web page with the form to the Web browser, the
server goes on about its business—as the server does after sending any other Web page (with or
without forms) to a Web browser. The Web browser takes care of accepting the visitor’s input into
the form’s text fields and mouse click selections on the form’s radio buttons, check boxes, and selection
lists. When the visitor has finished filling out the form, the Web browser must again communicate
with the Web server to send the information entered on the form to the Web server for processing.
The Web server, in turn, runs a specific script to process the form results and sends a message to

1 1 6 H T M L & W e b D e s i g n T i p s & T e c h n i q u e s

Tip&Tec / HTML & Web Design Tips & Techniques / Anderson, King, Jamsa / 9394-8 / Chapter 3

Figure 3-3 HTML forms processing events and the locations at which they occur

P:\010Comp\Tip&Tec\394-8\ch03.vp
Friday, January 04, 2002 3:28:12 PM

Color profile: Generic CMYK printer profile
Composite Default screen

C h a p t e r 3 : H T M L F o r m s 1 1 7

Tip&Tec / HTML & Web Design Tips & Techniques / Anderson, King, Jamsa / 9394-8 / Chapter 3

the Web browser confirming the receipt of form results and often the success or failure of
form data processing.

Understanding the Tags and Attributes Used to Create a Form
As mentioned previously in this chapter, in addition to text fields, radio buttons, and check boxes
used to prompt visitors for input, you can include pushbuttons, text, graphics images, and other Web
page objects on a form. The HTML start and end form tags (<form></form>) tell the Web browser
which portion of an HTML file to include in the form. Remember, a Web page form is a “container”
not unlike an HTML table. You use a set of start and end table tags (<table></table>) to enclose the
content you want the Web browser to place within a table. Similarly, you use a set of start and end
form tags (<form></form>) to tell the Web browser which part of the Web page content is part of
a form. The main difference between forms and tables is that the browser simply displays the data
within an HTML table, but the Web browser not only displays a form, but also accepts input into
the form’s elements and sends the form results to the Web server for processing. (Moreover, you
can place multiple tables and multiple forms on a single Web page; however, although you can nest
one table within another, you cannot nest forms.)

For example, as you read the text in this chapter you will learn how to replace the following
placeholders for input fields and pushbuttons between a set of start and end form tags (<form></form>)
to create forms that let you collect the information you want from your site visitors:

<form name="ExampleForm"

action="http://www.NVBizNet2.com/_scripts/_pl/FrmScrpt.CGI"

method="POST" title="Form ToolTip"

enctype="application/x-www-form-urlencoded">

<p>Form input fields & misc. pushbuttons</p>

<p>Form RESET and SUBMIT pushbuttons</p>

</form>

As shown in the current example, <form> tags typically include the following attributes:

• action The uniform resource locator (URL) or Web address to which the Web browser sends
the visitor’s form responses after the visitor clicks the form’s Submit button. For example, to
send the form results (that is, the information entered and selections made on a form) as an
e-mail message, you might set the value of the action attribute to a text string consisting of
the keyword mailto: and an e-mail address. Similarly, to forward the form results to a program
for further processing, set the value of the action attribute to the URL of the script responsible for
sending the form results on their way.

• enctype Tells the Web browser the encoding method to use for passing form data to
the CGI script on the server. Normally, you will set the value of the enctype attribute
to “application/x-www-form-urlencoded”.

P:\010Comp\Tip&Tec\394-8\ch03.vp
Friday, January 04, 2002 3:28:12 PM

Color profile: Generic CMYK printer profile
Composite Default screen

• id Used to give the form a unique name by which you can refer to the form in a script. If
you do not “name” the form (by providing an id or a name attribute value), you must refer
to the form by number. For example, in JavaScript, you would refer to the first form on the
Web page as document.forms[0], the second form as document.forms[1], the third form as
document.forms[2], and so on. Conversely, if you give each form on the Web page a unique
ID, your script could refer to the form as document.formID (or simply as formID).

• method Specifies the way in which the browser is to send the form results to the URL
specified in the action attribute. The value of the method attribute will be either POST or GET.
If you set the value of method to GET, the Web browser sends the form data to the Web server
at the end of the URL given by the action attribute in the <form> tag. Conversely, if you set the
value of the method attribute to POST, the Web browser sends the form data to the Web server
in a separate HTTP message. According to HTML standards, you should use the GET method
when the form is idempotent, that is, when the script processing the form makes no changes
to data stored on the Web server. For example, forms used to search a database would use the
GET method. Conversely, if processing form results causes side effects, such as changing
the data stored in a DBMS, for example, you should use the POST method.

� NOTE

Never use the GET method to submit form results from a form that asks for a password. If you do so,
you will expose the password the visitor enters as part of a URL stored in several locations including
the Web browser’s history file and the Web server’s log file.

• name Text string you can use to refer to the form by name in a script included within
the Web page HTML. If you do not “name” the form (by providing a name or id attribute
value), you must refer to the form by number. For example, if you give each form on the
Web page a name or unique ID, your script could refer to the form as document.formname
(or document.formID).

• onReset The name of a function (that is, a script within the Web page HTML) the Web
browser is to execute if the visitor clicks the form’s Reset button. The function will return a
value of either True or False. If the function returns True, the Web browser will remove the
visitor’s input and reset the form’s elements to their original, default values. Conversely, if
the function returns a value of False, the Web browser will not reset the form field values.

• onSubmit The name of a function (that is, a script within the Web page HTML) the Web
browser is to execute when the visitor clicks the form’s Submit button. Normally you use
an onSubmit function to validate form results prior to sending them to the Web server for
processing. If the function returns a value of False, the Web browser will not send the form
results to the Web server. Conversely, if the function returns a value of True, the Web browser
sends the form results on to the Web server for processing by the CGI script or other program
named in the action attribute in the <form> tag.

• target The name of the window in which you want the Web browser to display the form’s
confirmation page.

1 1 8 H T M L & W e b D e s i g n T i p s & T e c h n i q u e s

Tip&Tec / HTML & Web Design Tips & Techniques / Anderson, King, Jamsa / 9394-8 / Chapter 3

P:\010Comp\Tip&Tec\394-8\ch03.vp
Friday, January 04, 2002 3:28:12 PM

Color profile: Generic CMYK printer profile
Composite Default screen

TE
AM
FL
Y

Team-Fly®

• title Text (such as the name or description of the form) you want the Web browser
to display when the site visitor lets the mouse pointer hover over any one spot within
the form for several seconds.

The first seven Tips, which follow this introduction to HTML forms, will show you how to create
text input fields, check boxes, radio buttons, selection menus, Reset buttons, and Submit buttons on
forms. A few of the remaining Tips will then explore the attributes available for use in the <form>
tag in depth. For now, the important thing to understand is that you place the objects you want on
the form (that is, you place the form’s elements on the form) by inserting the HTML tag(s) for each
element between the form’s start and end form tags(<form></form>). Moreover, every form must
have some type of a “submit” button that, when clicked, tells the Web browser to send the form
results (that is, the form’s data) to a URL specified by the action attribute in the form’s <form> tag.

Creating a Single-Line Input Field on a Form
When you want the site visitor to enter a short string of text, insert an <input> tag with its type attribute
set to “text” within the form.

For example, the two <input> tags in the following code create the First Name and
Last Name fields shown on the form in Figure 3-4.

<form name="ExampleForm">

<p>First Name: <input type="text" name="FirstName" size="15">

Last Name: <input type="text" name="LastName" size="20"></p>

<p>[Form RESET and SUBMIT pushbuttons go here]</p>

</form>

Notice that the text label to the left of each of the two single-line text fields on the form are not
a part of the <input> tag. Each single-line text <input> tag does, however, have the following attributes:

• type Set to “text” to let the Web browser know that the form element is a single-line text box.

• id Used to assign a name to the input field. You can use the value of the id attribute to work
with the contents of the input field within a script embedded in the Web page HTML. Note that
each id you use within the Web page HTML must be unique, that is, no two id values can be
the same within a single page.

C h a p t e r 3 : H T M L F o r m s 1 1 9

Tip&Tec / HTML & Web Design Tips & Techniques / Anderson, King, Jamsa / 9394-8 / Chapter 3

Figure 3-4 A form with two single-line text input fields

P:\010Comp\Tip&Tec\394-8\ch03.vp
Friday, January 04, 2002 3:28:13 PM

Color profile: Generic CMYK printer profile
Composite Default screen

• name Used to identify the input field. You can use the value of the name attribute to refer
to the value in the input field within a script running at the Web browser, and the browser
passes the field’s name along with the field’s value to the Web server when the visitor clicks
the form’s Submit button.

• size The width, in characters, of the text box.

• value Tells the Web browser to place the text you assign to the attribute into the input field
when the browser first draws the form.

• maxlength The maximum number of characters the visitor can type into the input field.

• readonly When present, the field can receive the focus. However, the visitor cannot change
the value in the input field.

• disabled When present, the field cannot receive the focus, nor can the visitor change the input
field’s value. Moreover, the browser does not submit the field’s name or value to the Web server
with the form results.

• tabindex Used to set the tabbing order in which form elements receive the focus. By
assigning ascending values to the tabindex attribute within the tag for each form element, you
can tell the browser where to move the cursor (that is, the focus). Each time the visitor presses
TAB, the browser will move the focus to the form element with the next highest tabindex.

• accesskey The key the user can press while holding down the ALT key (or the COMMAND or
CONTROL key on a Macintosh system) to move to (that is, give the focus to) the input field.

The <input> tags in the current example tell the Web browser to place two single-line text boxes
(named “FirstName” and “LastName”) on a form named ExampleForm. The FirstName text box is
15 characters in length; the LastName text box has a length of 20 characters.

When entering text into a single-line text box, the site visitor can enter any number of text
characters into the field. However, the Web browser will display only the number of characters given
by the <input> tag’s size attribute onscreen at once. In the current example, if the visitor enters a
20-character first name, because the input field is only 15 characters wide, only 15 characters of the
first name are visible at a time. (If you want to limit the number of characters the visitor can enter,
add a maxlength attribute set to the maximum acceptable string length to the <input> tag.)

Creating a Multiline Input Field on a Form
When you want the site visitor to enter several lines of text, insert a set of start and end text area tags
(<textarea></textarea>) between the form’s start and end tags (<form></form>).

For example, to insert the multiline text box shown below the first and last name fields
in Figure 3-5, add the start and end text area tags (<textarea></textarea>) shown after

the <input> tags in the following code that defines a form:

1 2 0 H T M L & W e b D e s i g n T i p s & T e c h n i q u e s

Tip&Tec / HTML & Web Design Tips & Techniques / Anderson, King, Jamsa / 9394-8 / Chapter 3

P:\010Comp\Tip&Tec\394-8\ch03.vp
Friday, January 04, 2002 3:28:14 PM

Color profile: Generic CMYK printer profile
Composite Default screen

C h a p t e r 3 : H T M L F o r m s 1 2 1

Tip&Tec / HTML & Web Design Tips & Techniques / Anderson, King, Jamsa / 9394-8 / Chapter 3

<form name="ExampleForm">

<p>First Name: <input type="text" name="FirstName" size="15">

Last Name: <input type="text" name="LastName" size="20"></p>

<p>Message: <textarea name="TextMessage" rows="5" cols="60">

</textarea></p>

<p>[Form RESET and SUBMIT pushbuttons go here]</p>

</form>

As was the case with the label next to the single-line text fields in the preceding example, the
text (“Message:”) to the left of the multiline text field is not a part of the field’s <textarea> tag.
A multiline text input tag does, however, have the following attributes:

• rows The number of rows of text you want the Web browser to display inside the multiline
text box at once onscreen.

• cols The number of characters you want the text box to display on each line of the multiline
text box.

• id Used to assign a name to the input field. You can use the value of the id attribute to
work with the contents of the input field within a script embedded in the Web page HTML.

• name A name used to identify the input field. You can use the value of the name field to
refer to the value in the input field within a script executed by the Web browser. The browser
normally passes the field’s name along with the field’s contents to the Web server when the
visitor clicks Submit.

The <textarea> tag in the current example tells the Web browser to place a multiline text box
(named “TextMessage”) on a form named “ExampleForm”. Moreover, the Web browser is to display
up to 5 rows of text with up to 60 characters per row onscreen at once.

When typing text into a multiline text box, the site visitor can enter any number of characters
into the form element. However, at any one time, the Web browser will display only the number
of characters given by multiplying the value of the <textarea> tag’s row attribute by the value of

Figure 3-5 A form with a multiline text input field

P:\010Comp\Tip&Tec\394-8\ch03.vp
Friday, January 04, 2002 3:28:14 PM

Color profile: Generic CMYK printer profile
Composite Default screen

1 2 2 H T M L & W e b D e s i g n T i p s & T e c h n i q u e s

Tip&Tec / HTML & Web Design Tips & Techniques / Anderson, King, Jamsa / 9394-8 / Chapter 3

its cols attribute. Thus, in the current example, the Web browser will display up to 300 characters
(5 rows×60 characters/row) of text onscreen in the text box.

The value of the row attribute in the <textarea> tag affects the height of the text box, and the value
of the cols attribute in the tag affects the input field’s width. However, the combination of the rows
and cols values determines only the size of the text area onscreen (and therefore, the number of
characters the browser can display in the text box at the same time). The product of rows × cols
does not limit the total number of characters the visitor can type into the field.

Unlike form elements that use an <input> tag with a type attribute set to the specific type of input
the element is to accept, you use a set of start and end text area tags (<textarea></textarea>) to insert
a multiline text input element on a form. Although you control the dimensions of the text area with
attributes within the <textarea> tag, the tag has no value attribute you can use to specify a default,
initial value. If you want the Web browser to display default text within the text area, specify the text
you want between the start and end text area tags(<textarea></textarea>). For example, if you want
to prompt the visitor to start a message entered into a text area with “Attention Customer Service:”,
you might write the text area definition with the form HTML as follows:

<p>Message: <textarea name="TextMessage" rows="5" cols="60">

Attention Customer Service:</textarea></p>

Validating Text Element Data
Prior to Submitting Form Results
Validating a single-line or multiline text field prior to submitting form results to the Web server
typically involves making sure the visitor has entered something into the field. Suppose, for example,
that your Web page HTML included the following form definition that asks the site visitor to enter a
name and an e-mail address:

<form name="ExampleForm"

action="http://NVBizNet2.com/_scripts/_pl/FrmScrpt.CGI"

method="POST"

enctype="application/x-www-form-urlencoded">

First Name:

<input type="text" name="FirstName" id="FN" size="15">

Last Name:

<input type="text" name="LastName" id="LN" size="20">

E-mail: <input type="text" name="Email" id="EM" size="30">

<p><input type="submit" value="Submit">

<input type="reset"></p>

</form>

P:\010Comp\Tip&Tec\394-8\ch03.vp
Friday, January 04, 2002 3:28:14 PM

Color profile: Generic CMYK printer profile
Composite Default screen

C h a p t e r 3 : H T M L F o r m s 1 2 3

Tip&Tec / HTML & Web Design Tips & Techniques / Anderson, King, Jamsa / 9394-8 / Chapter 3

To make sure that the visitor does not skip over the e-mail field without entering something
into it, insert a JavaScript script that “validates” the form’s text field enclosed within a set

of start and end script tags (<script></script>) in the Web page HTML. Although you can place scripts
anywhere in the Web page definition, place your form validation functions right after the start Web
page <body> tag at the beginning of the Web page HTML. (Placing all your scripts in the same area
of the Web page HTML makes them easier to find when you want to see the code behind references
to the scripts in the Web page HTML tags.). Thus, to make sure the visitor enters something into the
e-mail text field in the current example, your Web page HTML will start something like this:

<html><body>

<script language="JavaScript">

<!--

function ValidateForm(Form)

{

if (Form.Email.value == "")

{

alert("Please enter a value for the \"E-mail\" field.");

Form.Email.focus();

return(false);

}

else return(true);

}

// -->

</script>

The start and end comment tags (<!-- and -->) that enclose the JavaScript have no effect on the
script in Web browsers that are able to read and execute JavaScript. However, the start and end
comment tags prevent Web browsers that do not support scripting languages from displaying the
JavaScript code onscreen with other Web page text content.

The first line in the JavaScript defines the ValidateForm function, so you can refer to it (that is,
call it as a function that returns a value) elsewhere in the Web page HTML. The second and third
lines of code check the value of the form field named Email and display the Alert message box
shown here, if the Email text field is blank when the Web browser executes the script.

P:\010Comp\Tip&Tec\394-8\ch03.vp
Friday, January 04, 2002 3:28:15 PM

Color profile: Generic CMYK printer profile
Composite Default screen

If the Email field is blank, the fourth and fifth lines in the JavaScript (which follow the ALERT
method) tell the Web browser to move the cursor (that is, the form’s focus) to the “Email” text input
field and return a value of False to the HTML tag that “called” the function.

To have the Web browser execute the ValidateForm() function when the visitor clicks Submit,
add the onSubmit attribute to the form’s <form> tag such that the tag reads as follows:

<form name="ExampleForm" onSubmit="return ValidateForm(ExampleForm)"

action="http://NVBizNet2.com/_scripts/_pl/FrmScrpt.CGI"

method="POST"

enctype="application/x-www-form-urlencoded">

Make sure you do not omit the “return” that precedes the ValidateForm() function call; otherwise,
the Web browser will still submit the form results to the Web server even if the ValidateForm()
function returns a value of False, which indicates that there is a problem with the form results.

When written correctly (as in the current example), the onSubmit attribute tells the Web browser to
execute a JavaScript function to validate the form results after the visitor clicks Submit. If the function
returns True, the Web browser will submit the form results to the URL specified by the method attribute
in the <form> tag. Conversely, if the JavaScript function returns a value of False, the Web browser
will return to form data entry, placing the cursor in the form element specified by the focus method
in the JavaScript.

Placing Check Boxes on a Form
When you want the Web site visitor to choose one or more items from a list by clicking a check mark
into the check box next to each item the visitor wants to select, insert an <input> tag on the form with
the type attribute set to “checkbox” for each item on the list.

For example, to insert the seven check boxes shown below the multiline text box in
Figure 3-6, add the <input> tags shown after the end </textarea> tag in the following

form definition:

<form name="ExampleForm">

<p>First Name: <input type="text" name="FirstName" size="15">

Last Name: <input type="text" name="LastName" size="20"></p>

<p>Message: <textarea name="TextMessage" rows="5" cols="60">

</textarea></p>

<p>Areas of Interest:

O.S.: <input type="checkbox" name="Win98" value="ON">Windows 98

<input type="checkbox" name="WinXp" value="ON">Windows XP

<input type="checkbox" name="WinNT" value="ON">Windows NT

Hardware: <input type="checkbox" name="DT" value="ON">Desktop

<input type="checkbox" name="LT" value="ON">Laptop

<input type="checkbox" name="PDA" value="ON">PDA

1 2 4 H T M L & W e b D e s i g n T i p s & T e c h n i q u e s

Tip&Tec / HTML & Web Design Tips & Techniques / Anderson, King, Jamsa / 9394-8 / Chapter 3

P:\010Comp\Tip&Tec\394-8\ch03.vp
Friday, January 04, 2002 3:28:15 PM

Color profile: Generic CMYK printer profile
Composite Default screen

<input type="checkbox" name="Prtr" value="ON">Printers

<input type="checkbox" name="Mon" value="ON">Monitors </p>

<p>[Form RESET and SUBMIT pushbuttons go here]</p>

</form>

As is the case with other form elements, the text labels before and/or after the check boxes on a
form are not a part of the element’s HTML. The <input> tag for each check box does, however, have
the following attributes:

• type Set to “checkbox” to let the Web browser know that the form element is a check box.

• id Used to assign a unique name to a check box. You can use the value of the id attribute to refer
to the “checked” status of a specific check box in a script embedded in the Web page HTML.

• name A name used to identify each check box. You can use the value of the name attribute
to refer to the “checked” status of a specific check box in a script executed by the Web
browser. Moreover, the Web browser will pass the value of the name attribute as the “name”
portion of the name/value to the Web server if the site visitor checks the check box. If the site
visitor clears the check box, the Web browser does not pass the name of the check box and its
associated value (that is, the setting of the check box’s value attribute) to the Web server.

• value Text string passed to the Web server as the “value” portion of the name/value. The
Web browser sends only the name/value pair for each “check marked” (that is, selected) check
box to the Web server when the visitor clicks Submit.

• checked When set to True (as in checked=“true”), the Web browser will check mark the
check box (that is, show the check box as “selected”) when the browser draws the form. By
default, the checked attribute is False (that is, the check box is unchecked), so you do not have
to include checked=“false” in the <input> tag for a check box you do not want selected (that is,
check marked) initially.

C h a p t e r 3 : H T M L F o r m s 1 2 5

Tip&Tec / HTML & Web Design Tips & Techniques / Anderson, King, Jamsa / 9394-8 / Chapter 3

Figure 3-6 A form with seven check boxes below a multiline text input field

P:\010Comp\Tip&Tec\394-8\ch03.vp
Friday, January 04, 2002 3:28:16 PM

Color profile: Generic CMYK printer profile
Composite Default screen

1 2 6 H T M L & W e b D e s i g n T i p s & T e c h n i q u e s

Tip&Tec / HTML & Web Design Tips & Techniques / Anderson, King, Jamsa / 9394-8 / Chapter 3

The <input> tags with the type attribute set to “checkbox” in the current example tell the Web
browser to place seven check boxes on a form named ExampleForm. The Web browser takes care of
toggling the contents of each check box such that when a visitor clicks an empty check box, the Web
browser selects the form element by putting a check mark into the check box. Conversely, when the
site visitor clicks a selected check box (one which already contains a check mark) the Web browser
deselects the form element by removing the check mark and thereby clearing the check box.

Placing Radio Buttons on a Form
When you want the Web site visitor to choose only a single item from a list of items, create the list on
the form by inserting a <input> tag with the type attribute set to “radio” for each item in the list.

For example, to insert the Yes and No radio buttons shown at the bottom of the form
in Figure 3-7, add the <input> tags shown in the third and fourth lines from the bottom

in the following form definition:

<form name="ExampleForm">

<p>First Name: <input type="text" name="FirstName" size="15">

Last Name: <input type="text" name="LastName" size="20"></p>

<p>Message: <textarea name="TextMessage" rows="5" cols="60">

</textarea></p>

<p>Areas of Interest:

O.S.:

<input type="checkbox" name="Win98" value="ON">Windows 98

<input type="checkbox" name="WinXp" value="ON">Windows XP

<input type="checkbox" name="WinNT" value="ON">Windows NT

Hardware:

<input type="checkbox" name="DT" value="ON">Desktop

<input type="checkbox" name="LT" value="ON">Laptop

<input type="checkbox" name="PDA" value="ON">PDA

<input type="checkbox" name="Prtr" value="ON">Printers

<input type="checkbox" name="Mon" value="ON">Monitors </p>

<p>May we give your e-mail address to others?

<input type="radio" value="Yes" name="ShareEmail">Yes

<input type="radio" value="No" checked name="ShareEmail">No

</p>

<p>[Form RESET and SUBMIT pushbuttons go here]</p>

</form>

As is the case with the labels on other form elements, the text before and/or after the radio buttons
on a form are not a part of the radio button HTML. The <input> tag for each radio button does
however have the following attributes:

P:\010Comp\Tip&Tec\394-8\ch03.vp
Friday, January 04, 2002 3:28:16 PM

Color profile: Generic CMYK printer profile
Composite Default screen

C h a p t e r 3 : H T M L F o r m s 1 2 7

Tip&Tec / HTML & Web Design Tips & Techniques / Anderson, King, Jamsa / 9394-8 / Chapter 3

• type Set to “radio” to let the Web browser know that the form element is a radio button.

• id Used to assign a unique name to a radio button. You can use the value of the id attribute
to refer to the selected status of a specific radio button in a script embedded in the Web page HTML.

• name A name used to identify a group of radio buttons. The Web browser passes the name
of the button group and the value of the selected radio button’s value attribute as a name/value
pair to the Web browser when the visitor clicks Submit. If the visitor does not select one of
the radio buttons in the button group (as defined by the name given to the radio buttons in the
group), the Web browser will not pass a name/value pair for the group to the Web server.

• value Text string passed to the Web server as the “value” portion of the name/value pair if
the site visitor clicks the radio button to select it. The Web browser sends only the name and
value (that is, the name/value pair) of the one selected radio button in each button group to the
Web server when the visitor clicks Submit.

• checked By including the checked attribute in the <input> tag for a radio button, you tell the
Web browser to select the radio button when it draws the form (and each time the site visitor
clicks Reset). In the current example, the third-to-last line of code tells the Web browser to
select the No radio button in the ShareEmail button group.

The <input> tags with the type attribute set to “radio” in the current example tell the Web browser
to place two radio buttons in the button group ShareEmail on a form named ExampleForm. The Web
browser makes sure that the site visitor selects only one of the radio buttons in a button group. (The
Web browser considers all the radio buttons with the same value for the name attribute to be in the
same button group.) When the visitor clicks a radio button in a button group, the Web browser clears
the button group’s previous selection (if any), and puts a black dot in the radio button the visitor
clicked to make that radio button the button group’s selected item. (Unlike a check marked check
box, clicking a currently selected radio button does not clear the selection.)

Figure 3-7 A form with Yes/No radio buttons

P:\010Comp\Tip&Tec\394-8\ch03.vp
Friday, January 04, 2002 3:28:17 PM

Color profile: Generic CMYK printer profile
Composite Default screen

1 2 8 H T M L & W e b D e s i g n T i p s & T e c h n i q u e s

Tip&Tec / HTML & Web Design Tips & Techniques / Anderson, King, Jamsa / 9394-8 / Chapter 3

Validating Radio Button Group Selections
Prior to Submitting Form Results
The Web browser allows the Web site visitor to select only a single radio button from any group of
radio buttons with the same name attribute value. As such, you need not use JavaScript to test for
multiple radio button selections within a single radio button group. However, the Web browser does
not force the site visitor to select at least one of the radio buttons in any button group. As such, you
must write a validation function that checks the number of radio buttons selected in each button group
that you do not want the visitor to skip.

Suppose, for example, that your form includes the two groups of radio buttons shown in Figure 3-8.

If each of the radio buttons in the first group has its name attribute set to “Contact_Ok”,
and each of the buttons in the second group has its name attribute set to “User_Count”,

you can use the following JavaScript to ensure that the visitor selects one radio button from each of
the two radio button groups:

<html><body>
<script language="JavaScript">
<!--

function ValidateForm(Form)
{
function countSelections(buttonGroup)
{
for (i = 0; i < buttonGroup.length; i++)

{
if (buttonGroup[i].checked) return (true);
}

return (false);
}

//** Other form validation statements **

if (!countSelections(Form.Contact_Ok))
{
alert("Please select either \"Yes\" or \"No\" from the" +

" \"Contact\" options.");
return (false);
}

if (!countSelections(Form.User_Count))
{
alert("Please select one of the \"User Count\" options.");
return (false);
}

return(true);
}

// -->
</script>

P:\010Comp\Tip&Tec\394-8\ch03.vp
Friday, January 04, 2002 3:28:17 PM

Color profile: Generic CMYK printer profile
Composite Default screen

TE
AM
FL
Y

Team-Fly®

C h a p t e r 3 : H T M L F o r m s 1 2 9

Tip&Tec / HTML & Web Design Tips & Techniques / Anderson, King, Jamsa / 9394-8 / Chapter 3

Notice that each button group has a length property that you can use to “step through” the group
button array—checking the value of the checked property for each button in the group. By passing
first the Contact_Ok button group and then the User_Count button group to the countSelections()
function, you can use the same code to check for a selection in each of the two radio button groups—
even though each button group has a different number of buttons. The checked property value of
the selected radio button in each button group is True. Therefore, the countSelections() function will
return True for any button group passed to it in which at least one radio button was selected. For any
button groups in which the visitor failed to make a selection (or said another way, for any radio button
groups the user skipped, the function will return False). The ValidateForm() function (which called
the countSelections() function), in turn, will return a value returned by the countSelections() function
to the calling onSubmit attribute in the <form> tag.

As you learned in the preceding Tip, to have the Web browser execute the form validation function
when the visitor clicks Submit, add the onSubmit attribute to the form’s <form> tag, such that it reads
something like this:

<form name="ExampleForm" onSubmit="return ValidateForm (ExampleForm)"

action="http://NVBizNet2.com/_scripts/_pl/FrmScrpt.CGI"

method="POST"

enctype="application/x-www-form-urlencoded">

Make sure you do not omit the return that precedes the ValidateForm() function call; otherwise,
the Web browser will still submit the form results to the Web server, even if the ValidateForm()
function returns a value of False to indicate that a problem occurred with the form’s data. When
written correctly (as in the current example), the onSubmit attribute tells the Web browser to execute
a JavaScript function to validate the form results after the site visitor clicks Submit. If the function
returns True, the Web browser will submit the form results to the URL specified as the value of the
method attribute in the <form> tag. Otherwise, the Web browser will return to form data entry.

Placing a Drop-Down List (Selection Menu) on a Form
To allow Web site visitors to choose one or more items from a drop-down list, place a selection menu
on the form by inserting the menu options between a set of start and end select tags (<select></select>).

Figure 3-8 Two groups of radio buttons from a form on a Web page

P:\010Comp\Tip&Tec\394-8\ch03.vp
Friday, January 04, 2002 3:28:18 PM

Color profile: Generic CMYK printer profile
Composite Default screen

1 3 0 H T M L & W e b D e s i g n T i p s & T e c h n i q u e s

Tip&Tec / HTML & Web Design Tips & Techniques / Anderson, King, Jamsa / 9394-8 / Chapter 3

For example, to create the selection menu (or drop-down list) shown at the bottom of the
form in Figure 3-9, add the start and end select tags (<select></select>) and start and end

option tags (<option></option>) shown near the end of the following form definition:

<form name="ExampleForm">

<p>First Name: <input type="text" name="FirstName" size="15">

Last Name: <input type="text" name="LastName" size="20"></p>

<p>Message: <textarea name="TextMessage" rows="5" cols="60">

</textarea></p>

<p>Areas of Interest:

O.S.: <input type="checkbox" name="Win98" value="ON">Windows 98

<input type="checkbox" name="WinXp" value="ON">Windows XP

<input type="checkbox" name="WinNT" value="ON">Windows NT

Hardware: <input type="checkbox" name="DT" value="ON">Desktop

<input type="checkbox" name="LT" value="ON">Laptop

<input type="checkbox" name="PDA" value="ON">PDA

<input type="checkbox" name="Prtr" value="ON">Printers

<input type="checkbox" name="Mon" value="ON">Monitors </p>

<p>May we give your e-mail address to others?

<input type="radio" value="Yes" name="ShareEmail">Yes

<input type="radio" value="No" checked name="ShareEmail">No</p>

<p>Select Highest Level of Authority:

<select size="1" name="PurchaseInvolvement">

<option value="MPD">Make Purchase Decision</option>

<option value="SV">Select Vendor</option>

<option value="SP">Select Product</option>

<option value="SR">Specify Requirements</option>

<option value="AN">Assess Needs</option>

</select></p>

<p>[Form RESET and SUBMIT pushbuttons go here]</p>

</form>

Once again, the text title (or label) that describes the purpose of the drop-down menu (Select
The Highest Level Of Authority, in the current example) is not a part of the selection list HTML.
The drop-down list’s <select> tag has the following attributes:

• size The number of menu items (or options) visible onscreen at one time. In the current
example (with size=“1”), the form shows only a single item until the site visitor clicks the
drop-down list button to the right of the selection menu. If you set the size attribute to a value
greater than one (1), the Web browser will display the drop-down list as a list of items (with
a scrollbar, if needed) instead of as a single item with a drop-down list button.

P:\010Comp\Tip&Tec\394-8\ch03.vp
Friday, January 04, 2002 3:28:18 PM

Color profile: Generic CMYK printer profile
Composite Default screen

C h a p t e r 3 : H T M L F o r m s 1 3 1

Tip&Tec / HTML & Web Design Tips & Techniques / Anderson, King, Jamsa / 9394-8 / Chapter 3

• id Used to assign a unique name to a drop-down list element. You can use the value of the id
attribute to refer to the selected status of the items on the selection list within scripts embedded
on the Web page.

• name A name used to identify the drop-down list element on the form. You can use the value
of the name attribute to refer to the selected status of items in the selection (or drop-down) list
within a script executed by the Web browser. Moreover, the Web browser will pass to the Web
server the value of the name attribute as the “name” portion of the name/value pair for each list
item the site visitor selects.

• multiple If the multiple attribute is present in the drop-down list element’s <select> tag,
the Web browser will let the site visitor select more than one item from the drop-down list.
Otherwise, the Web browser will ensure that the visitor selects only a single item by “deselecting”
the previous item selected (if any) when the site visitor clicks a new item on the list.

Figure 3-9 A form with a drop-down list (selection menu)

P:\010Comp\Tip&Tec\394-8\ch03.vp
Friday, January 04, 2002 3:28:18 PM

Color profile: Generic CMYK printer profile
Composite Default screen

1 3 2 H T M L & W e b D e s i g n T i p s & T e c h n i q u e s

Tip&Tec / HTML & Web Design Tips & Techniques / Anderson, King, Jamsa / 9394-8 / Chapter 3

To add the list items to a drop-down list, enclose each item text between start and end option
(<option></option>) tags between the list’s start and end selection list tags (<select></select>).
Each <option> tag may have the following attributes:

• value Text string passed to the Web server as the “value” portion of the name/value pair if
the site visitor clicks the item in the drop-down menu (or selection list) to select it. The Web
browser sends only the name (of the drop-down list) and (option) value (that is, the name/value
pair) of the selected list items (or options) to the Web server when the visitor clicks Submit.
If the <option> tag has no value attribute, the Web browser will send to the Web server the
selection item text (found between the start and end option tags [<option></option>]) as
the “value” portion of the name/value pair.

• selected By including the selected attribute in the <option> tag for an item on the drop-down
list, you tell the Web browser to select the item when it draws the selection list and each time
the visitor clicks Reset.

The Web browser indicates the selected item(s) in a drop-down list by highlighting it (or them). If
the <select> tag does not have a multiple attribute, the site visitor can select only one item from the
drop-down list. When the visitor is allowed to choose only one item from the selection list, the Web
browser will clear the previous selection (if any) when the visitor clicks a new selection.

To allow the site visitor to select more than one item from the drop-down list, include the multiple
attribute in the drop-down list’s <select> tag. Moreover, if you want your site visitors to select more
than one item from a drop-down list, be sure to prompt them to make multiple selections with text
such as “select all that apply” and “hold down the CTRL key as you click list items to make multiple
selections”. (Even if you allow multiple selections, the Web browser will deselect previous selections,
if any, if the site visitor clicks a drop-down list item without holding down the CTRL key.)

� NOTE

If you want the visitor to make at least one selection from drop-down list (that is, from the selection
menu), be sure to include a blank selection (option) as the first item in the list. That way, if the visitor
makes no selection from the list, the form results will have a blank value within the name/value pair
for the selection list that the Web browser sends to the Web server. If you do not include a blank item
at the beginning of the list, the form results will appear as if the visitor selected the first item on the
list—even if the visitor made no selections. See the next Tip for details.

Verifying the Visitor Has Made a Selection List Choice
Prior to Submitting Form Results
Validating visitor selections from a selection (or drop-down) menu is similar to verifying that the
visitor has made at least one selection from a radio button group (which you learned about in the
preceding Tip). To tell the Web browser to let the visitor make only a single selection from the menu,
omit the multiple attribute from the <select> tag. Conversely, you can tell the browser to allow the

P:\010Comp\Tip&Tec\394-8\ch03.vp
Friday, January 04, 2002 3:28:19 PM

Color profile: Generic CMYK printer profile
Composite Default screen

C h a p t e r 3 : H T M L F o r m s 1 3 3

Tip&Tec / HTML & Web Design Tips & Techniques / Anderson, King, Jamsa / 9394-8 / Chapter 3

visitor to make multiple selections by including the multiple attribute in the form element’s
<select> tag. Therefore, as was the case with the radio button group, you can let the Web browser
limit the number of selections the visitor can make from the selection menu. As such, you need only
validate that the user makes at least one choice.

If you want the visitor to select at least one of the items on a selection list, make the first
item in the list read something like “-- Select One --” or “- Select At Least One -” to

prompt the visitor to make a selection from the list. Then, prevent the visitor from selecting the first
item (because it is a prompt and not a “real” menu choice). The following JavaScript, for example,
will check a selection list named Company_Type to make sure that the site visitor selected at least
one of the items on the list (other than the first item, which is item zero [0]):

<html><body>

<script language="JavaScript">

<!--

function ValidateForm(Form)

{

//** Other form validation statements **

if (Form.Company_Type.options[0].selected)

{

alert("The first \"Company Type\" option is not " +

"a valid selection. Please choose one of " +

"the other options.");

Form.Company_Type.focus();

return (false);

}

if (Form.Company_Type.selectedIndex < 1)

{

alert("Please select one of the \"Company Type\" "+

"options.");

Form.Company_Type.focus();

return (false);

}

return(true);

}

// -->

</script>

The selection list’s selectedIndex property contains an index of the item(s) the visitor selected
from the drop-down menu. To prevent the visitor from selecting the first item in the list, you must
make sure that the first item (that is, the item with index zero [0]) was not selected, and then check
to see if at least one of the other items on the list (with index value of one [1] or more) was.

P:\010Comp\Tip&Tec\394-8\ch03.vp
Friday, January 04, 2002 3:28:19 PM

Color profile: Generic CMYK printer profile
Composite Default screen

As you learned in the two previous Tips, to have the Web browser execute the form validation
function when the visitor clicks Submit, add an onSubmit attribute to the form’s <form> tag, such
that it reads something like this:

<form name="ExampleForm" onSubmit="return ValidateForm(ExampleForm)"

action="http://NVBizNet2.com/_scripts/_pl/FrmScrpt.CGI"

method="POST"

enctype="application/x-www-form-urlencoded">

Make sure you do not omit the return that precedes the ValidateForm() function call. Otherwise
the Web browser will still submit the form results to the Web server, even if the ValidateForm()
function returns a value of False to indicate it has found a problem with the form results. When
written correctly (as in the current example), the onSubmit attribute tells the Web browser to execute
a JavaScript function to validate the form results after the site visitor clicks Submit. If the function
returns True, the Web browser will submit the form results to the URL specified by the value of
the method attribute in the <form> tag. Otherwise, the Web browser will return to form data entry,
placing the cursor in the form element specified by the focus method in the JavaScript.

Changing the Items Available on a Selection List
Based on Visitor Supplied Information
Earlier in this chapter, you learned that a selection list is a menu from which the site visitor can select
either one or several choices depending on whether or not you included the multiple attribute in the
selection list’s <select> tag. (If you insert the multiple attribute in the tag, the Web browser will let
the site visitor select more than one item from the menu.) Although you must specify whether the
visitor can make multiple selections from the menu within the selection list’s definition, you can
change the selections available on the menu at any time—even after the browser has drawn the
selection list onscreen.

Suppose, for example, that you have a form such as the one shown in Figure 3-10, which asks
site visitors to enter the names of family members and then to select the name of the oldest person
on the list.

In the current example, the selection menu (shown above the Submit and Reset buttons
in Figure 3-10) has only a single item, the prompt “-- Family Member Names --”. To have

the Web browser add another item (that is, the name of another family member) to the selection list,
program a generic form button object to call a JavaScript function that adds an item to the list, with
code similar to the following:

<input type="button" value="Add Name to List"

onClick="addToList(ExampleForm)"></p>

Next, define the JavaScript addToList() function that the Web browser will call when the visitor
clicks the Add Name To List button by inserting the following JavaScript after the <body> tag in the

1 3 4 H T M L & W e b D e s i g n T i p s & T e c h n i q u e s

Tip&Tec / HTML & Web Design Tips & Techniques / Anderson, King, Jamsa / 9394-8 / Chapter 3

P:\010Comp\Tip&Tec\394-8\ch03.vp
Friday, January 04, 2002 3:28:20 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Web page HTML. (The function name and button label value you use will depend on the function
you want the Web browser to perform when the visitor clicks the button.)

<script language="JavaScript">

<!--

function addToList(Form)

{

var NextItem = Form.OldestFamilyMember.length;

var NewName = Form.MemberName.value;

//Make sure the name wasn't left blank

if (NewName == "")

{

alert("Please enter a name first!");

return;

}

//Add a new "option" (i.e. item) to the selection list

if (Form.OldestFamilyMember.options[0].value == "PromptText")

NextItem = 0;

//the comma (,) in the '",' appended to the NewName parameter

//in the Option() constructor adds a comma separator between

//quoted items in the options list

Form.OldestFamilyMember.options[NextItem] =

new Option(NewName, '"'+NewName+'",', 0, 0);

//Clear the name entry form element

C h a p t e r 3 : H T M L F o r m s 1 3 5

Tip&Tec / HTML & Web Design Tips & Techniques / Anderson, King, Jamsa / 9394-8 / Chapter 3

Figure 3-10 A form in which data entered into a text field changes the items on a selection list

P:\010Comp\Tip&Tec\394-8\ch03.vp
Friday, January 04, 2002 3:28:20 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Form.MemberName.value = "";

Form.MemberName.focus();

return;

}

// -->

</script>

After checking to make sure the visitor entered “something” into the text field for the family member
name, the addToList() function adds a new item to the selection list by using the following syntax:

SelectListName.options[NextItemIndex] =

new Option(OptionText, OptionValue, SelectedByDefault,

SelectedWhenAdded);

In the current example, both the SelectedByDefault and SelectedWhenAdded parameters in the new
Option() function call are set to zero (0). As such, new items added to the selection list are unselected
by default, and the Web browser does not automatically select an item as the visitor adds it to the
selection list. If you want the Web browser to select each item as the visitor adds it to the menu,
set the value of the SelectedWhenAdded parameter to one (1).

Sending All Selection List Values to the Web Server
Through a Hidden Field
In the preceding Tip, you learned how to use the JavaScript new operator to add additional options
(that is, items) to a selection list in response to the site visitor’s inputs into a text field on the form.
However, when the visitor clicks Submit, the Web browser sends only the values of the selection
list’s selected items to the Web server as part of the form results. Normally, this is exactly what you
want the Web browser to do—send only the values of item(s) the visitor selected, because you already
have a list of all the items in the list.

However, when you ask a site visitor to add items to a selection list, you want the Web browser to
send not only the values of the menu’s selected items, but also the values of all the unselected items
as well. Otherwise, there is no reason to ask the visitor to add the items to the selection list in the first
place. You could just have the visitor enter the values the visitor would select from the item list into
a text field or a text area.

Suppose, for example, that you ask site visitors to enter the makes and models of their favorite cars
and then to select the cars they have actually owned from the selection list. For marketing purposes,
you would want the list of all the types of cars each visitor might be interesting in purchasing in the
future based on the visitor’s favorite car make and model list. Similarly, in the example used in the
preceding Tip, you wanted the list of the names of all the visitor’s relatives. Otherwise, you would
have simply asked the visitor to enter the names of the oldest relatives into a single-line or multiline
text field.

1 3 6 H T M L & W e b D e s i g n T i p s & T e c h n i q u e s

Tip&Tec / HTML & Web Design Tips & Techniques / Anderson, King, Jamsa / 9394-8 / Chapter 3

P:\010Comp\Tip&Tec\394-8\ch03.vp
Friday, January 04, 2002 3:28:21 PM

Color profile: Generic CMYK printer profile
Composite Default screen

To retrieve the values of both the selected and unselected items on a selection list, let the
browser’s default behavior add the list of selected items to the form results. Then, use a JavaScript
function to store the values of all the menu items in a hidden field before you let the Web browser
send the form results to the Web server. (Although the Web browser does not display onscreen the
values in a form’s hidden fields, it does send their names and values to the Web server along with
the other form data after the visitor clicks Submit.)

For example, to have the Web browser send to the Web server all the names of relatives
that the visitor added to the selection list in the preceding Tip, insert the following JavaScript

between the start and end body tags (<body></body>) in the Web page HTML:

<script language="JavaScript">

<!--

//other JavaScript functions (if any)

function prepFormResults(Form)

{

//statements to validate form results (if any)

//return false; if invalid data found

var itemList = "";

for (var i = 0; i < Form.OldestFamilyMember.length; i++)

{itemList = itemList +

Form.OldestFamilyMember.options[i].value;

Form.RelativeNameList.value = itemList;

}

return;

}

//other JavaScript functions (if any)

// -->

</script>

The prepFormResults() function in the current example assumes that the form’s definition includes
the following hidden field definition into which it can place the concatenated string of item values
from the selection list:

<input type="hidden" name="RelativeNameList" value="">

The function also assumes that the form’s <form> tag includes an onSubmit attribute which
names the prepFormResults() function as the function the Web browser is to call before sending
form results to the Web server after the visitor clicks Submit. (You need the Web browser to execute
the prepFormResults() function before submitting the form results, so the function can place the values
of the items on the selection menu into the form’s hidden field: RelativeNameList.)

C h a p t e r 3 : H T M L F o r m s 1 3 7

Tip&Tec / HTML & Web Design Tips & Techniques / Anderson, King, Jamsa / 9394-8 / Chapter 3

P:\010Comp\Tip&Tec\394-8\ch03.vp
Friday, January 04, 2002 3:28:21 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Adding a Reset Button to a Form
Most forms include a Reset button on which the site visitor can click to return all form elements
(text input fields, check boxes, radio buttons, drop-down list selections) to their initial values.

For example, to place a Reset button on a form (such as the Reset button shown near the
lower-left corner of the form in Figure 3-11), insert the following <input> tag with its

type attribute set to “reset” between the form’s start and end form tags (<form></form>) wherever
you want a Reset button to appear:

<input type="reset">

If you want the form’s Reset button to have a label other than the word “Reset”, simply include
the text you want on the label as the attribute’s value in the Reset button’s <input> tag. For example,
to label the Reset button “Clear Form”, specify the button’s <input> tag as follows:

<input type="reset" value="Clear Form">

1 3 8 H T M L & W e b D e s i g n T i p s & T e c h n i q u e s

Tip&Tec / HTML & Web Design Tips & Techniques / Anderson, King, Jamsa / 9394-8 / Chapter 3

Figure 3-11 A form with a Submit button and a Reset button

P:\010Comp\Tip&Tec\394-8\ch03.vp
Friday, January 04, 2002 3:28:22 PM

Color profile: Generic CMYK printer profile
Composite Default screen

TE
AM
FL
Y

Team-Fly®

C h a p t e r 3 : H T M L F o r m s 1 3 9

Tip&Tec / HTML & Web Design Tips & Techniques / Anderson, King, Jamsa / 9394-8 / Chapter 3

Although the Web browser returns all form elements to their initial values and selected states
when the site visitor clicks the Reset button, the browser does not move the cursor (or focus) to the
first element on the form. As a result, the site visitor must scroll the screen contents to the start of
the form and position the cursor within the form’s first element to start over after clicking Reset. If
you have a form that spans more than one Web page, you may want to display a text message that
tells the user how to get back to the start of the form. Or, you may want to move the cursor to the
start of the form yourself by having the Web browser execute an onReset script after the site visitor
clicks Reset. (The next Tip shows you how to insert an onReset attribute in the form’s <form> tag so
that the Web browser will execute an onReset script when the visitor clicks Reset.)

Preventing a Visitor from Clearing
Form Elements Accidentally
When a site visitor clicks a form’s Reset button, you want the Web browser to clear all visitor input
and reset all form elements to their original, default values. Fortunately, Web browsers “know” what
they are supposed to do in response to a mouse click on a form’s Reset button, so you need not write
a script that performs the default “reset form” behavior. However, if your form has many elements, or
if the visitor entered a large amount of text data into multiline text fields, you may want to make your
form more user-friendly by prompting the site visitor to confirm a form reset before actually letting
Web browser clear the form.

Like the onSubmit attribute that tells the Web browser to execute a script before
performing the normal, default action of submitting form results to the Web server,

the onReset attribute tells the Web browser to execute a script before “resetting” the elements in
a form. For example, the onReset attribute in the following form definition tells the Web server
to execute the JavaScript function PreResetProc() when the site visitor clicks Reset:

<form name="ExampleForm"

onReset="return PreResetProc(ExampleForm)"

onSubmit="return ValidateForm(ExampleForm)"

action="http://NVBizNet2.com/_scripts/_pl/FrmScrpt.CGI"

method="POST"

enctype="application/x-www-form-urlencoded">

The JavaScript function, in turn, can do any type of pre-reset processing you want it to do—
including replacing the standard “clear all form elements” reset with a reset that clears only some
of the form’s fields. Like the onSubmit attribute, the onReset attribute tells the Web browser to call
a JavaScript function. Then, if the function returns a False, the Web browser will not execute the
standard form reset. Conversely, if the onReset function returns True, the Web browser will execute
the standard “clear all form elements” reset.

P:\010Comp\Tip&Tec\394-8\ch03.vp
Friday, January 04, 2002 3:28:22 PM

Color profile: Generic CMYK printer profile
Composite Default screen

1 4 0 H T M L & W e b D e s i g n T i p s & T e c h n i q u e s

Tip&Tec / HTML & Web Design Tips & Techniques / Anderson, King, Jamsa / 9394-8 / Chapter 3

For example, the following JavaScript used with a form defined by the preceding <form> tag will
display the confirmation dialog box shown here:

<html><body>

<script language="JavaScript">

<!--

function PreResetProc(Form)

{

if (confirm("Are you sure you want to clear the form's " +

"fields?"))

{

//*** Other Pre-Reset processing (if any) ***

Form.FirstName.focus();

return (true);

}

else

{

Form.FirstName.focus();

return (false);

}

}

// -->

</script>

If the visitor clicks Cancel, the confirm method and the PreResetProc() function, in turn,
will return a value of False and the Web browser will not execute its standard form reset action.
Conversely, if the Web site visitor clicks OK, the confirm method and the PreResetProc() function,
in turn, will return a value of True, and the Web browser will reset all form elements to their original,
default values.

Adding a Submit Button to a Form
Asking your Web site visitors to fill out a form serves no purpose unless you also provide them with
a way to transmit the information they enter and selections they make to you or to a script on the Web
server for processing. When the site visitor clicks Submit, the Web browser sends the form results
(that is, the name/value pairs for text boxes and selected radio buttons, check boxes, and selection list

P:\010Comp\Tip&Tec\394-8\ch03.vp
Friday, January 04, 2002 3:28:23 PM

Color profile: Generic CMYK printer profile
Composite Default screen

C h a p t e r 3 : H T M L F o r m s 1 4 1

Tip&Tec / HTML & Web Design Tips & Techniques / Anderson, King, Jamsa / 9394-8 / Chapter 3

items selected) to the Web server. The Web server, in turn, passes the form results to the program
(or script) named in the <form> tag’s action attribute, which you learned about at the beginning of
this chapter.

To insert a Submit button on a form, insert the following code between the form’s start
and end form tags (<form></form>) wherever you want the button to appear:

<input type="submit" value="Submit" name="B1">

The Submit button has the following attributes:

• value The text you want the browser to place on the Submit button as a label. In the current
example, the Web browser will label the Submit button with the text “Submit” (as shown previously
in Figure 3-11). If you omit the value attribute, the Web browser will provide the Submit button
with a browser-specific, default label. (Both Internet Explorer and Netscape Navigator, for example,
label the Submit button with the text “Submit Query” if you omit the value attribute.)

• name You can use the name attribute to associate a name with the Submit button. If you
want the Web browser to include in the form results it sends to the Web server a name/value
pair with the Submit button’s name and value (that is, its text label), set both the name and
value attributes in the button’s <input> tag.

If the form’s <form> tag has an onSubmit attribute, the Web browser will execute the script
named by the attribute before sending the form results to the Web server. Typically, you will use
the onSubmit attribute to tell the Web browser to execute a function that validates the information
entered into the form elements. If the form results are valid, the validation function will return a value
of True, and the Web browser will send the form results to the Web server. Conversely, if the script
finds that the information entered by the site visitor violates one or more of the form’s data validity
rules (as programmed into the validation function), the script will alert the site visitor to the error(s)
and return a value of False. The Web browser, in turn, will not send the form results to the Web
server, so the site visitor can correct the values entered into the form elements before attempting
to submit the form results again. (Within the Tips titled, “Validating Text Element Data Prior to
Submitting Form Results,” “Validating Radio Button Group Selections Prior to Submitting Form
Results,” and “Preventing a Visitor from Clearing Form Elements Accidentally,” you will find
information that shows you how to add the onSubmit attribute to the form’s <form> tag so that the
Web browser will execute a script prior to submitting form results to the Web server after the visitor
clicks Submit.)

Replacing the Standard Submit and Reset Buttons
on a Form with Other Graphics Images
Every form has a Submit button on which the visitor must click to send the form results (that is, the
information entered and selections made on the form) to the URL given by the value of the action

P:\010Comp\Tip&Tec\394-8\ch03.vp
Friday, January 04, 2002 3:28:23 PM

Color profile: Generic CMYK printer profile
Composite Default screen

1 4 2 H T M L & W e b D e s i g n T i p s & T e c h n i q u e s

Tip&Tec / HTML & Web Design Tips & Techniques / Anderson, King, Jamsa / 9394-8 / Chapter 3

attribute in the form’s <form> tag. Most forms also have a Reset button the visitor can use to clear
information entered on the form and reset its elements to their original, default values. When a Web
browser encounters the following <input> tags in your Web page HTML, it draws the standard
Submit and Reset buttons (shown here) on the form:

<input type="submit" value="Submit"> <input type="reset">

You can use a graphics image in place of a standard form button by replacing the button’s
<input> tag with a hyperlink. For example, to replace the standard Submit button with a

graphics image that performs the same function, you would use the following anchor tag syntax in
place of the button’s <input> tag:

Thus, to use the graphics image in a file named submit.gif as the submit button on a form whose
name attribute is set to “ExampleForm”, you would replace the standard Submit button’s <input> tag
with the following:

Setting the href attribute in the hyperlink’s <a> tag to a pound sign (#) prevents the Web browser
from moving to an offscreen section of the current Web page by pointing the hyperlink to a nonexistent
(null) bookmark. After all, you do not want the Web browser to follow a hyperlink to an actual bookmark
or to another URL when the site visitor clicks the hyperlink’s graphics submit button (specified by
the src attribute in the hyperlink’s tag). Instead, you want the Web browser to execute the
JavaScript form submit method as specified by the onClick attribute in the hyperlink’s <a> tag.

Similarly, if you want to replace a form’s standard Reset button with a graphics image, replace
the button’s <input> tag in the form definition with the hyperlink syntax:

Notice that the hyperlink for the graphics Reset button tells the Web browser to execute the JavaScript
form reset method (instead of the JavaScript form submit method linked to the graphics Submit button
in the preceding example). Therefore, if the form’s name attribute value is “ExampleForm”, and the
filename of the reset button graphic is reset.gif, you would code the form’s graphics image reset button
as follows:

P:\010Comp\Tip&Tec\394-8\ch03.vp
Friday, January 04, 2002 3:28:24 PM

Color profile: Generic CMYK printer profile
Composite Default screen

C h a p t e r 3 : H T M L F o r m s 1 4 3

Tip&Tec / HTML & Web Design Tips & Techniques / Anderson, King, Jamsa / 9394-8 / Chapter 3

� NOTE

When you replace a form’s standard Reset button with a hyperlinked graphics image that performs
the same function, the Web browser will still execute the JavaScript function specified by the onReset
attribute in the <form> tag before clearing the form’s elements. However, if you replace the form’s
standard Submit button, the Web browser will no longer execute the function specified by the
onSubmit function. The next Tip shows you how to get the Web browser to execute a script prior
to sending form results to a Web server—even after you replace the standard Submit button.

Sending Form Results by E-Mail Without a CGI Script
As mentioned previously in this chapter, form results are the name/value pairs the Web browser
sends to the address (that is, the URL) set by the action attribute in the form’s <form> tag when the
visitor clicks Submit. Each name/value pair consists of the name of the form element followed by
its value. Perhaps the easiest way to understand what the Web browser sends when it submits form
results to the Web server is to tell the Web browser to use its e-mail setup to send form results to an
e-mail address.

For example, the action attribute in the <form> tag in the first line of the following
form definition tells the Web browser to send the form results as an e-mail message to

kki@NVBizNet.com. (To send form results in an e-mail message to yourself, substitute your e-mail
address for kki@NVBizNet.com.)

<form name="MailToForm" action="mailto:kki@NVBizNet.com"

method="POST" title="MailTo Test" enctype="text/plain">

<p>First Name: <input type="text" name="FirstName" size="15">

Last Name: <input type="text" name="LastName" size="20">

E-Mail: <input type="text" name="E-MailAddr" size="20"></p>

Areas of Interest:

O.S.: <input type="checkbox" name="Win98" value="ON">Windows 98

<input type="checkbox" name="WinXp" value="ON">Windows XP

<input type="checkbox" name="WinNT" value="ON">Windows NT

<p>May we give our your e-mail address to others?

<input type="radio" value="Yes" name="ShareEmail">Yes

<input type="radio" value="No" checked name="ShareEmail">No</p>

<p><input type="submit" value="Submit">

<input type="reset"></p>

</form>

If the site visitor fills out the form generated by the preceding code, shown in Figure 3-12, and
then clicks Submit, the Web browser will send the following form results by e-mail to the address
that follows mailto: in the form’s action attribute setting:

P:\010Comp\Tip&Tec\394-8\ch03.vp
Friday, January 04, 2002 3:28:24 PM

Color profile: Generic CMYK printer profile
Composite Default screen

1 4 4 H T M L & W e b D e s i g n T i p s & T e c h n i q u e s

Tip&Tec / HTML & Web Design Tips & Techniques / Anderson, King, Jamsa / 9394-8 / Chapter 3

FirstName=Konrad

LastName=King

E-Mail Addr=Konrad@NVBizNet.com

WinXp=ON

ShareEmail=Yes

Notice that the form results include form element names separated by an equals sign (=) from the
value the visitor entered or selected. The “text/plain” setting of the enctype attribute (in the second
line of the form definition) told the Web browser to format the form results in this manner. Had the
form definition contained the default application/x-www-form-urlencoded encoding, the Web browser
would have sent the form results as a single line of comma-delimited text with an ampersand (&)
separating each form element’s name from its value. However, regardless of the encoding type, the
important thing to understand is that the Web browser sends form results as name/value pairs. While
form results include all text box names (whether they contain any data or not), the Web browser sends
only the name/value pair for each check box, radio button, or selection list item selected when the
visitor clicks Submit.

Bear in mind that using mailto: in the action attribute does not work in all browsers. In order to
send form results by e-mail in the manner described here, the visitor’s system must have an e-mail
program installed and configured properly. However, mailto: gives you a quick way to test your
forms by sending the form results as plain text to your own e-mail address. Using mailto:, you can
submit a form (to yourself via e-mail) without involving your ISP or a CGI script on the Web server.
In Chapter 10 on PHP and Chapter 11 on ASP, you will learn how to process form results at the
Web server. By using a Web server–based script, you can send form results by e-mail (through
SMTP [mail] server)—even if the visitor does not have an e-mail program installed.

Figure 3-12 A form with information to be sent by e-mail

P:\010Comp\Tip&Tec\394-8\ch03.vp
Friday, January 04, 2002 3:28:25 PM

Color profile: Generic CMYK printer profile
Composite Default screen

C h a p t e r 3 : H T M L F o r m s 1 4 5

Tip&Tec / HTML & Web Design Tips & Techniques / Anderson, King, Jamsa / 9394-8 / Chapter 3

Controlling the Layout of Form Elements and Text
with HTML Tables
The example code for forms given thus far in this chapter makes no attempt to lay out forms elements
other than to separate them with paragraph (<p>) and line break (
) tags. Sometimes, however,
you may have a group of check boxes or radio buttons you want to align vertically to make the form
more visually appealing. Similarly, when you create a survey form, you may want all the text along
the left side of a form and all the “answers” in a column down the right side. Fortunately, you can
both use tables within a form and enclose an entire form within the cells of a table.

Suppose, for example, that you have a multiline text box such as the one shown in Figure 3-13,
whose label appears along the lower-left corner (as is the default when placing text in the same
paragraph as a form element or a graphics image).

To move the label, “Message:” in the current example, to the upper-left corner of the
form element, place the label and the form element in a two-column table such as that

defined by the following:

<table border="0" cellspacing="0" width="100%" id="TextboxTable"

cellpadding="0" height="63">

<tr>

<td width="10%" valign="top" height="63">Message: </td>

<td width="90%" height="63">

<textarea name="TextMessage" rows="5" cols="60"></textarea>

</td>

</tr>

</table>

Separate the text label from the form element by placing each in its own table cell, so that you can
align the label text independent of the text box (form element). Insert the label in the table’s left cell
and the text box in the right cell. Then, tell the Web browser to display the text at the top of the left
cell by setting the cell’s valign attribute in its (<td>) tag to “top”. Next, set the height attribute for

Figure 3-13 A label that precedes a form element in its default position at the element’s
lower-left corner

P:\010Comp\Tip&Tec\394-8\ch03.vp
Friday, January 04, 2002 3:28:25 PM

Color profile: Generic CMYK printer profile
Composite Default screen

1 4 6 H T M L & W e b D e s i g n T i p s & T e c h n i q u e s

Tip&Tec / HTML & Web Design Tips & Techniques / Anderson, King, Jamsa / 9394-8 / Chapter 3

each of the two <td> tags to the pixel-height of the multiline text box. When you are done, the Web
browser will draw the label next to the upper-left corner of the text box, as shown in Figure 3-14.

In addition to aligning labels with form elements, you can also use one or more tables
in a form to visually group form elements. Suppose for example that you want to line

up the check boxes below the text box shown in Figure 3-14. Because each of the check boxes has
a single-line label, you can place both the check box and its label in the same table cell. (If a check
box has a multiline label, you would put the check box and label in separate cells so that you could
place the check box where you want it in relation to its label—like you did the “Message:” label next
to the multiline text box earlier in this Tip.) If you place the check boxes shown in Figure 3-14 into a
multicolumn, multirow table as follows, you can create the arrangement of check boxes shown below
the text box in Figure 3-15:

<p>Areas of Interest:

<table border="0" cellpadding="0" cellspacing="0" width="573"

id="CheckboxTable">

<tr><td width="43" align="left" valign="top">O.S.:</td>

<td width="109" align="left" valign="top">

<input type="checkbox" name="Win98" value="CHECKED">

Windows 98</td>

<td width="117" align="left" valign="top">

<input type="checkbox" name="WinME" value="CHECKED">

Windows ME</td>

<td width="115" align="left" valign="top">

<input type="checkbox" name="WinNT" value="CHECKED">

Windows NT </td>

Figure 3-14 A portion of a form with a text box labeled at the upper left-hand corner followed
by unaligned groups of check boxes

P:\010Comp\Tip&Tec\394-8\ch03.vp
Friday, January 04, 2002 3:28:26 PM

Color profile: Generic CMYK printer profile
Composite Default screen

C h a p t e r 3 : H T M L F o r m s 1 4 7

Tip&Tec / HTML & Web Design Tips & Techniques / Anderson, King, Jamsa / 9394-8 / Chapter 3

<td width="189" align="left" valign="top">

<input type="checkbox" name="Win2000" value="CHECKED">

Windows 2000</td></tr>

<tr><td width="43" height="30" align="left" valign="top">

 </td>

<td width="109" height="30" align="left" valign="top">

<input type="checkbox" name="WinXP" value="CHECKED">

Windows XP </td>

<td width="117" height="30" align="left" valign="top">

<input type="checkbox" name="Novell" value="CHECKED">

Novell</td>

<td width="115" height="30" align="left" valign="top">

<input type="checkbox" name="UNIX" value="CHECKED">

Unix </td>

<td width="189" height="30" align="left" valign="top">

<input type="checkbox" name="OtherOS" value="CHECKED">

Other</td>

</tr></table></p>

Notice that tables used to lay out forms hold form elements and text in position while remaining
invisible themselves. While creating the form, you may want to set the border attribute in the form’s
<table> tags to one (1), so you can see the “grid” of cells that make up the table. Then, after you have
things aligned as you want, set the border attributes to zero (0) to make the gridlines disappear.

Figure 3-15 A portion of a form with check boxes aligned and grouped visually

P:\010Comp\Tip&Tec\394-8\ch03.vp
Friday, January 04, 2002 3:28:26 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Creating a Shortcut Key for Form Navigation
with a <label> Tag
In the introduction at the beginning of this chapter and in the preceding tips, the “label” next to the
form elements was like any other text on a Web page. Although you can place plain text next to a
form element to serve as a label that lets site visitors know the purpose of the text box, radio button,
or check box, the visitor cannot use the letters in the plain text labels to move around on the form,
place a check mark in a check box, or select a radio button. To use text as shortcuts for navigation
and form element selection, you must enclose each text label within a set of start and end label tags
(<label></label>).

For example, to create the form element labels shown in Figure 3-16, enclose the text
next to each input field within start and end label tags (<label></label) as follows:

<label for="FN" accesskey="F"><u>F</u>irst Name: </label>

<input type="text" name="FirstName" id="FN" size="15">

<label for="LN" accesskey="L"><u>L</u>ast Name: </label>

<input type="text" name="LastName" id="LN" size="20">

<label for="EM" accesskey="E"><u>E</u>-mail: </label>

<input type="text" name="Email" id="EM" size="30">

<table border="0" cellspacing="0" width="563" cellpadding="0">

<tr><td width="62" valign="top" height="63">

<label accesskey="M" for="TM">

<u>M</u>essage: </label></td>

<td width="501" height="63">

<textarea id="TM" name="TextMessage" rows="5" cols="60">

</textarea></td></tr>

</table>

1 4 8 H T M L & W e b D e s i g n T i p s & T e c h n i q u e s

Tip&Tec / HTML & Web Design Tips & Techniques / Anderson, King, Jamsa / 9394-8 / Chapter 3

Figure 3-16 A form with labels and shortcut keys for navigation

P:\010Comp\Tip&Tec\394-8\ch03.vp
Friday, January 04, 2002 3:28:27 PM

Color profile: Generic CMYK printer profile
Composite Default screen

TE
AM
FL
Y

Team-Fly®

Each of the <label> tags has two important attributes:

• for The value of the for attribute in the <label> tag must match the id value of the form
element to which you want to link the label.

• accesskey The shortcut key the visitor can use to move to the text box (if the label is linked to
a text box), to select a radio button (if the label is linked to a radio button), or to check or clear
a check box (if the label is linked to a check box). To use the shortcut key, the visitor must hold
down the ALT key while pressing the accesskey value.

The accesskey value need not appear in the label text (that is, the text enclosed between the start
and end label tags) nor does it modify the text in any way. However, to use the shortcut key, the visitor
needs to know what it is. As such, use one of the letters in the label text as the accesskey attribute’s
value and underline the letter (or number) you use to provide the site visitor with a visual cue. Notice
that the start and end underline tags (<u></u>) in the current example tell the Web browser to underline
the shortcut key value in each of the text labels. As a result, using labels to navigate to or select
elements on a form becomes similar to making selections from Windows application menus with
shortcut keys.

� NOTE

Although form element labels (defined by placing text between start and end text label
tags[<label></label>]) are a part of the HTML 4 standard, only Internet Explorer 4.0 (and later)
and Netscape 6.0 (and later) currently support them. Web browsers that do not support the tags will
still display the “label” text they enclose. However, visitors using browsers without label support
will not be able to use the accesskey values to navigate the form or make form element selections.

Instructing the Web Browser to Execute a Form Validation
Function with the onClick Attribute
In previous Tips in this chapter, you learned how to use the onSubmit attribute in the <form> tag to
tell the Web browser to execute a data validation function prior to sending form results to the URL
named in the <form> tag’s action attribute. Unfortunately, if you replace the form’s standard Submit
button with a graphics image hyperlinked to the JavaScript form submit method, the Web browser
will no longer execute the script specified by the onSubmit attribute before sending the form results
to the Web server.

To have the Web browser execute a script prior to sending form results when using
a graphics image as the form’s Submit button, set the value of the onClick attribute in

the hyperlink anchored on the graphics image to the name of the form validation function instead
of the JavaScript form submit method. Then, if the validation function determines that the form
results are valid, have the script execute the JavaScript form submit method. Otherwise, code the

C h a p t e r 3 : H T M L F o r m s 1 4 9

Tip&Tec / HTML & Web Design Tips & Techniques / Anderson, King, Jamsa / 9394-8 / Chapter 3

P:\010Comp\Tip&Tec\394-8\ch03.vp
Friday, January 04, 2002 3:28:27 PM

Color profile: Generic CMYK printer profile
Composite Default screen

script to return to form data entry, so the visitor can correct the problems(s) with the form results.
The validation function would be in the following form:

<script language="JavaScript">

<!--

function validateAndSubmit(Form)

{

//**** Form Results Validation Statements which set ****

//**** the Boolean "Form_Results_Valid" TRUE if results ****

//**** valid or FALSE if not ****

if (Form_Results_Valid)

{

Form.submit();

}

else

{

//**** Alert the visitor to errors ****

return;

}

}

// -->

</script>

(In the first if statement, the Form_Results_Valid is only a placeholder to indicate that if the form
results are valid, you would do the “form submit,” otherwise you would alert the visitor to the error
and return.) The onClick attribute in the hyperlink anchored on the graphics image used as a Submit
button, in turn, would reference the form validation function instead of the JavaScript form submit method,
as follows:

(In this example, ExampleForm is the name of the form whose form results the site visitor wants
to submit, and SubmitButtonGraphic.gif is the filename of the graphics image used as the form’s
Submit button.)

If you are using standard buttons (and not graphics images in place of buttons) on your form, you
can still use the onClick attribute in the button definition to tell the Web browser to execute a script
that first validates and then submits the form’s data. Simply replace the form’s standard Submit button
(created with an <input> tag whose type attribute is set to “submit”), with a form button object defined
as follows:

<input type="button" value="Submit"

onClick="validateAndSubmit(ExampleForm)">

1 5 0 H T M L & W e b D e s i g n T i p s & T e c h n i q u e s

Tip&Tec / HTML & Web Design Tips & Techniques / Anderson, King, Jamsa / 9394-8 / Chapter 3

P:\010Comp\Tip&Tec\394-8\ch03.vp
Friday, January 04, 2002 3:28:28 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Passing Values to the Web Server Through Hidden Fields
A hidden field, as its name implies, is a form element that—though part of a form’s definition—is
not visible to the person filling out the form. You can use hidden fields to pass name/value pairs to
the Web server in addition to the information entered by the site visitor. For example, the following
HTML will tell the Web browser to display the form shown here:

<form name="ExampleForm" method="POST"

action="http://NVBizNet2.com/_scripts/_pl/FrmScrpt.CGI"

enctype="application/x-www-form-urlencoded">

Username:

<input type="text" name="Username" id="UN" size="20">

Password:

<input type="text" name="Password" id="PW" size="20">

<p><input type="button" value="Submit"

onClick="validateAndSubmit(ExampleForm)">

<input type="button" value="Reset"

onClick="resetForm(ExampleForm)"></p>

<input type="hidden" name="LoginAttempts" value="0">

<input type="hidden" name="LoginDateTime">

<input type="hidden" name="ExampleFor"

value="HTML & Web Design Tips & Techniques">

</form>

Notice that the three input fields at the end of the form definition in the current example have
a type attribute value of “hidden” and are not visible onscreen (as shown previously). Although the
Web browser does not display the form’s three hidden fields, the browser does send the name/value
pair for each of the fields to the Web server along with the remaining (visible) form results, as shown
in Figure 3-17.

You can set a hidden field’s value by including a value attribute setting in the field’s
<input> tag as shown by the first and third hidden fields in the current example:

<input type="hidden" name="LoginAttempts" value="0">

<input type="hidden" name="ExampleFor"

value="HTML & Web Design Tips & Techniques">

C h a p t e r 3 : H T M L F o r m s 1 5 1

Tip&Tec / HTML & Web Design Tips & Techniques / Anderson, King, Jamsa / 9394-8 / Chapter 3

P:\010Comp\Tip&Tec\394-8\ch03.vp
Friday, January 04, 2002 3:28:28 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Whether you assign a value to the hidden field initially or not, you can also assign a value to hidden
fields in a JavaScript function. For example, the validateAndSubmit() function executed when the site
visitor clicks Submit in the current example includes the following lines:

ExampleForm.LoginAttempts.value++;

ExampleForm.LoginDateTime.value = new Date();

The first line of code increments the value in the hidden field named LoginAttempts, and the second
line assigns the current date and time to the hidden field LoginDateTime.

Hiding Visitor Input from View
Within a Password Element
A password field is a variation of a single-line text field. Unlike hidden fields (which you learned
about in the preceding Tip), the Web browser will display a password field onscreen. However, the
Web browser will not display any text the visitor types into the field. Instead, the browser obscures
the text from view by displaying an asterisk (*) for each character the site visitor enters. You would
use a password field on a form whenever you do not want someone looking over the visitor’s
shoulder at the computer screen to see what the visitor is typing. Typically, you use password fields
on forms wherever you ask for a password or other security code to login to a Web site or to an
account on a Web site. Some of the more security-conscious sites even create the field that asks for

1 5 2 H T M L & W e b D e s i g n T i p s & T e c h n i q u e s

Tip&Tec / HTML & Web Design Tips & Techniques / Anderson, King, Jamsa / 9394-8 / Chapter 3

Figure 3-17 Form results sent to the Web server after entering “Konrad” into the Username field
and “King” into the Password field

P:\010Comp\Tip&Tec\394-8\ch03.vp
Friday, January 04, 2002 3:28:29 PM

Color profile: Generic CMYK printer profile
Composite Default screen

C h a p t e r 3 : H T M L F o r m s 1 5 3

Tip&Tec / HTML & Web Design Tips & Techniques / Anderson, King, Jamsa / 9394-8 / Chapter 3

a username or an account number as a “password” type field so that anything entered into the field is
hidden from view.

To create a password field, insert an <input> tag such as the following on the form
where you want the password field to appear:

<input type="password" name="Password" id="PW" size="20">

The value of the type attribute sets the password field apart from normal single-line text fields
(which, as you know, have a type attribute value of “text”). By setting the <input> tag’s type attribute
to “password”, you tell the Web browser to obscure anything entered into the field. (Although set to
“Password”, “PW”, and “20” in the current example, you can set the password field’s name, id, and
size attributes to any desired value.)

� NOTE

Although the Web browser hides the information in a password field from sight by displaying
asterisks (*), the browser does not encrypt the field’s contents. As such, if you transmit the data
entered into password fields unencrypted across a nonsecure connection, someone with the correct
knowledge could intercept the (plain-text) password data and use it for some malicious purpose.

You will learn how to use login forms (with username [single-line text] and password fields) to
log in to online databases in Chapters 10, 11, and 12. Moreover, Chapter 12’s coverage of e-commerce
will show you how to establish a secure connection with a Web server and how to encrypt your form
results (including the data in a password field) so that unauthorized people will not be able to view it.
For now, the important thing to understand is that a password field lets you hide visitor data input
into a single-line text field from view.

Adding a Generic Button Object to a Form
In previous Tips, you learned how to insert Submit and Reset buttons on a form. Because almost
all forms have both Submit and Reset buttons, browsers that support forms “know” what to do when
the visitor clicks either of the two buttons. For example, Web browsers with forms support will send
form results to the URL named by the action attribute in the form’s <form> tag when the visitor
clicks Submit (unless, of course, you change the Submit button’s default behavior with an onSubmit
attribute setting in the form’s <form> tag). Similarly, Web browsers will clear data entered into all
form objects and reset the form’s elements to their initial, default values when the visitor clicks Reset
unless you change the Reset button’s default behavior with an onReset attribute setting in the form’s
<form> tag).

To create either a Reset button or a Submit button on a form, insert an <input> tag with
a type attribute set to the type of button you want (that is, type=“reset” for a Reset button and
type=“submit” for a Submit button). In addition to Reset and Submit buttons, you can use the

P:\010Comp\Tip&Tec\394-8\ch03.vp
Friday, January 04, 2002 3:28:29 PM

Color profile: Generic CMYK printer profile
Composite Default screen

1 5 4 H T M L & W e b D e s i g n T i p s & T e c h n i q u e s

Tip&Tec / HTML & Web Design Tips & Techniques / Anderson, King, Jamsa / 9394-8 / Chapter 3

<input> tag to create a third type of button object whose function is not predefined. Typically,
you will use this third, generic button type to tell the Web browser to execute a script of some kind
when the visitor clicks the button.

Given the syntax used to create Reset and Submit buttons, it will come as no surprise
that you can create a “generic” button on a form by inserting an <input> tag similar to

the following anywhere between the form’s start and end form tags (<form></form>):

<input type="button" value="ButtonLabel" onClick="scriptName">

The “button” value of the type attribute tells the Web browser it is to draw a button on the form.
After drawing the button, the browser uses the text assigned to the value attribute in the <input> tag
as a label on top of the button. (Be sure the text string you assign to the value attribute tells the site
visitor what clicking the button will do.) When the visitor clicks the button, the Web browser will
execute the script specified by the value of the onClick attribute in the button’s <input> tag.

You can use generic button objects on a form to execute scripts that do such things as calculate
the sum of other form elements, display text messages, load a new Web page into a frame or window,
or to add items to a selection list. In short, the function of a generic button you add to a form is limited
only by your imagination and the methods available in the scripting language you use.

Enabling and Disabling Form Elements on-the-Fly
Sometimes item selections on a form are mutually exclusive. For example, if you ask the site visitor
“Are you currently married?”, and the visitor clicks the No radio button in answer to the question,
you do not want the visitor to enter a name into the Spouse text field as well. Similarly, if you have
a group of check boxes in which the visitor is to click all that apply, and the visitor checks the check
box labeled None or None Of The Above, you want to prevent the visitor from selecting any of the
other check boxes in the group. Each form element has a disabled attribute that you can use to either
allow or prevent the site visitor from making any changes to the element.

� NOTE

Some older browsers may not support the disabled attribute. As such, your validation function must
check to make sure that the visitor has entered only valid data into the form results—even if you have
a script that sets the status of certain input fields to “disabled”.

Suppose, for example, that you use the form shown in Figure 3-18 to get the visitor’s
marital status. By executing the following JavaScript function, you can have the Web

browser gray out the prompt for the visitor to enter the spouse’s name and prevent the site visitor
from modifying or even clicking the cursor (that is, the form’s focus) into the text field.

P:\010Comp\Tip&Tec\394-8\ch03.vp
Friday, January 04, 2002 3:28:30 PM

Color profile: Generic CMYK printer profile
Composite Default screen

function disableSpouseName(Form, status)

{

if (status) Form.SpouseName.value = "Enter Name of Spouse";

Form.SpouseName.disabled = status;

return;

}

To tell the Web browser when to execute the function, code the form’s MaritalStatus radio buttons
as follows:

<p>Marital Status:

<input type="radio" name="MaritalStatus" value="Married"

onClick="disableSpouseName(ExampleForm, false)">Married

<input type="radio" name="MaritalStatus" value="Single"

onClick="disableSpouseName(ExampleForm, true)">Single</p>

The onClick attribute in the <input> tag for each radio button tells the Web browser to execute the
disableSpouseName() function when the visitor clicks either radio button. By passing either True or
False to the disableSpouseName() function, the Web browser either enables or disables the SpouseName
field (labeled Name Of Spouse in Figure 3-18). For example, if the visitor clicks the Married radio
button, the Web browser passes the value False to the disableSpouseName() function. The function,
in turn, sets the disabled attribute of the form’s SpouseName element to False, which enables the element,
so that the visitor can enter the name of the spouse into the text field. Conversely, if the visitor clicks
the Single radio button, the Web browser passes the value True to the disableSpouseName() function.
The function, in turn, sets the disabled attribute of the form’s SpouseName element to True, which
disables the element to prevent the visitor from entering the name of a spouse into the text field.

You can disable any of the form’s elements, including any buttons on the form. For example,
if you want to disable the form’s Submit button initially, you would define it as follows:

<input disabled type="Submit" name="Submit" value="Submit">

C h a p t e r 3 : H T M L F o r m s 1 5 5

Tip&Tec / HTML & Web Design Tips & Techniques / Anderson, King, Jamsa / 9394-8 / Chapter 3

Figure 3-18 A form with radio buttons that control the disabled attribute status of a text field

P:\010Comp\Tip&Tec\394-8\ch03.vp
Friday, January 04, 2002 3:28:30 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Then, to enable the Submit button while the visitor fills out the form, have the Web browser execute
a JavaScript function that includes the following statement:

FormName.Submit.disabled=false;

In short, you can disable any form element by executing a JavaScript statement with the
following syntax:

FormName.ElementName.disabled=true;

Conversely, you can enable any form element by executing a similar JavaScript statement that
sets the disabled attribute to False.

� NOTE

If you use a JavaScript statement to change the status of an element’s disabled attribute, the Web
browser’s standard “reset” function will not change the element’s status back to the original default.
Therefore, if you disable a form element that was initially enabled, you must use an onReset attribute
in the form’s <form> tag to have the Web browser execute a function that changes the element’s
disabled status back to False when the visitor clicks Reset.

1 5 6 H T M L & W e b D e s i g n T i p s & T e c h n i q u e s

Tip&Tec / HTML & Web Design Tips & Techniques / Anderson, King, Jamsa / 9394-8 / Chapter 3

P:\010Comp\Tip&Tec\394-8\ch03.vp
Friday, January 04, 2002 3:28:31 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Tip&Tec / HTML & Web Design Tips & Techniques / Anderson, King, Jamsa / 9394-8 /
Blind Folio 157

P:\010Comp\Tip&Tec\394-8\ch03.vp
Friday, January 04, 2002 3:28:31 PM

Color profile: Generic CMYK printer profile
Composite Default screen

CHAPTER 4

Cascading Style Sheets (CSS)

Tip&Tec / HTML & Web Design Tips & Techniques / Anderson, King, Jamsa / 9394-8 / Front Matter

TIPS IN THIS CHAPTER

� Applying Multiple CSS Rules to a Single Selector 170

� Selecting a Typeface with the font-family Property 172

� Specifying the Size of Text with the font-size Property 174

� Creating Overlapping Text 177

� Aligning Web Page Text 179

� Controlling Margins and Line Height 181

� Displaying Text Within Columns 183

� Working with Borders 186

� Indenting Paragraphs and Controlling Letter, Word, and Line Spacing 188

� Offsetting Text with Initial Caps 189

� Customizing the Appearance of Hyperlinks 191

� Creating a Drop-Shadow Effect 192

� Applying a Border Graphic 194

� Positioning Background Images and Watermarks 196

� Floating Images and Text 199

� Customizing the Appearance of Lists 201

� Creating Text and Image Effects with Filters 203

� Aligning Labels with Form Elements and Adding Color to Forms 206

P:\010Comp\Tip&Tec\394-8\ch04.vp
Friday, January 04, 2002 4:18:09 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Copyright 2002 by The McGraw-Hill Companies, Inc. Click Here for Terms of Use.

TE
AM
FL
Y

Team-Fly®

159

Tip&Tec / HTML & Web Design Tips & Techniques / Anderson, King, Jamsa / 9394-8 /

One of the recurring challenges you have when creating Web pages is positioning elements exactly
where you want them to appear on each page. A Web page has no internal x-y coordinate system

to which you can refer when inserting text, images, and other objects. In Chapter 2 of this book, you
learned how to use an HTML table to create a grid of cells that hold your Web page elements in place.
Unfortunately, using invisible tables for page layout complicates your Web page HTML by adding
tags (at least two for each row and column in the table). Moreover, hidden tables make your Web page
harder to maintain. Suppose, for example, that you want to add a picture or some text at a specific
location on the page. To do so often requires that you recode all or a portion of the layout table
to get a new cell into place where you want the additional content to go.

A Cascading Style Sheet (CSS) is a set of specifications (called rules) that give you complete control
over the layout of your Web page and the appearance of its content. You can use CSS rules to select a
background color, graphics image, or watermark to display behind other content. In addition, the CSS
position property eliminates the need for hidden page layout tables by letting you tell the Web browser
exactly where to place each element on the page. Finally, with CSS rules you can specify the typeface
and control the size, color, and appearance of text. In addition to using plain, boldface, and italics,
you can add drop shadows and create other special effects—without converting character data into
slower loading graphics images.

Although you can add a style sheet to a Web document several different ways, perhaps the easiest
is to insert the style sheet rules within the Web page header as shown here:

<html>

<head>

<style type="text/css">

... style sheet rules ...

</style>

</head>

<body>

... Web page elements/content ...

</body>

</html>

Although the name is long, the “Cascading Style Sheet” is simply a set of statements between
the start and end style tags (<style></style>) near the start of the preceding HTML. When the
Web browser reads the HTML document, the browser applies the rules (that is, the formatting and
positioning statements) it finds within the style sheet to Web page elements within the body section

� Displaying a Gallery of Thumbnails with Captions 209

� Controlling the Cursor 212

� Layering Web Page Elements 214

� Sending Your Style Sheet Through a Validator 216

P:\010Comp\Tip&Tec\394-8\ch04.vp
Friday, January 04, 2002 4:18:09 PM

Color profile: Generic CMYK printer profile
Composite Default screen

of the page. Figure 4-1 shows a simple style sheet with two rules that instruct the Web browser how
to style the two elements within the Web page body.

In addition to positioning page elements and formatting text, CSS rules let you control the space
between characters, words, lines, and paragraphs. Moreover, using style sheet rules, you can specify the
width of Web page margins, the width of the borders around sections of text and other elements, and
the alignment of “floating” text and objects (such as graphics images) inserted within text elements.
Figure 4-2, for example, shows how Internet Explorer implements the following style sheet rules that
float an image to the left of surrounding text:

<head>

<style type="text/css">

<!--

p {margin-left:5em; margin-right:5em; text-align:justify}

img {float:left; border-width:25px; border-color:white}

-->

</head>

Note CSS rules in this example both indent the text that surrounds the image away from the left- and
right-hand sides of the Web page and create a white border between the text and the sides of the image.

When CSS entered the scene in late 1996, style sheets promised to enhance and ease the Web page
design process by giving designers the following:

• Precise control over layout, fonts, colors, backgrounds, and other typographical effects.

• A way to change the appearance and formatting of an unlimited number of Web pages
by changing just one document—the style sheet.

• The ability to create eye-catching pages using less code, which in turn, leads to smaller
Web pages that the Web browser can download and display more quickly.

1 6 0 H T M L & W e b D e s i g n T i p s & T e c h n i q u e s

Tip&Tec / HTML & Web Design Tips & Techniques / Anderson, King, Jamsa / 9394-8 / Chapter 4

Figure 4-1 A Web page with an embedded Cascading Style Sheet

P:\010Comp\Tip&Tec\394-8\ch04.vp
Friday, January 04, 2002 4:18:09 PM

Color profile: Generic CMYK printer profile
Composite Default screen

C h a p t e r 4 : C a s c a d i n g S t y l e S h e e t s (C S S) 1 6 1

Tip&Tec / HTML & Web Design Tips & Techniques / Anderson, King, Jamsa / 9394-8 / Chapter 4

Despite its lukewarm reception (as a competitor to the then “hot” Dynamic HTML, DHTML),
CSS is starting to make good on its promises as both Netscape and Microsoft Web browsers support
more and more of the capability defined in the CSS specification.

Separating Content from Appearance
HTML (as originally envisioned) was not designed to control the appearance of a Web page. HTML
was supposed to let authors specify the elements to include on the page and let the Web browser
decide how the content actually appeared onscreen. Remember, HTML was developed to let anyone
with a computer, a Web browser, and a connection to the Internet display any HTML document—
regardless of the video card capabilities or monitor resolutions.

However, as developers expanded Web page content to include multicolor text of various typefaces
and sizes, graphics images, pictures, and animations, designers were less and less willing to let the
browser dictate how the Web page would look. Before CSS, designers had to use HTML tables for
page layout and insert transparent (spacer) GIFs throughout the Web page content to control margins
and the space between objects on a page. In addition, through HTML formatting tags and attributes
within the tag and the <body> tag, Web designers gained some control over the appearance
of the page text and background.

Style sheets, meanwhile, let you write layout and formatting instructions within the Web page
header section or in an external file apart from the HTML used to specify page content. Moreover,

Figure 4-2 A Web page with a floating image and indented text

P:\010Comp\Tip&Tec\394-8\ch04.vp
Friday, January 04, 2002 4:18:10 PM

Color profile: Generic CMYK printer profile
Composite Default screen

1 6 2 H T M L & W e b D e s i g n T i p s & T e c h n i q u e s

Tip&Tec / HTML & Web Design Tips & Techniques / Anderson, King, Jamsa / 9394-8 / Chapter 4

rather than using tables and graphics for layout, CSS rules are simple text statements that let you
position and format one or several page elements at a time. Thus, working with content separately
from appearance makes your Web pages easier to maintain and faster to update. Suppose, for example,
you want to change the typeface used on the pages throughout an entire Web site. Without style sheets,
you need to edit (or add) one or more tags on every page. By placing the typeface specification
within a CSS document linked to each page, you need only change a single CSS rule to use a new
typeface throughout the pages on a Web site.

Creating a Style Sheet
To create a style sheet, simply write one or more CSS rules between start and end style tags
(<style></style>) within the header section of the Web page HTML. (You will learn how to create
style sheets as external documents later in this chapter.) For example, start your favorite text editor
(such as Windows Notepad) and enter the following HTML:

<html>

<head>

<title>Embedded Cascading Style Sheet (CSS)</title>

<style type="text/css">

h1 {color:blue; font-size:40px; font-family:verdana}

p {color:white; background:green; font-family:helvetica;

text-indent:2cm}

</style>

</head>

<body>

<h1>Heading Level 1 Text</h1>

<p>Using style sheets I can change the appearance of heading

and non-heading text on a page independently.</p>

</body>

</html>

In this example, the code between the start and end style tags defines the style sheet. For now, do
not worry about the individual statements (called rules) within the style sheet—you will learn about
CSS syntax in a moment. Simply save your Web page to an HTML file (such as CSS_Test1.htm).
Next, open the HTML document in your Web browser to display a page similar to that shown in
Figure 4-3.

Figure 4-3 Web page with a style sheet that formats heading and paragraph text

P:\010Comp\Tip&Tec\394-8\ch04.vp
Friday, January 04, 2002 4:18:10 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Understanding CSS Terminology
A style sheet consists of one or more rules. A style sheet rule is simply a formatting or positioning
instruction the Web browser will apply to a specific type of HTML element. The style sheet in the
preceding example consists of two rules. The first rule instructs the Web browser to display text
enclosed within start and end level-1 heading tags (<h1></h1>) using the Verdana typeface and
blue characters that are 40 pixels in size:

h1 {color:blue; font-size:40px; font-family:verdana}

The second CSS rule instructs the Web browser to indent by two centimeters the first line of text
enclosed within start and end paragraph tags (<p></p>) and to display the text using the Helvetica
typeface with green letters on a white background:

p {color:white; background:green; font-family:helvetica;

text-indent:2cm}

The following simple CSS rule consists of a “selector” (h1) that specifies the HTML element to
which the rule will apply and a rule that tells the browser to display the element in blue:

h1 {color:blue}

CSS statements always take the form of selector {rule}. Within the braces that follow the selector,
you can place one or more rules, which you separate with a semicolon. The previous rule tells the
Web browser to display in blue all text between start and end level-1 heading tags (<h1></h1>).
The selector (h1, in this example) is the HTML tag to which the browser is to apply the rule; the
declaration (color:blue, in this example) is the position or formatting instruction the Web browser
is to apply. A declaration, similar to a rule, consists of two parts: a property (such as color) and
a value (such as blue).

As you saw from the two rules in the preceding example, you can group multiple declarations
within the braces following the selector(s) in a CSS rule. Simply insert a semicolon (;) between each
pair or declarations. Figure 4-4, for example, points out the individual parts of the first, multideclaration
rule from the style sheet on the Web page shown previously in Figure 4-3.

C h a p t e r 4 : C a s c a d i n g S t y l e S h e e t s (C S S) 1 6 3

Tip&Tec / HTML & Web Design Tips & Techniques / Anderson, King, Jamsa / 9394-8 / Chapter 4

Figure 4-4 A CSS rule with a single selector and three declarations

Property

Value

Declaration

Right curly bracketLeft curly bracket Rule

Property

ValueSelector

Property

Value

P:\010Comp\Tip&Tec\394-8\ch04.vp
Friday, January 04, 2002 4:18:11 PM

Color profile: Generic CMYK printer profile
Composite Default screen

1 6 4 H T M L & W e b D e s i g n T i p s & T e c h n i q u e s

Tip&Tec / HTML & Web Design Tips & Techniques / Anderson, King, Jamsa / 9394-8 / Chapter 4

You can use any HTML tag as a selector and a single rule may have more than one selector. For
example, to direct the Web browser to apply the same CSS rule to level-2 heading, paragraph, and
unordered list text you might write a rule such as this:

h2, p, ul {color:green; font-family:arial}

This rule tells the Web browser to display all level-2 heading, paragraph, and unordered list text in
green using the Arial typeface. Note any HTML tag is fair game as a selector. As such, you can apply
CSS rules to images (by using the img selector) and tables (by using the table selector).

For example, start your favorite text editor (such as Windows Notepad) and enter the following HTML:

<html>

<head>

<title>CSS Rule Used to Style a Table</title>

<style type="text/css">

table {background:green; color:white; font-size:20px;

position:absolute; left:150px; top:200px}

</style>

</head>

<body>

<h1>Table with White Text and a Green Background</h1>

<table border="5">

<tr><td>Row 1, Column 1</td>

<td>Row 1, Column 2</td></tr>

<tr><td>Row 2, Column 1</td>

<td>Row 2, Column 2</td></tr>

</table>

</body>

</html>

As you learned at the start of this section, the code between the start and end style tags
(<style></style>) defines the style sheet. The table selector tells the Web browser to apply the
style sheet rule to tables inserted on the page. Therefore, the Web browser will create the table in
this example with a green background and white text that is 20 pixels in size. Moreover, the Web
browser will place the table 150 pixels to the right of the left margin and 200 pixels below the top
of the Web page. Now, save your Web page to a HTM file (such as CSS_Test2.htm) and then open
the HTML document in your Web browser to display a page similar to that shown in Figure 4-5.

Understanding Inheritance
As you add text elements to a Web page, you often insert one element within another. For example,
when you boldface text, such as the words boldface text in the following, you are actually inserting
a boldface element into a paragraph element:

<p>You insert one element within another whenever you enclose

text within one set of container tags within text between

P:\010Comp\Tip&Tec\394-8\ch04.vp
Friday, January 04, 2002 4:18:11 PM

Color profile: Generic CMYK printer profile
Composite Default screen

C h a p t e r 4 : C a s c a d i n g S t y l e S h e e t s (C S S) 1 6 5

Tip&Tec / HTML & Web Design Tips & Techniques / Anderson, King, Jamsa / 9394-8 / Chapter 4

another set of start and end tags. For example, this

boldface text is a boldface element inserted within

a paragraph element.</p>

When the Web browser styles an inserted element, the browser applies first the formatting
instructions associated with the outer (enclosing) element and then the specific styles (if any)
associated with the element itself.

In CSS terms, an element contained within another is a child and the enclosing element is its parent.
Thus, in the previous example, the paragraph text that surrounds the boldface element (boldface
text) is the parent, and the boldface element itself is the child. If you enclose one type of page
element within another, the Web browser applies the parent’s (that is, the enclosing element’s) CSS
rule to the child (that is, to the enclosed element).

Suppose, for example, that you have a style sheet with the CSS rules shown here:

p {color:blue}

b {color:red}

Given the following HTML, the Web browser will display in blue the text All text in and in red the
text boldface will be red--including boldface italics:

<p>All text in boldface will be red--including boldface

<i>italics</i>.</p>

The boldface element (that is, the text enclosed within start and end boldface tags) is a child of the
paragraph text element. The italic element, in turn, is a child of the boldface element, because the italic

Figure 4-5 Web page with a style sheet that formats tables

P:\010Comp\Tip&Tec\394-8\ch04.vp
Friday, January 04, 2002 4:18:11 PM

Color profile: Generic CMYK printer profile
Composite Default screen

1 6 6 H T M L & W e b D e s i g n T i p s & T e c h n i q u e s

Tip&Tec / HTML & Web Design Tips & Techniques / Anderson, King, Jamsa / 9394-8 / Chapter 4

element’s start and end tags are enclosed within the boldface element’s start and end tags. Because the
style sheet in this example has no rule for italics elements, the Web browser applies the parent element’s
rule—that is, the boldface (b) selector’s rule—to the child element. Thus, the Web browser will display
the italic text in red.

If the style sheet in this example had only the rule for the paragraph selector (p), the Web browser
would display all text in blue. First, the parent/child relationship between the boldface and paragraph
element would dictate that the boldface (child) element would inherit the paragraph (parent) element’s
rule—“display the text in blue.” Then, the parent/child relationship between the italic (child) element
and the boldface (parent) element would cause the italic (child) element to inherit the boldface (parent)
element’s rule.

Adding CSS Styles to a Web Page
Before the Web browser will apply CSS rules to format or position elements on a Web page, you
must include the CSS rules within the Web page HTML. You can use four different methods to add
CSS styles to the Web page HTML:

• Embed a style sheet

• Link to an external style sheet

• Import an external style sheet

• Add styles inline within HTML tags

When you embed a style sheet, the Web browser will apply the style sheet’s rules to the elements
only on the page in which you inserted the style sheet declaration. Therefore, if a style sheet’s rules
are unique to a particular Web page, embed the style sheet within the header section of the Web page
HTML. Conversely, if you want to apply the same style sheet to two or more Web pages, store the
style sheet in an external file (preferably with a .css extension) and either link or import the external
style sheet, as you will learn to do in the following sections.

Embedding a Style Sheet
When you embed a style sheet, you insert the style sheet’s rules between start and end style tags
(<style></style>) within the Web page header section:

<head>

<title>Embedded Cascading Style Sheet (CSS)</title>

<style type="text/css">

<!--

h1 {color:blue; font-size:40px; font-family:verdana}

p {color:white; background:green; font-family:helvetica;

text-indent:2cm}

-->

</style>

</head>

P:\010Comp\Tip&Tec\394-8\ch04.vp
Friday, January 04, 2002 4:18:12 PM

Color profile: Generic CMYK printer profile
Composite Default screen

C h a p t e r 4 : C a s c a d i n g S t y l e S h e e t s (C S S) 1 6 7

Tip&Tec / HTML & Web Design Tips & Techniques / Anderson, King, Jamsa / 9394-8 / Chapter 4

The type attribute in the <style> tag tells the Web browser the type of style sheet to expect.
Normally, browsers that do not support CSS will ignore all code between the start and end style

tags when the <style> tag has a type attribute set to “text/css”. Unfortunately, some older browsers
do not recognize start and end style tags. Although these browsers will ignore the HTML tags they do
not understand, they will display the contents of the style sheet as body text (instead of applying the
sheet’s rules to the body elements). To prevent older browsers from displaying style sheets onscreen,
enclose the style sheet rules within an HTML comment block, that is between HTML start and end
comment tags (<!-- -->). Web browsers that support style sheets will ignore the comment tags and
still apply the style sheet rules.

Linking to an External Style Sheet
External style sheets are ideal for when you want to apply the same set of rules to elements on two
or more Web pages. In fact, if you link an external style sheet to all the pages on a Web site, you can
change CSS rules within a single file and affect the look of elements on pages throughout the site.
Moreover, most Web browsers cache external style sheets, thus avoiding the delay in displaying
pages while downloading the same style sheet file multiple times.

As its name implies, you can use a <link> tag to link an external style sheet to an HTML
document. Instead of typing CSS rules into a style sheet in the header section within every page,
you can point the site’s HTML documents to a style sheet file. Then, when you change a property
such as a typeface, size, or color within the external style sheet file, all your pages will reflect the
change instantly.

To link to an external style sheet, insert a <link> tag such as the following in the header of your
section of your Web page:

<head>

<title>Linked Cascading Style Sheet (CSS)</title>

<link rel=stylesheet href="styles.css" type="text/css">

</head>

Note that you do not enclose the <link> tag between a set of start and end style tags (<style></style>).
In this example, the <link> tag tells the Web browser to use the CSS formatting rules in the file named
styles.css. The type attribute identifies the file as a text file with CSS information, and the href attribute
tells the Web browser the name, and if necessary, the path of the file with the style sheet definitions
the browser is to open. If the Web browser is unable to locate the external style sheet file (specified
by the href attribute in the <link> tag), the browser will use the browser’s default settings as defined by
the browser’s preferences.

In addition to a type attribute the Web browser can use to avoid downloading style sheet types the
Web browser does not support, you can include a media attribute to specify the medium or media to
which the style sheet’s rules apply. By reading the media attribute’s value (within the <link> tag), the
Web browser can selectively download style sheet files applicable only to the media the browser is
using. For example, the Web browser can avoid downloading the following style sheet applicable
to “tv” (that is, television) when displaying HTML documents on a standard computer screen:

<link rel=stylesheet href="WebTv.css" type="text/css"

media="tv">

P:\010Comp\Tip&Tec\394-8\ch04.vp
Friday, January 04, 2002 4:18:12 PM

Color profile: Generic CMYK printer profile
Composite Default screen

1 6 8 H T M L & W e b D e s i g n T i p s & T e c h n i q u e s

Tip&Tec / HTML & Web Design Tips & Techniques / Anderson, King, Jamsa / 9394-8 / Chapter 4

The available media attribute values are as follows:

all For all output devices

aural For speech synthesizers

braille For presentation on tactile feedback devices

embossed For braille printers

handheld For small devices such as PDAs (which usually have monochrome screens,
bitmapped graphics, and limited bandwidth)

print For output to a printer

projection For output to a projection device

screen For nonpaged computer screens (the default)

tty For teletype devices (using a fixed-pitch font)

tv For television screens

Within the external style sheet file (such as styles.css for example), define the rules as follows:

h1 {color:blue; font-size:40px; font-family:verdana}

p {color:white; background:green; font-family:helvetica;

text-indent:1cm}

body {background:#ADD8E6; color:maroon}

Notice the absence of all HTML tags within the external style sheet. An external style sheet file
should consist solely of CSS rules. Thus, external style sheets contain the same formatting rules as
internal (that is, embedded) style sheets. However, you do not enclose the rules in an external style
sheet file within start and end style tags or include any HTML tags at all.

Importing an External Style Sheet
Importing an external style sheet is similar to linking, which you learned about in the preceding
section. The difference is that you can combine importing with other methods, whereas linking must
stand alone. For example, although the header section in the preceding example can contain multiple
link statements (to link multiple external style sheets), it cannot also contain embedded rules. Conversely,
the following Web page header contains not only an import statement, but also embedded CSS rules
that style level-two headings and restyle body text on the Web page:

<head>

<title>Imported Cascading Style Sheet (CSS)</title>

<style type="text/css">

<!--

@import url(styles.css);

h2 {color:purple; font-size:30px; font-family:helvetica}

P:\010Comp\Tip&Tec\394-8\ch04.vp
Friday, January 04, 2002 4:18:12 PM

Color profile: Generic CMYK printer profile
Composite Default screen

TE
AM
FL
Y

Team-Fly®

C h a p t e r 4 : C a s c a d i n g S t y l e S h e e t s (C S S) 1 6 9

Tip&Tec / HTML & Web Design Tips & Techniques / Anderson, King, Jamsa / 9394-8 / Chapter 4

body {color:black}

-->

</style>

</head>

In this example, the @import statement instructs the Web browser to retrieve the CSS rules within
the styles.css file to which the browser adds the embedded rules that follow the @import statement.
(If a style sheet header includes both @import statements and embedded rules, the @import statements
must precede the CSS rule declarations.) If the rules in the imported style sheet(s) and the rule(s)
embedded within the Web page are conflicting, the embedded rules win. For example, styles.css
in the preceding example includes the following rule:

body {background:#ADD8E6; color:maroon}

However, the embedded rule for the body selector overrides the text color declaration and the
Web browser will display Web page body text in black instead of maroon.

Unlike linked external style sheet files, which the browser can choose to download based on the
value of the type or media attribute within the <link> tag, the Web browser must download all imported
style sheet files. However, you can use @import statements to import multiple external style sheet
files and override rules within those by embedding CSS rules within the Web page header.

Applying Styles Inline Within HTML Tags
You can apply a set of CSS formatting rules to a single Web page (by embedding an internal style
sheet) or to all the pages on a Web site (by linking or importing the same external style sheet to each
of the site’s HTML documents). At times, however, you may want to apply a formatting instruction
to a specific Web page element only (such as a single paragraph or heading) without creating a universal
CSS rule for all elements of the same type.

Suppose, for example, that you want to indent a single level-2 heading 1.5 inches, and display the
heading color as white text on a blue background. To specify a CSS formatting rule that applies only to a
single tag, use the style attribute to specify the rule within the tag as <tagname style=“CSS Declarations”>.
Thus, in this example, you would insert the CSS rule in the <h2> tag as shown here:

<html>

<head>

<title>Inline Styles</title>

</head>

<body>

<h2 style="text-indent:1.5 in; background:blue; color:white">

This heading text is white against a blue background,

indented 1.5 inches.</h2>

<h2> This is a standard heading tag. </h2>

</body>

</html>

P:\010Comp\Tip&Tec\394-8\ch04.vp
Friday, January 04, 2002 4:18:13 PM

Color profile: Generic CMYK printer profile
Composite Default screen

1 7 0 H T M L & W e b D e s i g n T i p s & T e c h n i q u e s

Tip&Tec / HTML & Web Design Tips & Techniques / Anderson, King, Jamsa / 9394-8 / Chapter 4

Thus, you use the style attribute in an HTML tag to specify the CSS formatting rule for the tag. In
this example, the CSS rule applies only to the text of the level-2 heading in whose tag you inserted
the style attribute with the CSS rule. As such, the browser again applies the browser’s default level-2
formatting to the level-2 heading that follows the one to which you applied a CSS rule.

In short, using the style attribute to apply an inline style to a single HTML tag gives you precise
formatting control of the text that follows the tag. The downside to using inline styles is that you must
insert the same code within the Web page element’s HTML tag each time you want the browser to
apply the style. Moreover, changing a single inline style affects only one element on a Web page. For
example, if you have three paragraphs with inline styles, you must make the same change three times
(once in each <p> tag) if you want to change the text color in all three paragraphs from black to green.

Applying Multiple CSS Rules to a Single Selector
CSS rules make changing the format of text on a Web site’s page easy. Using CSS, you can adjust
the style for a given HTML tag by modifying a single CSS rule. Sometimes, however, you want to
format a particular Web page element (such as paragraph text) differently in various parts of your
Web pages. If you create multiple rules for the same selector (p, in this case), the browser will use
the selector rule that appears last in the CSS. For example, the second rule in the following style
sheet overrides the first:

<style type="text/css">

p {color:red; font-size:18pt}

p {color:black; font-size:12pt}

</style>

As a result, all paragraph text will be black, 12-point type.
To apply more than one CSS rule to an element, you must define a unique named class for each

rule. After you define a class, you can apply its formatting to an element by placing the class attribute
in the element’s HTML tag as follows:

<p class="YourCSSClassName">

Suppose, for example, that you want to create a class for critical text and another class
for regular text. To create two classes of CSS rules, you add rules similar to the following

to the style sheet:

<head>

<title>CSS Class Declarations</title>

<style type="text/css">

<!--

p.critical {color:red; font-size:18pt; font-weight:bold}

p.regular {color:black; font-size:12pt}

P:\010Comp\Tip&Tec\394-8\ch04.vp
Friday, January 04, 2002 4:18:13 PM

Color profile: Generic CMYK printer profile
Composite Default screen

-->

</style>

</head>

You can use any name you like for a CSS class. However, be sure to insert a period (.) between
the selector (for the HTML tag) and the class name in each CSS rule definition.

After reading the preceding style definition, the Web browser will have two classes of paragraph
text styles at its disposal: p.critical and p.regular. The paragraphs you style as p.critical will have red,
boldface, 18-point text. Likewise, paragraphs you style as p.regular will have black, 12-point text. The
following code illustrates how you would use CSS classes to style paragraph text on a Web page:

<html>

<head>

<title>Example: Using Class Selectors</title>

<style type="text/css">

<!--

p.critical {color:red; font-size:18pt; font-weight:bold}

p.normal {color:black; font-size:12 pt}

-->

</style>

</head>

<body>

<p class="critical"> This is red, 18 point, bold face </p>

<p class="normal"> This is black 12 point text </p>

</body>

</html>

The Web browser will use the browser’s default settings for any formatting options not specified
by a CSS definition within the style sheet. For example, because the CSS rules in the preceding code
did not specify a specific typeface, such as Arial or Helvetica, the browser will use its default typeface.
Figure 4-6 shows how a Web page described by the preceding HTML will appear in a Web browser.

To make CSS class definitions more flexible, drop the selector from the class declaration. For
example, as defined in the style sheet embedded within the header section of the preceding Web
page HTML, “critical” and “normal” class rules are available only for use within <p> tags. Because
the style sheet rules attach both classes to the paragraph (p) selector, you cannot apply the “critical”
class to heading text with an HTML statement such as this:

<h1 class="critical">This is a critical heading</h1>

Given the class definitions in the HTML that produced Figure 4-6, the browser will display the
level-1 heading in the browser’s default level-1 heading style, because the “critical” class is undefined
for level-1 headings.

C h a p t e r 4 : C a s c a d i n g S t y l e S h e e t s (C S S) 1 7 1

Tip&Tec / HTML & Web Design Tips & Techniques / Anderson, King, Jamsa / 9394-8 / Chapter 4

P:\010Comp\Tip&Tec\394-8\ch04.vp
Friday, January 04, 2002 4:18:13 PM

Color profile: Generic CMYK printer profile
Composite Default screen

1 7 2 H T M L & W e b D e s i g n T i p s & T e c h n i q u e s

Tip&Tec / HTML & Web Design Tips & Techniques / Anderson, King, Jamsa / 9394-8 / Chapter 4

However, if you drop the selector reference from the class definition as follows, you can use the
class name to style any tag within the body of a Web page:

<head>

<title>Example: Using Unattached Class Selectors</title>

<style type="text/css">

<!--

.critical {color:red; font-size:18pt; font-weight:bold}

.normal {color:black; font-size:12 pt}

-->

</style>

</head>

Note that the “unattached” class name in each definition starts with a period (.) and has no selector
for an HTML tag. Now, the following statements cause the Web browser to display the first level-1
heading in red, 18-point, boldface, and the second level-1 heading as black 12-point text:

<h1 class="critical">This is a CRITICAL level-1 heading</h1>

<h1 class="normal">This is a normal level-1 heading</h1>

Therefore, if you define a CSS class without a selector, you can use the class to style any Web
page element. Conversely, if you define a class attached to a particular selector, you can use the class
to style only the HTML tag associated with that selector.

Selecting a Typeface with the font-family Property
Whether you select Times New Roman, Century Schoolbook, or Matisse ITC, the typeface the browser
uses to display text content sets the mood for your Web page. Rather than leave it up to your site

Figure 4-6 Class selectors let you quickly change the formatting of browser text

P:\010Comp\Tip&Tec\394-8\ch04.vp
Friday, January 04, 2002 4:18:14 PM

Color profile: Generic CMYK printer profile
Composite Default screen

visitors to select the typeface (by setting the browser’s default font to whatever they like), you should
give your site the look you want. Fortunately, CSS rules make it easy to specify the typeface the Web
browser is to use when displaying text on pages throughout your Web site.

To specify the typeface you want the Web browser to use, add the font-family property
declaration to a CSS rule. Suppose, for example, you want to create a Web page on which

the browser displays all paragraph text in the Helvetica typeface. To create a CSS rule that links the
Helvetica typeface to the <p> tag, use the paragraph selector (p) and a CSS font-family property
declaration, as shown in the following code:

<head>

<title>Selecting the Font-Family (i.e Typeface)</title>

<style type="text/css">

<!--

p {font-family:helvetica}

-->

</style>

</head>

In this case, the CSS rule for the paragraph tag selector (p) tells the Web browser to display all
text that follows a <p> tag using the Helvetica typeface. The font-family property setting between the
curly braces ({}) is the part of the CSS style declaration that tells the Web browser which font to use.

Instead of selecting a single font, you can create a CSS rule that specifies multiple typefaces.
By specifying multiple typeface selections, you give the Web browser alternate choices in case the
primary typeface you select is not installed on the visitor’s computer. Bear in mind that if the visitor’s
system does not have the typeface(s) you specify, the Web browser will display the Web page text
using the browser’s default typeface. To reduce the chances of selecting a typeface unavailable on the
visitor’s system (and ending up with the browser’s default font as a result), create the CSS rule with
an alternate font selection (such as Times New Roman) and perhaps a third choice (such as Courier).
(No theoretical limit exists as to the number of font choices you can include in a CSS font-family
declaration.)

To create a CSS declaration with alternate fonts from which you want the browser to choose, list
the font selections one after another in a CSS rule, such as that shown between the start and end style
tags in the following:

<html>

<head>

<title> Example of changing typeface </title>

<style type="text/css">

p {font-family:helvetica,"times new roman",courier}

</style>

</head>

<body>

<h1> Standard H1 heading </h1>

<p> The Web browser displays text enclosed by the

C h a p t e r 4 : C a s c a d i n g S t y l e S h e e t s (C S S) 1 7 3

Tip&Tec / HTML & Web Design Tips & Techniques / Anderson, King, Jamsa / 9394-8 / Chapter 4

P:\010Comp\Tip&Tec\394-8\ch04.vp
Friday, January 04, 2002 4:18:14 PM

Color profile: Generic CMYK printer profile
Composite Default screen

1 7 4 H T M L & W e b D e s i g n T i p s & T e c h n i q u e s

Tip&Tec / HTML & Web Design Tips & Techniques / Anderson, King, Jamsa / 9394-8 / Chapter 4

paragraph tags in Helvetica. If Helvetica is

not available, the CSS declaration instructs

the Web browser to locate Times New Roman,

or finally Courier.</p>

<p> If all three fonts are unavailable, the Web browser

ignores the CSS declaration and substitutes the

browser's default typeface.</p>

</body>

</html>

In this example, the font-family property instructs the Web browser to use Helvetica to display any
text that follows a <p> tag. If Helvetica is not available on the visitor’s computer, the Web browser
searches for Times New Roman. Then, if Times New Roman is not available, the browser will look
for Courier. If all the listed typefaces are unavailable, the Web browser substitutes the default typeface
as defined by the Web browser’s preference settings.

Specifying the Size of Text with the font-size Property
When working with the character size of Web page text, you typically have two goals. First, you want
to make sure the text is large enough for the visitor to read comfortably. Second, you want the ability
to vary the size of the headings and specific words or phrases for emphasis. Because different Web
browsers (and even different versions of a particular brand of browser) often have different character
size defaults, you must specify the font size of Web page text if you want Web browsers to display
your content at a particular size.

Font size is especially important when a Web page has a lot of text. If you set the size too small,
the strain of trying to read the text will frustrate visitors and cause them to leave without reading all
the material. Conversely, unusually large characters are a distraction that might cause visitors to miss
important information your Web page is trying to convey.

The CSS font-size property lets you specify the size of your Web page text. Moreover, writing the
CSS rules that control text size within an external style sheet makes it easy to experiment with various
font-size values until you determine the size that works best for your site. Remember, by making a
single change to a CSS rule within an external style sheet linked to the site’s pages, you can change
the size of the text on all the pages across the site.

Whereas the size attribute within a tag lets you choose only 1 of 14 size settings
(1 thru 7 and −1 thru −7), expressed as points, pixels, and ems, the CSS font-size property

puts an infinite number of character sizes at your disposal. Print designers are most familiar with
expressing character size in terms of a point value. On paper, a point is 1/72 of an inch. Therefore, a
12-point print has characters 1/6 of an inch tall and 72-point printed text has characters one inch tall.
Unfortunately, on a monitor, text of a given point-value is not always the same size when displayed
by browsers running at different screen resolutions.

P:\010Comp\Tip&Tec\394-8\ch04.vp
Friday, January 04, 2002 4:18:15 PM

Color profile: Generic CMYK printer profile
Composite Default screen

C h a p t e r 4 : C a s c a d i n g S t y l e S h e e t s (C S S) 1 7 5

Tip&Tec / HTML & Web Design Tips & Techniques / Anderson, King, Jamsa / 9394-8 / Chapter 4

To specify the size of text in terms of point size, append the letters pt to a numeric value that
follows the font-size property as follows:

p {font-size:12pt}

b {font-size:18pt}

After reading the CSS rules in this example, the Web browser will display paragraph text at
12 points (about the size of the text in this book) and boldface text at 18 points.

Often, Web designers work in terms of pixels. Whereas the medium for print designers is paper,
Web designers most often work with computer screens. Because screen resolution, the location of
objects, and the size of screen images are normally given in pixels, it is no surprise that Web designers
would choose pixels to specify character size as well. One advantage pixels have over point size measures
is that a pixel will be the same size when displayed at a given screen resolution on the same size monitor
screen—even on different hardware and software platforms. Moreover, expressing both image and
text size in terms of pixels makes it easier to keep text and images a uniform size throughout
a site’s pages.

To specify the size of text in terms of pixels, append the letters px to a numeric value that follows
the font-size property as follows:

body, p {font-size:10px}

Note that as a general rule, legible text is at least nine pixels in size.
Another way to set font size is to express the size of an element in terms of the point size of a

parent element. You establish a parent/child relationship between Web elements by enclosing one
Web element within another. The outer element is the parent and the enclosed (inner) element is the
child. For example, the HTML citation element in the following code is a child of the paragraph element
whose start and end tags enclose it:

<p>All text that occurs between a set of start and end

paragraph tags is part of a paragraph element. <cite>This

citation element is a child of the paragraph element whose

start and end tags enclose it.</cite> When you use one

HTML element within another, the inner element is the child,

and the outer element is the parent.</p>

Ems let you express the size of a Web page element in terms of the point size of its parent. At a
given point size, an em is the width of the letter M in the current typeface. Therefore, if your style sheet
has the following rules, the size of any citation text within a paragraph element will be 1.5 times as
large as its parent text:

cite {font-size:1.5em}

p {font-size:12pt}

P:\010Comp\Tip&Tec\394-8\ch04.vp
Friday, January 04, 2002 4:18:15 PM

Color profile: Generic CMYK printer profile
Composite Default screen

If you applied the CSS rules in this example to the paragraph and citation text in the previous example,
the Web browser would display the (parent) paragraph text as 12-point and the citation text as 18-point,
or 1.5 times the size of the 12-point parent text.

Figure 4-7 shows the effect of using the following style sheet to style the four text elements
(paragraph, boldface, list item, and citation) on the Web page:

<head>

<title>Setting Text Size with Points, Ems, and Pixels</title>

<style type="text/css">

b {font-size:18pt}

cite {font-size:1.5em}

li {font-size:30px}

p {font-family:helvetica, "times new roman", courier;

font-size:12pt}

</style>

</head>

1 7 6 H T M L & W e b D e s i g n T i p s & T e c h n i q u e s

Tip&Tec / HTML & Web Design Tips & Techniques / Anderson, King, Jamsa / 9394-8 / Chapter 4

Figure 4-7 Web page text with character set using points, ems, and pixels

P:\010Comp\Tip&Tec\394-8\ch04.vp
Friday, January 04, 2002 4:18:16 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Creating Overlapping Text
You can add a little pizzazz to a Web page of hyperlinks by using CSS rules to style and position
the hyperlink text to look something like that shown in Figure 4-8. (Although not underlined, each
of the text elements in Figure 4-8 is a hyperlink.)

CSS positioning statements let you overlap Web page elements (such as text, images, and other
displayed objects). What’s New with Cascading Style Sheets? appears “behind” the four other hyperlinks
in this example, because CSS rules instructed the Web browser to place additional text in space already
occupied by other text. As long as you vary the typeface, size, and color of the hyperlink text enough,
your visitors will still know where to click to follow each link. In addition, you can make the overlapping
hypertext links easier to use by changing the mouse pointer and/or the hyperlink text style as the visitor
moves the mouse pointer over each link. (Other Tips in this chapter show you how to change the
mouse pointer and the appearance of hypertext when the mouse pointer hovers over a hyperlink.)

C h a p t e r 4 : C a s c a d i n g S t y l e S h e e t s (C S S) 1 7 7

Tip&Tec / HTML & Web Design Tips & Techniques / Anderson, King, Jamsa / 9394-8 / Chapter 4

Figure 4-8 A splash page created with overlapping text of various fonts and sizes

P:\010Comp\Tip&Tec\394-8\ch04.vp
Friday, January 04, 2002 4:18:16 PM

Color profile: Generic CMYK printer profile
Composite Default screen

1 7 8 H T M L & W e b D e s i g n T i p s & T e c h n i q u e s

Tip&Tec / HTML & Web Design Tips & Techniques / Anderson, King, Jamsa / 9394-8 / Chapter 4

The CSS position property specifies where the browser is to place an element on the Web page.
Absolute positioning lets you place an object relative to the left-hand side and top of the page. Meanwhile,
relative positioning lets you specify an element’s location relative to where the object would normally
appear. For example, if the Web page HTML has two tags, one after another, the Web browser
will normally draw the second image immediately to the right (and right up against) the first. Using
relative positioning, you can insert a space between the two pictures as follows:

The CSS rule in the second tag tells the browser to shift the element (image2.jpg) 20 pixels
to the right of its normal position.

To overlap objects on a page, use absolute positioning. You could shift one element
on top of another by specifying a negative relative position. However, using absolute

positioning to place objects at specific locations on the page is a simpler way to achieve the same
result. For example, when applied to an object on the page, the following CSS rule instructs the Web
browser to place the object 50 pixels down from the top and 10 pixels away from the left-hand side
of the page:

.link1 {position:absolute; top:50px; left:10px}

You can use any of the CSS length units, such as points (pt), inches (in), centimeters (cm), and so
on, to specify an element’s position. For example, to position a text element using units based on the
size of the characters, use ems as shown in the following rule:

.link2 {color: #400040;

font-size:50px; font-style:italic;

font-family:georgia, serif;

position:absolute; top:2.5em; left:2em}

In this example, the absolute position top:2.5em and left:2em tells the Web browser to place the
element 125 pixels from the top and 100 pixels from the left of the Web page. (The em value in this
case is 50px as specified by the font-size property.)

After you write the CSS rules that position your objects, you must instruct the Web browser to
apply the rules to specific elements within the Web page body. To position two hyperlinks using the
CSS classes defined in the previous examples (link1 and link2), insert code such as the following in
the Web page HTML:

<p><a class="link1"

href="Figure04-01b.htm">What's New with

Cascading Style Sheets?</p>

<p>Learning CSS...

</p>

P:\010Comp\Tip&Tec\394-8\ch04.vp
Friday, January 04, 2002 4:18:17 PM

Color profile: Generic CMYK printer profile
Composite Default screen

TE
AM
FL
Y

Team-Fly®

The class attribute tells the Web browser which of the CSS rules to apply to the element (in this
case, the hypertext displayed onscreen).

The start and end paragraph tags (<p></p>) shown in the example affect only the position of
the text when the visitor’s browser does not have CSS support. If a Web browser cannot follow the
style sheet’s rules, the paragraph tags cause the browser to insert a blank line between each hyperlink.
Enclosing positioned elements within a paragraph or placing a
 tag between them is not required.
Bear in mind, however, that if the Web browser does not support CSS, the positioned elements will
appear one after another on the page otherwise.

Aligning Web Page Text
A word processor such as MS-Word or WordPerfect gives you four ways to align paragraph text. As
shown in Figure 4-9, you can align text such that each line starts at the left-hand margin, ends at the
right-hand margin, is centered, or ends flush with both the left- and right-hand margins.

The first three alignment options (left, right, and center) are nothing new to HTML. After all,
the align attribute lets you center text within or place it flush with the left- or right-hand margins
of the Web page or a table cell. However, the align attribute has no “justify” value that lets you format
lines of text as shown in the fourth paragraph in Figure 4-9. Fortunately, the CSS text-align property

C h a p t e r 4 : C a s c a d i n g S t y l e S h e e t s (C S S) 1 7 9

Tip&Tec / HTML & Web Design Tips & Techniques / Anderson, King, Jamsa / 9394-8 / Chapter 4

Figure 4-9 Paragraphs of text aligned left, aligned right, centered, and justified

P:\010Comp\Tip&Tec\394-8\ch04.vp
Friday, January 04, 2002 4:18:17 PM

Color profile: Generic CMYK printer profile
Composite Default screen

1 8 0 H T M L & W e b D e s i g n T i p s & T e c h n i q u e s

Tip&Tec / HTML & Web Design Tips & Techniques / Anderson, King, Jamsa / 9394-8 / Chapter 4

provides a “justify” option you can use to format text such that each line (except the last) begins and
ends flush with both left- and right-hand margins.

To take advantage of the four CSS text alignment options, create the following four
unattached rule classes in your style sheet:

.left {text-align:left}

.right {text-align:right}

.center {text-align:center}

.justify {text-align:justify}

Note that you do not have to create style sheet rules to use the CSS text-align property. However, if you
define the CSS classes shown here, you can specify an element’s alignment as class=className within the
element’s tag rather than typing style=alignmentRule, which is a few more keystrokes in length.

After defining the rule classes you need, you can use the class attribute in your HTML tags to
align text within any container element on the page. Thus, you are not limited to aligning text within
paragraph containers. In addition, you can align text within the Web page body, all text within table’s
cells or within specific cells or rows of cells, and text you use as labels next to form elements. For
example, to apply full justification to all Web page text, set the text-align property within the <body>
tag as follows:

<body class="justify">

Similarly, to left-justify text within individual paragraphs, add the class attribute to the <p> tag as
shown here:

<p class="left">

Bear in mind that child elements—that is, elements enclosed within other elements—inherit the
parent element’s CSS property values. Thus, the class attribute in the following <body> tag (the parent)
affects the alignment of the text within all the paragraph (child) elements:

<body class="justify">

<p>Paragraph 1 text will be full-justified</p>

<p>Paragraph 2 text will be full-justified</p>

<p>Paragraph 3 text will be full-justified</p>

<p>Paragraph 4 text will be full-justified</p>

</body>

You can, however, override any of the property values in CSS rules passed from parent to child
by applying a new CSS rule to the child element. For example, to change the alignment of text within
the paragraphs shown in the preceding example, add a class or style attribute to the start tags of the
elements whose alignment you want to change:

P:\010Comp\Tip&Tec\394-8\ch04.vp
Friday, January 04, 2002 4:18:18 PM

Color profile: Generic CMYK printer profile
Composite Default screen

<body class="justify">

<p class="left">Paragraph 1 text will be left-justified</p>

<p>Paragraph 2 text will be full-justified</p>

<p style="text-align:right">

Paragraph 3 text will be right-justified</p>

<p>Paragraph 4 text will be full-justified</p>

</body>

Controlling Margins and Line Height
When working with Web page text, you often want to leave some space between the text and the left-
and right-hand sides of the browser’s application window. Margins make pages with lots of text less
daunting by providing a blank space in which visitors can rest their eyes. In addition, you can use
margins to place text into newspaper-like columns or to exaggerate the separation between paragraphs,
as shown in Figure 4-10.

C h a p t e r 4 : C a s c a d i n g S t y l e S h e e t s (C S S) 1 8 1

Tip&Tec / HTML & Web Design Tips & Techniques / Anderson, King, Jamsa / 9394-8 / Chapter 4

Figure 4-10 Using margin widths to separate text into bursts of information

P:\010Comp\Tip&Tec\394-8\ch04.vp
Friday, January 04, 2002 4:18:18 PM

Color profile: Generic CMYK printer profile
Composite Default screen

1 8 2 H T M L & W e b D e s i g n T i p s & T e c h n i q u e s

Tip&Tec / HTML & Web Design Tips & Techniques / Anderson, King, Jamsa / 9394-8 / Chapter 4

Prior to CSS rules that set margin properties and give you precise control over the space around
Web page elements, you had to use HTML tables to position your text. To indent text away from the
sides of the Web page, for example, you might place the text within a three-column table. By placing
page text into the center column, you could create margins by leaving the table’s two outer columns
blank and set to the width of the blank space you wanted to leave between the text and the left- and
right-hand sides of the Web page.

CSS margin properties give you precise control over the space the browser leaves
between an element and the sides of the page or between adjacent elements within the

page. You can choose among four margin properties: margin-left, margin-right, margin-top, and
margin-bottom. Each property names the element’s side along which the property will create a space.
For example, to create a 40-pixel margin between objects on the page and the left- and right-hand
sides of the browser application window, add the following CSS rule to your style sheet:

body {margin-left:40px; margin-right:40px}

To control the left and right margins between a group of paragraphs and the sides of the Web page,
enclose the paragraphs within a set of start and end division tags (<div></div>). Then, apply a CSS rule
to the <div> tag as shown here:

<body>

<p>This browser does not indent this paragraph<p>

<div style="margin-left:10%; margin-right:10%">

<p>This browser WILL indent this paragraph with a margin

10% the width of the application window.</p>

<p>The browser WILL indent this paragraph the same width

as the preceding one. The CSS rule in the division tag

governs both paragraphs.

</div>

<p>This browser does not indent this paragraph<p>

</body>

Note that you can use any of the CSS length units (px, pt, em, in, mm, cm, and so on) to specify a
margin-width. In this example, the CSS rule in the <div> tag instructs the browser to leave a margin
10 percent the width of the browser’s application window between the paragraph text and both the
left- and right-hand sides of the Web page.

Use the CSS margin-top and margin-bottom properties to control the space above and below an
element, respectively. For example, if you want to leave the space of two blank lines between paragraphs,
you might style the paragraph selector (p) in your style sheet as follows:

p {margin-bottom:2em}

To leave 1.5 times the normal space between two paragraphs, style the <p> tag of the paragraph
you want to affect rather than the paragraph selector (p) in a style sheet. For example, you might add
a rule such as the following to leave an additional half-line of space between the current paragraph
and the one that precedes it:

P:\010Comp\Tip&Tec\394-8\ch04.vp
Friday, January 04, 2002 4:18:19 PM

Color profile: Generic CMYK printer profile
Composite Default screen

C h a p t e r 4 : C a s c a d i n g S t y l e S h e e t s (C S S) 1 8 3

Tip&Tec / HTML & Web Design Tips & Techniques / Anderson, King, Jamsa / 9394-8 / Chapter 4

<p style="margin-top:1.5em">

If you want to control the space between lines of text within a paragraph, as opposed to the space
between two paragraphs, use the CSS line-height property. The default line-height is 1em. As such,
the Web browser inserts the same amount of space between the lines within the following two paragraphs:

<body>

<p>This is the first line in paragraph 1

This is the second line in the first paragraph</P>

<p style="line-height:1em">

This is the first line in paragraph 2

This is the second line in the second paragraph</p>

</body>

To double-space (that is, to place a blank line between) lines of text within a particular paragraph,
set the paragraph’s line-height to 2em with a CSS rule such as this:

<p style="line-height:2em">

Displaying Text Within Columns
You can use the CSS width property to lay out a Web page in newspaper-like columns. A newspaper
layout works well when you must provide a lot of text or want to present information on diverse topics
on a single Web page. The visitor feels comfortable because the layout is familiar—most everyone
has read a printed newspaper or magazine. Moreover, vertical columns separate the page full of
text into manageable chunks. As a result, a visitor is not overwhelmed with a screen of wall-to-wall
words—even if there are no pictures within the columns on the page. Finally, by providing appropriate
headings at the top of each column, you can summarize portions of the content to let visitors quickly
zero-in on items of interest.

To break your Web page into columns, place the content you want the browser to display
in each column within a division (container) element (that is, between a set of start and

end division tags [<div></div>]). Then, use CSS classes to set the width of each column and the
alignment of the text content within the column. For example, to create a three-column layout such
as that shown in Figure 4-11, add the following CSS class definitions to your style sheet:

.left {text-align:justify;

border-color:black; border-style:solid;

border-left-width:1px; border-bottom-width:1px;

width:33%}

.middle {text-align:justify;

border-color:black; border-style:solid;

border-right-width:1px; border-left-width:1px;

P:\010Comp\Tip&Tec\394-8\ch04.vp
Friday, January 04, 2002 4:18:19 PM

Color profile: Generic CMYK printer profile
Composite Default screen

border-bottom-width:1px;

width:34%}

.right {text-align:justify;

border-color:black; border-style:solid;

border-right-width:1px; border-bottom-width:1px;

width:33%}

Then, style the three division containers, which hold the column content, as follows:

<div class="left">

<center><h1>Column 1</h1></center>

... left-hand column content ...

</div>

<div class="middle">

<center><h1>Column 2</h1></center>

... middle column content ...

</div><div class="right">

<center><h1>Column 3</h1></center>

... right-hand column content ...

</div>

1 8 4 H T M L & W e b D e s i g n T i p s & T e c h n i q u e s

Tip&Tec / HTML & Web Design Tips & Techniques / Anderson, King, Jamsa / 9394-8 / Chapter 4

Figure 4-11 A Web page with three columns of text below a banner

P:\010Comp\Tip&Tec\394-8\ch04.vp
Friday, January 04, 2002 4:18:20 PM

Color profile: Generic CMYK printer profile
Composite Default screen

C h a p t e r 4 : C a s c a d i n g S t y l e S h e e t s (C S S) 1 8 5

Tip&Tec / HTML & Web Design Tips & Techniques / Anderson, King, Jamsa / 9394-8 / Chapter 4

In the preceding Tip, you learned how to use the four margin properties to insert a blank space
between an element and the sides of the Web page. CSS also provides padding properties, which let
you create a margin between an object and the sides of its container. In this example, the page has
three division containers, each of which holds the content displayed in one of the three Web page
columns. To leave a blank space between the column (text) content and the left- and right-hand sides
of a container, insert the following declarations within each of the three style sheet classes (.left, .middle,
and .right):

padding-left:10px; padding-right:10px;

The preceding padding property declarations instruct the Web browser to leave a 10-pixel blank
space between the content and the left- and right-hand sides of the container, as shown in Figure 4-12.

(In addition to the CSS padding-left and padding-right properties, you can set padding-top and
padding-bottom to insert blank space between content and the top and bottom of the container.)

Figure 4-12 The three-column Web page after padding the column contents

P:\010Comp\Tip&Tec\394-8\ch04.vp
Friday, January 04, 2002 4:18:20 PM

Color profile: Generic CMYK printer profile
Composite Default screen

1 8 6 H T M L & W e b D e s i g n T i p s & T e c h n i q u e s

Tip&Tec / HTML & Web Design Tips & Techniques / Anderson, King, Jamsa / 9394-8 / Chapter 4

Working with Borders
Designers use borders to separate images from surrounding text, to mark headings, and to make important
or otherwise special passages stand out from other text on a Web page. The CSS border properties let
you control the width, style, and color of each side in a border around an object independently. Prior
to CSS, you placed objects within HTML tables and set the table border attribute to the pixel-width
of the border you wanted the browser to draw. Unfortunately, few browsers let you control the color
or style of the borders.

CSS lets you draw a border around any object or container element on a Web page. As
such, you can draw borders around pictures, headings, paragraphs, text within start and

end span tags (), elements and objects within start and end division tags (<div></div>),
and so on. To draw a border around level-1 headings, for example, you might write a CSS rule such
as the following:

h1 {border:solid 3px black}

The first property value, solid, specifies the border’s line style, the second sets the border-width
to three pixels, and the third makes the border black. If you write a CSS rule that gives values for the
border property, the Web browser will make all four sides of the border look the same.

To work with the appearance of each side in a border independently, specify border-style, border-
width, and border-color values for all four sides. For example, you could write the “shorthand” form
of the border rule in the previous example as follows:

h1 {border-top-style:solid;

border-left-style:solid;

border-right-style:solid:

border-bottom-style:solid:

border-top-width:3px;

border-left-width:3px;

border-right-width:3px;

border-bottom-width:3px;

border-top-color:black;

border-left-color:black;

border-right-color:black;

border-bottom-color:black}

Fortunately, CSS syntax lets you combine explicit and implicit (shorthand) border property
declarations. For example, if you want a solid, gold border you could write the CSS rule as follows:

h1 {border-style:solid;

border-color:#FFD700;

border-top-width:1px;

P:\010Comp\Tip&Tec\394-8\ch04.vp
Friday, January 04, 2002 4:18:21 PM

Color profile: Generic CMYK printer profile
Composite Default screen

border-left-width:1px;

border-right-width:2px;

border-bottom-width:2px}

Similarly, to specify a .5 inch, blue, double-line border you would write the CSS rule as follows:

h1 {border-style:double;

border-color:blue;

border-width:.5in}

Note, as shown in the preceding examples, that you can specify the border-color by name or as
hexadecimal triplets, and the border-width in any CSS unit of measure (in, cm, pt, px, and so on).

Figure 4-13 shows a 12-pixel, lightgreen border around a level-1 heading in each of the nine
available border styles. (The border-style “none” tells the browser to ignore the border properties
and draw no border.)

Bear in mind that you must set the border-width to at least three pixels to see the effect of some
border styles. For example, if you select the border-style “double”, the Web browser needs one pixel
to display each of the border’s two lines and one pixel to put a space between the lines.

C h a p t e r 4 : C a s c a d i n g S t y l e S h e e t s (C S S) 1 8 7

Tip&Tec / HTML & Web Design Tips & Techniques / Anderson, King, Jamsa / 9394-8 / Chapter 4

Figure 4-13 Examples of the nine CSS border styles

P:\010Comp\Tip&Tec\394-8\ch04.vp
Friday, January 04, 2002 4:18:21 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Indenting Paragraphs and Controlling Letter, Word,
and Line Spacing
In addition to tools for positioning objects precisely, designers have long desired more typographical
control over Web page text. Layout tables and transparent (spacer) GIF images give you some control
over where the browser puts things onscreen. However, they do not make it easy to adjust the spacing
between words and lines of text or to indent the first word in each paragraph. Fortunately, CSS rules
give you all the control you want.

To indent the first letter in each paragraph of text, for example, create a rule such as
the following:

p {text-indent:2em}

Although you can use any CSS units of measure (pt, px, in, cm, and so on), you will find it most
convenient to use ems when indenting paragraph text. The rule in this example will indent the first
word approximately five letters, and will continue to do so even if you increase (or decrease) the
font-size of the text. Remember, 1em equals the current point-size of the text. Thus, as the font-size
changes, so does the size of an em (and the width of the text-indent). If you specify the indentation
by using a fixed length unit (such as pixels or points), you must adjust the text-indent value whenever
you change the font-size to indent the first word the same number of characters.

Given the names of the properties, it will come as no great surprise that letter-spacing lets you control
the space between letters; word-spacing lets you control the space between words; and (you guessed
it) line-height lets you control the space between lines. (Actually, I would have guessed line-spacing;
however, word processors use the term line height, so CSS uses the same term to keep things simple.)
As was the case with the text-indent property, you can use any of the CSS length units to specify the
letter, word, and line spacing you want. Bear in mind, when adjusting word and letter spacing, the browser
adds the length you specify to what it would normally use. Therefore, to add 5 pixels of space between
letters of text in a level-1 heading, you might write:

<h1 style="letter-spacing:5px">Letter Spaced Wide</h1>

Similarly, to add a 1-pica space between words in citations, you might write a CSS rule such as this:

cite {word-spacing:1pc}

As mentioned previously, the line-height property lets you control the vertical spacing between
lines of text. Not to complicate matters, but the common term for the space between lines is leading.
Thus, the line-height property lets you control leading. You can specify the line-height in any of three
ways: by number, by CSS length unit, or by percentage. The Web browser adds the value you specify
for line-height before each line of text.

When you specify line-height by number or by percentage, the Web browser uses the font size to
determine the leading. Thus, if you write the following rule, the browser will insert a 25-point space
between lines of boldface text:

1 8 8 H T M L & W e b D e s i g n T i p s & T e c h n i q u e s

Tip&Tec / HTML & Web Design Tips & Techniques / Anderson, King, Jamsa / 9394-8 / Chapter 4

P:\010Comp\Tip&Tec\394-8\ch04.vp
Friday, January 04, 2002 4:18:22 PM

Color profile: Generic CMYK printer profile
Composite Default screen

TE
AM
FL
Y

Team-Fly®

C h a p t e r 4 : C a s c a d i n g S t y l e S h e e t s (C S S) 1 8 9

Tip&Tec / HTML & Web Design Tips & Techniques / Anderson, King, Jamsa / 9394-8 / Chapter 4

b {font-size:10pt; line-height:2.5}

The browser multiplies the font-size (10-point) by the line-height value (2.5) to get the leading (25).
Similarly, you can write the same rule using a percentage:

b {font-size:10pt; line-height:250%}

As before, the Web browser will set the line-height to 25 points, because 250 percent of the current
font-size (10) is 25. Note that you do not have to include a font-size declaration within the rule. When
you specify line-height as a number or as a percentage, the browser always multiplies the current font
size by the line-height value to get the leading.

To specify the leading as a CSS length unit, simply include the length unit you want to use as part
of the line-height value. For example, to create a CSS class you can use to double-space text, add the
following rule to your style sheet:

.double_space {line-height:2em}

Similarly, to have the browser leave a 12-point space before each line of text in a paragraph, you
might write an in-line style such as this:

<p style="line-height:12pt">

Note that if the line-height you specify is less than the font size, your lines of text will overlap.
For example, if the font size in the preceding example were 24-point, the lines of text in the paragraph
would overlap. To be specific, the letters in each line would start halfway down the letters in the preceding
line, because the 12-point leading is one-half the size of the 24-point font-size.

Offsetting Text with Initial Caps
Publishers often apply a special style to the first letter of articles in magazines or chapters in books to
add a touch of spice to an otherwise plain page of text. When used sparingly, changing the appearance
of the character that leads off a passage or section of text catches the reader’s eye and makes him or
her more likely to read. In addition, if you have a multicolumn layout or a page with lots of text, you
might apply a special style to the first letter of each paragraph that starts a new topic to help the visitor
move from idea to idea on the page.

To set off an initial cap, make the letter 120 to 150 percent larger than the surrounding
text. Thus, you might create a CSS class named icap with the following:

<head>

<style type="text/css">

<!--

.icap {font-size:150%}

-->

</style>

</head>

P:\010Comp\Tip&Tec\394-8\ch04.vp
Friday, January 04, 2002 4:18:23 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Once defined, you can use icap as the class attribute’s value in the HTML element to
apply the class rules as follows:

<body>

<p>This is an example of ...</p>

<p>Text in this paragraph...</p>

<p style="font-size:2em">

If you had used pixels or...</p>

</body>

Figure 4-14 shows a Web page in which icap (as defined here) is applied to the first letter in each
of three paragraphs.

In addition to increasing its size, you can make your initial cap stand out more by varying its typeface,
color, or the color of the background behind the character. When selecting a typeface, use one that you
would not normally use for text (such as Comic) or perhaps the same typeface used in your headings.
For example, you might enhance the icap class defined in the previous example as follows:

.icap {font-size:150%; font-family:"comic sans ms", impact}

When applied, the icap class shown here will increase the size of the styled letter to 1.5 times the
size of the surrounding text and use the Comic Sans MS typeface. If Comic Sans MS is not available
on the visitor’s system, the browser will use Impact instead. (If Impact too is unavailable, the browser
will use the current default font; however, the initial cap will still stand out due to its increased size.)

1 9 0 H T M L & W e b D e s i g n T i p s & T e c h n i q u e s

Tip&Tec / HTML & Web Design Tips & Techniques / Anderson, King, Jamsa / 9394-8 / Chapter 4

Figure 4-14 Paragraphs with initial caps

P:\010Comp\Tip&Tec\394-8\ch04.vp
Friday, January 04, 2002 4:18:23 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Customizing the Appearance of Hyperlinks
If you do nothing special to the anchor (that is, the hyperlink) element in your Web page HTML,
Web browsers underline your hyperlink text and typically use one color (such as blue) to display
unvisited links and a different color (such as magenta) for links previously visited. CSS gives you a
choice. You can continue to let the visitor’s browser dictate the appearance of your hypertext, or you
can take control of the way your hyperlinks look. For example, you can write CSS rules that change
the text color, apply a background color, or even remove the underline if you like. Moreover, you can
vary the styles of different types of links on the page. For example, you might leave unchanged the
Web page background behind hypertext links embedded within other content. However, for hyperlinks
on the site’s navigation menu, you might apply a different background color or image to make the
menu items more visible. You can even write a CSS rules to create a hover (mouseover) effect, which
changes the hypertext’s appearance when the visitor moves the mouse pointer over a hyperlink.

To customize the appearance of your hyperlinks, add rules that specify the properties of
one, some, or all the anchor element’s four pseudo-classes:

a:link Unvisited

a:visited Visited; meaning that the Web browser history list has an entry pointing to the hyperlink’s target
(that is, the URL specified by the hyperlink’s href attribute).

a:hover The visitor’s mouse pointer is over the hyperlink.

a:active The mouse pointer is over the hyperlink, and the visitor is in the process of depressing or
releasing the left mouse button (or the right mouse button for left-handed mice).

For example, to set the color of unvisited links to dark green and visited links to magenta, you
would add the following CSS rules to your style sheet:

a:link {color:darkgreen}

a:visited {color:magenta}

If you decide to remove the underline from your hypertext, you should also take steps to make
the hyperlinks stand out in some other way. For example, you might change the hypertext typeface
or make its background color different from that used in the Web page background. Whatever you
do, you will likely want to apply the same treatment to all classes of hyperlinks. To do so, drop the
pseudo-class reference from the CSS rule to style all classes of anchor text as shown here:

a {text-decoration:none; background-color:yellow}

In this example, setting the text-decoration to “none” removes the underline from the hypertext,
and the background-color value “highlights” the hyperlink anchor text in yellow. Note that Web
browsers will apply the declarations in a rule for the anchor element (a) to all hyperlink pseudo-classes.
Thus, given the preceding CSS rule, each hypertext link on the Web page will have a yellow background
and will not be underlined.

C h a p t e r 4 : C a s c a d i n g S t y l e S h e e t s (C S S) 1 9 1

Tip&Tec / HTML & Web Design Tips & Techniques / Anderson, King, Jamsa / 9394-8 / Chapter 4

P:\010Comp\Tip&Tec\394-8\ch04.vp
Friday, January 04, 2002 4:18:24 PM

Color profile: Generic CMYK printer profile
Composite Default screen

1 9 2 H T M L & W e b D e s i g n T i p s & T e c h n i q u e s

Tip&Tec / HTML & Web Design Tips & Techniques / Anderson, King, Jamsa / 9394-8 / Chapter 4

To add a little pizzazz to your hyperlinks, use the “hover” pseudo-class to change the appearance
of the anchor text when a visitor moves the mouse over a hyperlink. You can use any text formatting
properties you like for the mouseover effect. Thus, if you want to display the hypertext at 1.5 times the
current font-size, in italics, and with a cyan background, add the following CSS rule to the style sheet:

a:hover {font-size:1.5em; font-style:italic;

background-color:cyan}

As a final step in customizing the hypertext on your site, you may want to make it easy for visitors
to distinguish links that will take them to another part of your site from those that will take them to
another Web site. Similarly, suppose your site has a public and a members-only area. You can help
nonmembers avoid clicking links that bring up a password prompt by making links to members-only
pages look different from those to pages anyone can view. To accomplish all this styling, assign each
of the hyperlink types to a class that makes the hyperlink text look the way you want.

For example, suppose you want all hyperlinks to other (that is, external) Web sites to be light
green with a purple background and not underlined. Moreover, you want only the external hyperlinks
to change to white text (on the already purple background) when the mouse moves across them. No
problem. Add the following CSS rules to your style sheet:

a.external {color:lightgreen; background-color:purple;

text-decoration:none}

a.external:hover {color:white; font-style:bold}

Next, apply the external class to hyperlinks that target other Web sites, as shown here:

Link to another site

Now, suppose you later decide that you want to change the appearance of all external hypertext
links or the hover property of those links. Nothing could be simpler. You need only change the
property values within one or both of the style sheet rules as desired to change the appearance of
all external links throughout your site. Such is the power of CSS.

Creating a Drop-Shadow Effect
Although the Internet has gone through many changes, one thing has remained the same—downloading
and displaying an image (even a small one) takes longer than retrieving and displaying a page full of
text. Of course, nothing is suspicious about this. Files with graphics images are larger than HTML
documents, and therefore take longer to send across the Net.

P:\010Comp\Tip&Tec\394-8\ch04.vp
Friday, January 04, 2002 4:18:24 PM

Color profile: Generic CMYK printer profile
Composite Default screen

When you want to create a three-dimensional effect by adding a drop-shadow to banner text,
you might guess that you must first convert the text to an image and then apply the shadow effect.
However, a graphics image of the banner text has a much larger file size than the number of bytes
needed to store even two copies of the text. Therefore, to minimize download time, use only text for
the banner rather than a picture of it. By using CSS positioning statements and ordinary text, you can
create a banner.

To create a text banner with a drop shadow (such as the one shown in Figure 4-15), you need two
text elements—one for the banner and one for the shadow. In your style sheet, insert a rule you can
use to style and position the banner element and a second rule you can use to style and position the
drop-shadow text. Although the banner element can be any color you want, use a shade of gray or
black for the drop shadow.

Let’s start by creating a CSS class such as the following, which makes the banner text
look the way you want and positions the banner on the Web page:

.banner {position:absolute; top:7px; left:1px

font-size:100px;

font-family:"arial black", impact Helvetica, verdana;

color:red}

C h a p t e r 4 : C a s c a d i n g S t y l e S h e e t s (C S S) 1 9 3

Tip&Tec / HTML & Web Design Tips & Techniques / Anderson, King, Jamsa / 9394-8 / Chapter 4

Figure 4-15 A text banner with a drop-shadow

P:\010Comp\Tip&Tec\394-8\ch04.vp
Friday, January 04, 2002 4:18:25 PM

Color profile: Generic CMYK printer profile
Composite Default screen

1 9 4 H T M L & W e b D e s i g n T i p s & T e c h n i q u e s

Tip&Tec / HTML & Web Design Tips & Techniques / Anderson, King, Jamsa / 9394-8 / Chapter 4

Next, add a drop shadow class, which uses the same font-size and typeface as the banner class, to
the style sheet. As shown here, specify top and left values that will position the shadow class element
slightly below and to the right of the position specified within the banner class:

.shadow {position:absolute; top:15px; left:7px

font-size:100px;

font-family:"arial black" impact Helvetica verdana;

color:gray}

In this example, the browser will place text styled as banner seven pixels down from the top and
one pixel away from the left-hand side of the page. Meanwhile, the browser will place text styled as
shadow fifteen pixels down and seven pixels away from the left-hand side of the page.

Finally, apply the banner and shadow classes you defined within the style sheet to two identical
text elements in separate division containers, as shown here:

<body>

<div class="banner">HTML & Web Design</div>

<div class="shadow">HTML & Web Design</div>

</body>

Experiment with the top and left values in the shadow class until you get the shadow effect you want.

Applying a Border Graphic
Whether you are creating a business or a personal Web site, add a distinctive border or side panel along
the left-hand side on each of the site’s pages. By adding a decoration, you make a Web page less
intimidating. As a result, your visitor feels comfortable and stays longer, especially on pages with
few pictures and lots of text. In addition, a border provides a visual clue that lets visitors know if they
are still on your site. When the border disappears or changes radically, visitors know a hyperlink has
taken them elsewhere on the Web. Finally, on Web sites with several large sections or departments,
use a slightly different border for pages in each section to help visitors keep track of where they are
on the site.

Style sheets make it easy to create a border and to change its appearance throughout the
site’s pages from time to time. Typically, a border consists of a small, rectangular image

or tile that the Web browser displays repeatedly in the Web page background. Not surprisingly then,
you control a border with the CSS background-image property. In the center of the Web page shown
in Figure 4-16, for example, is the tile used to create the side panel that runs down the left-hand side
of the page.

The first step in creating a border is to make or download a small GIF image the Web browser
can repeat to create a border. Use an image editing program such as Photoshop to create your own
border tile, or use a tile from the Microsoft Office clip art gallery or from such Web sites as the

P:\010Comp\Tip&Tec\394-8\ch04.vp
Friday, January 04, 2002 4:18:25 PM

Color profile: Generic CMYK printer profile
Composite Default screen

C h a p t e r 4 : C a s c a d i n g S t y l e S h e e t s (C S S) 1 9 5

Tip&Tec / HTML & Web Design Tips & Techniques / Anderson, King, Jamsa / 9394-8 / Chapter 4

Microsoft Design Gallery Live (at http://dgl.microsoft.com). After you have the tile you want, store the
image in a folder (such as images) on your site. Next, create a style sheet rule such as the following:

body {background-image:URL(images/TileFilename.gif);

background-repeat:repeat-y}

In this example, the background-image property gives the relative pathname of the file with the
graphics image you want the Web browser to display. The background-repeat property tells the Web
browser to repeat, or tile, the image vertically. Because no background-position was specified, the
browser will tile the image along the left-hand border of the Web page. Note that you will replace
images/TileFilename.gif used in this example with the relative address and filename of your own
border tile.

To keep your Web site fresh, you may want to change your page borders periodically. Fortunately,
CSS makes the job simple. Create or download a new border title and save it to a file in your site’s
images folder. Then, replace the pathname between the parentheses that follow URL in the previous
rule with the pathname of the file with the new border tile graphic.

Figure 4-16 Web page with a border tile and a side panel, or border along the left-hand side
of the Web page

P:\010Comp\Tip&Tec\394-8\ch04.vp
Friday, January 04, 2002 4:18:26 PM

Color profile: Generic CMYK printer profile
Composite Default screen

If you have a site with sections and you want to distinguish them from one another by using a
different border for each one, create a body selector (b) class for each section. Thus, your style sheet
will have rules something like the following:

body.main {background-image:URL(images/TileFilename1.gif);

background-repeat:repeat-y}

body.products {background-image:URL(images/TileFilename2.gif);

background-repeat:repeat-y}

body.custService {background-image:URL(images/TileFilename3.gif);

background-repeat:repeat-y}

body.employmentOps {background-image:URL(images/TileFilename4.gif);

background-repeat:repeat-y}

To change the border for any section’s pages, simply update the URL of the border tile graphic
specified within the section’s body selector (b) class. Of course, when you create multiple body
selector (b) classes, you must apply the appropriate class to the <body> tag within the Web page
document. For example, the <body> tag for each of the Web pages in the site’s Employment
Opportunity section would look like this:

<body class="employmentOps">

Positioning Background Images and Watermarks
These days, few Web sites have pages with only black text against a white background. To give their
Web sites a distinctive look and feel, designers normally apply at least a background color or add a
Web page border or side panel (as shown in the preceding Tip). If a solid-color background does not
give your Web pages the look you want, use style sheet rules to create a textured background or perhaps
display the company logo as a watermark.

The first step in creating a textured background is to either create or download a small
GIF image (the texture tile) you want the Web browser to repeat on each Web page

background. Use an image-editing program such as Photoshop to create an image about 50 pixels
square, or use a tile from the Microsoft Office clip art gallery or from sites like the Microsoft Design
Gallery Live (at http://dgl.microsoft.com). After you have the tile you want, store the image in a
folder (such as images) on your site. Next, create a style sheet rule such as the following:

body {background-image:url(images/marbleTile.gif)}

The Web browser will tile (that is, display repeatedly) the graphics image in the file specified within
the parentheses () following url in the background-image declaration. In this example, the Web browser
will fill the Web page background with the texture in marbleTile.gif, as shown in Figure 4-17. To
create the textured background for your Web pages, replace images/marbleTile.gif with the relative
address and filename in which you stored your background tile.

1 9 6 H T M L & W e b D e s i g n T i p s & T e c h n i q u e s

Tip&Tec / HTML & Web Design Tips & Techniques / Anderson, King, Jamsa / 9394-8 / Chapter 4

P:\010Comp\Tip&Tec\394-8\ch04.vp
Friday, January 04, 2002 4:18:26 PM

Color profile: Generic CMYK printer profile
Composite Default screen

A watermark is similar to a textured background in that a watermark is a graphics image you want
the Web browser to display behind other content. However, rather than tile the watermark graphic to
fill the Web page background, you want the Web browser to display the picture only once. Moreover,
you want the watermark to remain in one place as the visitor scrolls through the page content in the
foreground. Fortunately, CSS provides background properties that let you position a single copy of
the watermark graphic in the page background and keep it stationary.

Unlike the 50-pixel-square tile you used to create a textured background, the watermark graphic
must be a regular-size picture. For example, if want to use your company logo as the watermark, make
the logo graphic the size you want it to appear in the Web page background, as shown in Figure 4-18.

To insert a watermark at the center of the Web page background, add the following rule to your
style sheet:

body {background-image:url(images/LightBulb.gif);

background-repeat:no-repeat;

background-position:center;

background-attachment:fixed}

As was the case with the textured background in the previous example, the background-image
property specifies the name of the graphics file the Web browser is to display. In this example, the Web
browser will display the image in LightBulb.gif. For your style sheet rule, replace images/LightBulb.gif
with the relative address and filename of the watermark you want to use. The background-repeat setting

C h a p t e r 4 : C a s c a d i n g S t y l e S h e e t s (C S S) 1 9 7

Tip&Tec / HTML & Web Design Tips & Techniques / Anderson, King, Jamsa / 9394-8 / Chapter 4

Figure 4-17 A Web page with a textured background

P:\010Comp\Tip&Tec\394-8\ch04.vp
Friday, January 04, 2002 4:18:27 PM

Color profile: Generic CMYK printer profile
Composite Default screen

of no-repeat tells the Web browser to display the graphics image only once. Meanwhile, the background-
position property tells the Web browser where to place the image, and the fixed specification for
background-attachment keeps the watermark stationary.

You are not limited to placing a watermark in the center of the page background. CSS syntax
gives you three ways in which to specify where you want the watermark to go: by keyword, by length
values, and by percentage values. To position by keyword, the valid position values are top, bottom,
left, right, and (as you saw previously) center. Thus, to place a watermark (or for that matter, any
graphics image) at the lower right-hand corner of the Web page background, set the background-
position property as follows:

background-position:bottom right;

Length values give you precise control over where the Web browser will place the watermark.
You can use any CSS length unit to specify the distance away from the left-hand side and from the
top of the page you want the browser to display the graphics image. For example, to display the image
70 pixels in (away) from the left-hand side of the page and 100 pixels down from the top, you would
write the background-position declaration as follows:

background-position:70px 100px;

Note that you specify the distance away from the left-hand side first, followed by the distance
down from the top of the Web page.

1 9 8 H T M L & W e b D e s i g n T i p s & T e c h n i q u e s

Tip&Tec / HTML & Web Design Tips & Techniques / Anderson, King, Jamsa / 9394-8 / Chapter 4

Figure 4-18 A Web page with a company logo (the light bulb) as a watermark

P:\010Comp\Tip&Tec\394-8\ch04.vp
Friday, January 04, 2002 4:18:27 PM

Color profile: Generic CMYK printer profile
Composite Default screen

TE
AM
FL
Y

Team-Fly®

C h a p t e r 4 : C a s c a d i n g S t y l e S h e e t s (C S S) 1 9 9

Tip&Tec / HTML & Web Design Tips & Techniques / Anderson, King, Jamsa / 9394-8 / Chapter 4

Percentage values used to position a background image are similar in function to length units.
However, instead of specifying an exact location for the left-hand side and top of the image, you
specify the distance the image is to be away from the sides of the application window as a percentage
of the window’s dimensions. For example, to start the background image 25 percent of the way toward
the right-hand side of the application window and 50 percent of the way toward the bottom of window,
declare the background-position as follows:

background-position:25% 75%;

Note that as you change the dimensions of the browser’s application window, the position of the
watermark will change to keep the top and left-hand sides of the image at the same percentage length
away from the sides of the application window.

Floating Images and Text
Most Web pages have both images and text. Although the old adage about a picture being worth a
thousand words may be true, pictures have not yet replaced words on the Web. In fact, a page with
nothing but pictures is just as daunting to the site visitor as a page with only text. As such, when
creating a Web site, a large part of your page layout work will involve getting text to flow around
your images. In the past, you had only the align attribute, which, when used within an tag,
instructed the Web browser to flow text along the left- or right-hand side of a picture. Nowadays,
you can use the CSS float property that lets you flow text not only alongside images, but also next
to other Web page elements, as shown in Figure 4-19.

When you apply the CSS float property to an element, you take the element out of the
normal flow and “float” the element to the left or right of the elements that follow it

within the Web page HTML. Suppose, for example, that the Web page HTML contains an tag
followed by paragraph text. During the “normal” flow, the Web browser would place the picture inserted
by the image onto the Web page and then move to the left margin of the line below the picture before
displaying the text. To have the Web browser “float” the image to the left of the paragraph text (as
shown at the top of Figure 4-19), add the float property to the tag, as shown here:

<img style="float:left" border="0" src="Programmer.gif"

width="146" height="148">

Similarly, to have the paragraph text appear to the left of an image, instruct the Web browser to
float the image to the right of the subsequent elements in the HTML document as follows:

<img style="float:right" border="0"

src="images/Shakespeare.gif" width="110" height="132">

P:\010Comp\Tip&Tec\394-8\ch04.vp
Friday, January 04, 2002 4:18:28 PM

Color profile: Generic CMYK printer profile
Composite Default screen

2 0 0 H T M L & W e b D e s i g n T i p s & T e c h n i q u e s

Tip&Tec / HTML & Web Design Tips & Techniques / Anderson, King, Jamsa / 9394-8 / Chapter 4

As mentioned previously, you can use the float attribute with other Web page elements in addition
to images. For example, to restyle a level-6 heading tag so that it floats to the left of paragraph text
(as shown at the center of Figure 4-19), add the following rule to your style sheet:

h6 {float:left}

In fact, you can float any container element or object you put into a container. Suppose for example,
that you want to create a fancy initial cap such as the S that starts the last paragraph near the bottom
of Figure 4-19. First, create a CSS class such as the following in your style sheet:

.fancyLetter {float:left; font-size:3em; font-style:bold;

color:yellow; background-color:blue;

border-style:solid; border-width:6px;

border-color:gray}

Then, place the letter you want to style within a span (container) element as follows:

Shakespeare's <i>Sonnets</i>

are 154 short poems published together with a poem called...

Figure 4-19 A Web page with a floating image, heading, and character within a span container

P:\010Comp\Tip&Tec\394-8\ch04.vp
Friday, January 04, 2002 4:18:28 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Customizing the Appearance of Lists
HTML provides two types of lists: ordered (numbered) and unordered (bulleted). You use an ordered
list when the arrangement (that is, the order) of the items in the list is important. For example, you
would use an ordered list to show the steps in a procedure, such as cooking instructions in a recipe or
a list of top ten song titles (in order by units sold). Conversely, to list the items used in a recipe or the
names of books written by an author, you would use an unordered list. Both types of lists are simple
in form: the list-item marker (a number, letter, graphics image, or bullet character) followed by the
list item. However, you can use CSS rules to work with the appearance of a list so that it fits in with
the overall look of the Web page on which the list appears.

Use the CSS list-style-type property to specify the appearance of the list-item markers
that precede the items in a list. The valid list-style-type values are as follows:

disk A filled black circle (such as the bullet character that follows the items in this list)

circle An open circle

square A filled black square

decimal 1, 2, 3, 4, 5, and so on

decimal-leading-zero 01, 02, …, 98, 99; or 001, 002, …, 099, 100; and so on

lower-roman i, ii, iii, iv, v, and so on

upper-roman I, II, III, IV, V, and so on

lower-greek Traditional Greek numbering (symbols for: alpha, beta, gamma, and so on)

lower-alpha a, b, c, d, e, and so on

lower-latin a, b, c, d, e, and so on

upper-alpha A, B, C, D, E, and so on

upper-latin A, B, C, D, E, and so on

hebrew Traditional Hebrew numbering

armenian Traditional Armenian numbering

georgian Georgian numbering (an, ban, gan, …, he, tan, in, in-an)

cjk-ideographic Plain ideographic numbers

hirgana a, i, u, e, o, ka, ki, and so on

katana A, I, U, E, O, KA, KI, and so on

hiragana-iroha i, ro, ha, ni, ho, he, to, and so on

katakana-iroha I, RO, HA, NI, HO, HE, TO, and so on

none No bullet character, just a blank

inherit Use the parent element’s list style

C h a p t e r 4 : C a s c a d i n g S t y l e S h e e t s (C S S) 2 0 1

Tip&Tec / HTML & Web Design Tips & Techniques / Anderson, King, Jamsa / 9394-8 / Chapter 4

P:\010Comp\Tip&Tec\394-8\ch04.vp
Friday, January 04, 2002 4:18:29 PM

Color profile: Generic CMYK printer profile
Composite Default screen

2 0 2 H T M L & W e b D e s i g n T i p s & T e c h n i q u e s

Tip&Tec / HTML & Web Design Tips & Techniques / Anderson, King, Jamsa / 9394-8 / Chapter 4

To apply a style to the item-markers in a list, use a style attribute within the start list tag. For
example, to use uppercase roman numerals for the items in a numbered (that is, ordered) list, write
the tag as follows:

<ol style="list-style-type:upper-roman">

Similarly, to use a square for the bullet that precedes each item in an unordered list, write the
 tag as:

<ul style="list-style-type:square>

When working with an unordered list, you can use the list-style-image property to specify a
graphics image to replace the standard (disk, circle, and square) list-item markers. For example, the
following tag instructs the Web browser to use the graphics image in FancyDot.gif as the unordered
list’s bullet character:

<ul style="list-style-image:url(images/FancyDot.gif)">

Finally, use the list-style-position property to control the position of the list-item marker in relation
to the list-item text. You can assign one of two values to list-style-position: inside and outside. Set the
property to outside when you want the browser to place the list-item marker outside the list-item text.
As shown by the first and third lists in Figure 4-20, when set to outside, all list-item text appears to
the right of the list-item marker—even when the text for an item takes more than one line.

Conversely, set the list-style-position to inside as shown here, when you want the browser to make
the list-item marker a part of the list-item text:

<ul style="list-style-type:square; list-style-position:inside">

The list-style-type of the second list in Figure 4-20 is set to inside. Notice how the bullets (the
graphics dots) in the second list line up with the first letter of the list items in the first and third lists.
The reason for the shift to the right is that the Web browser rendered the list-item marker inside (that
is, as part of) each list-item.

Although the examples in this Tip show that you can style lists inline, take advantage of the site-wide
formatting power that style sheets provide. Rather than format unordered and ordered lists individually,
decide on a look that works best for your site. Then, write CSS rules that make all lists of each type
look the same. For example, if you like the look that the inside list-style-position value gives your
list, and you want to use FancyDot.gif as bullets, write the following rule within your style sheet:

ul {list-style:url(images/FancyDot.gif) inside}

Note that CSS syntax lets you use shorthand when writing rules. When the values declared in a rule
are unique to a specific property, the Web browser applies the value to the property automatically. The
shorthand used in this example is equivalent to writing the same CSS rule as follows:

ul {list-style-image:url(images/FancyDot.gif);

list-style-position:inside}

P:\010Comp\Tip&Tec\394-8\ch04.vp
Friday, January 04, 2002 4:18:29 PM

Color profile: Generic CMYK printer profile
Composite Default screen

C h a p t e r 4 : C a s c a d i n g S t y l e S h e e t s (C S S) 2 0 3

Tip&Tec / HTML & Web Design Tips & Techniques / Anderson, King, Jamsa / 9394-8 / Chapter 4

Creating Text and Image Effects with Filters
When you create special effects with text instead of using a graphics image that shows the effect, the
Web browser can retrieve and display your Web page more quickly. Unfortunately, some Web browsers
do not yet support CSS. As a result, when you use features such as absolute positioning, some visitors
will not see the special effect you are trying to create. In fact, depending on the CSS properties used to
produce the effect, some visitors may see a portion of your Web page as a mishmash of text. In short,
CSS code tricks do not degrade well in browsers without support for some of the properties exploited
to create a special effect.

Microsoft enhanced CSS by adding filter properties that let Internet Explorer (version 4 and up)
work with both text and image elements to produce interesting effects. Web browsers unable to apply
the filter specified (as an in-line style or within a style sheet) will simply display the element in its
original form. As a result, although your page will not pack the punch you want, visitors using browsers
without filter support will still be able to see your page content.

Figure 4-20 Ordered and unordered lists with long item text that wraps onto a second line

P:\010Comp\Tip&Tec\394-8\ch04.vp
Friday, January 04, 2002 4:18:30 PM

Color profile: Generic CMYK printer profile
Composite Default screen

2 0 4 H T M L & W e b D e s i g n T i p s & T e c h n i q u e s

Tip&Tec / HTML & Web Design Tips & Techniques / Anderson, King, Jamsa / 9394-8 / Chapter 4

To create an effect using a filter property, apply the filter as you would any other CSS
style. For example, to create a hyperlink with the glow effect shown in Figure 4-21, use

an inline style similar to this:

<a style="filter:glow(); width:100%;

font-size:30pt; text-decoration:none"

href="http://www.NVBizNet.com">Glow

� NOTE

Filters will not work (that is, they will not produce their defined special effect), if you do not set the
element’s width property. For graphics elements, set the width equal to the actual width of the image;
for text elements, set the width to 100% or to the actual width of the text element.

Figure 4-21 Web page with text showing the effect of various filters

P:\010Comp\Tip&Tec\394-8\ch04.vp
Friday, January 04, 2002 4:18:31 PM

Color profile: Generic CMYK printer profile
Composite Default screen

The available filter properties are as follows:

alpha Lets you make an element partially or fully transparent

blur Blurs an element as if it were moving at high speed

chroma Makes the specified color within an element transparent

fliph Flips an element horizontally

flipv Flips an element vertically

glow Makes an element glow by adding a radiance around its outside edges

gray Renders an element black and white using a gray scale to represent the element’s
original colors

invert Renders an element in its reverse color and brightness values

light Projects a light source on an element

mask Renders an element with the specified background color and transparent foreground color

shadow Renders the element with a shadow

dropshadow Renders the element with a drop-shadow

wave Renders the element with a wave by creating a sine wave distortion along the element’s x-axis

xray Renders the element in black and white with reverse color and brightness values

Table 4-1 shows the syntax of the filter declaration you must add within an inline style statement
or CSS rule in a style sheet. Remember, in order for the filter property to have any effect on an element,
you must also set the element’s width.

C h a p t e r 4 : C a s c a d i n g S t y l e S h e e t s (C S S) 2 0 5

Tip&Tec / HTML & Web Design Tips & Techniques / Anderson, King, Jamsa / 9394-8 / Chapter 4

Property Values Syntax

alpha opacity level: 0–100 (0 = transparent, 100 = opaque)
finishopacity level: 0–100 (0 = transparent, 100 = opaque)
style: 0 = uniform, 1 = linear,
2 = radial, 3 = rectangular
startx: x-coordinate for start of opacity gradient
starty: y-coordinate for start of opacity gradient
finishx: x-coordinate for finish of opacity gradient,
finishy: y-coordinate for finish of opacity gradient

filter:alpha(opacity=0,
finishopacity=75, style=2,
startx=0, starty=0,
finishx=140, finishy=270)

blur add: true = add original object to blurred object
direction: direction of motion causing the blur; 0–315
in 45-degree increments
strength: integer representing the “depth” of the
motion blur

filter:blur(add=true, direction=45,
strength=5)

Table 4-1 Filter Properties, Values, and Declaration Syntax

P:\010Comp\Tip&Tec\394-8\ch04.vp
Friday, January 04, 2002 4:18:31 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Aligning Labels with Form Elements and Adding Color
to Forms
As you learned in Chapter 3 of this book, forms let your site visitors send information to you, search
a database, or send data of some kind to an application or script running at the Web server. Forms
consist mainly of rectangular text input areas, checkboxes, radio buttons, and a couple of pushbuttons
(used to submit the form results or reset the form’s input elements). In general, a form’s input elements
and pushbuttons look the same from one form to the next.

Using CSS rules, you can add a splash of color that attracts attention to a form. By using a distinctive
color for the blank space that surrounds form elements, you let visitors see at a glance just how many
fields the form contains. Moreover, by applying a CSS rule that highlights the text labels next to
required fields, you can let visitors knows which input they must fill out before submitting the form’s

2 0 6 H T M L & W e b D e s i g n T i p s & T e c h n i q u e s

Tip&Tec / HTML & Web Design Tips & Techniques / Anderson, King, Jamsa / 9394-8 / Chapter 4

Property Values Syntax

chroma color: color to make transparent; #rrggbb triplet filter:chroma(color=#FFFFFF)

dropshadow color: shadow color; #rrggbb triplet
offx: horizontal shadow offset
offy: vertical shadow offset
positive: true = create shadow for nontransparent pixels,
false = create shadow for transparent pixels

filter:dropshadow(color=#6699CC,
offx=5, offy=5, positive=true)

fliph filter:fliph

flipv filter:flipv

glow color: color for glow; #rrggbb triplet
strength: glow intensity 0–100

filter:glow(color=#6699CC,
strength=5)

gray filter:gray

invert filter:invert

mask color: mask color; #rrggbb triplet filter:mask(color=#FFFFE0)

shadow color: shadow color; #rrggbb triplet
direction: direction shadow is cast; 0–315 in 45-degree
increments

filter:shadow(color=ff0000,
direction=90)

wave add: true add original object to filtered object
freq: integer number of waves in distortion
lightstrength: strength of light on the wave effect
as a percentage
phase: angular offset of wave as a percentage of
360 degrees
strength: integer intensity of wave effect

filter:wave(add=true, freq=1,
lightstrength=3, phase=0,
strength=5)

xray filter:xray

Table 4-1 Filter Properties, Values, and Declaration Syntax (continued)

P:\010Comp\Tip&Tec\394-8\ch04.vp
Friday, January 04, 2002 4:18:31 PM

Color profile: Generic CMYK printer profile
Composite Default screen

data to the Web server for processing. Hidden behind the scenes, CSS also provides an alternate tool
you can use to lay out (that is, to position) the text labels, input elements, and pushbuttons on a form.

To give your form a background color that sets it off from other content on a page, place
the form’s elements into a division container, as shown here:

<div style="width:475px; background-color:#FFFFE0;

border:limegreen 1px solid; padding:5px">

<form>

... Form Elements & Label Text ...

</form>

</div>

In this example, the <div> tag defines a 475-pixel-wide area, which will hold the form’s elements.
Although the division’s width is fixed (at 475 pixels, in this example), the space required by the form’s
elements and their placement within the form determine the length of the form’s (and therefore the
division’s) rectangular area on the page.

In place of HTML table rows and cells, use <div> and elements to position elements and
labels next to the elements on the form. To style form elements you place within division and span
containers, create the following three classes in your style sheet:

div.row {clear:both; padding-top:5px; font-size:12pt}

div.row {clear:both; padding-top:12px}

div.row span.label{float:left; width:110px; text-align:right}

div.row span.element {float:right; width:375px; text-algin:left}

When applied, the float property in the span.label class and the one in the span.element class tell
the Web browser where to place elements within the current container. Styling text elements (that is,
labels) using the span.label class floats the text to the left of other objects within the current division
container. Conversely, the span.element class applied to a form element floats the element to the right
of other container objects.

Use the div.row, span.label, and span.element classes defined in the preceding example to style
the <div> and tags that contain the form’s labels and input elements as follows to create the
form shown in Figure 4-22:

<body>

<div style="width:475px; background-color:#FFFFE0;

border:limegreen 1px solid; padding:5px>"

<form>

<div class="row">

First Name:

<input type="text" size="30">

</div>

<div class="row">

C h a p t e r 4 : C a s c a d i n g S t y l e S h e e t s (C S S) 2 0 7

Tip&Tec / HTML & Web Design Tips & Techniques / Anderson, King, Jamsa / 9394-8 / Chapter 4

P:\010Comp\Tip&Tec\394-8\ch04.vp
Friday, January 04, 2002 4:18:32 PM

Color profile: Generic CMYK printer profile
Composite Default screen

2 0 8 H T M L & W e b D e s i g n T i p s & T e c h n i q u e s

Tip&Tec / HTML & Web Design Tips & Techniques / Anderson, King, Jamsa / 9394-8 / Chapter 4

Last Name:

<input type="text" size="30">

</div>

<div class="row">

E-Mail Address:

<input type="text" size="30">

</div>

<div class="row">

Comments:

<textarea cols="40" rows="10"></textarea>

<p> </p>

</div>

<div class="row">

 <input type="submit" value="Submit">

 <input type="reset" value="Reset">

</div>

</form>

</div>

</body>

Figure 4-22 Form with input elements and text labels styled by CSS classes

P:\010Comp\Tip&Tec\394-8\ch04.vp
Friday, January 04, 2002 4:18:32 PM

Color profile: Generic CMYK printer profile
Composite Default screen

TE
AM
FL
Y

Team-Fly®

C h a p t e r 4 : C a s c a d i n g S t y l e S h e e t s (C S S) 2 0 9

Tip&Tec / HTML & Web Design Tips & Techniques / Anderson, King, Jamsa / 9394-8 / Chapter 4

Now, suppose that you want to indicate form elements the visitor must complete prior to
submitting the form (that is, you want to denote required fields). Create a CSS class such as
the span.reqLabel class shown here:

div.row span.reqLabel{float:left; width:114px; text-align:right;

color:red; font-weight:bold; background-color:yellow}

Then, use the class attribute to style each span element using the span.reqLabel class. Be sure
to include—somewhere near the form’s Submit button—text that lets the visitor know what red,
boldface labels mean.

By the way, the 475-pixel width assigned to the preceding form’s <div> container is not an arbitrary
value. The form used in this Tip requires 475 pixels to display at the left side of the form, E-mail address:
in boldface (not shown in Figure 4-22) and the text area flush against the right-hand side at the bottom
of the form. To determine the widths of the division tags your form needs, change the span.label and
span.element classes to display a dashed border around each division, as shown here:

div.row span.label{float:left; width:110px; text-align:right;

border:1px dotted}

div.row span.element {float:right; width:345px;

text-algin:left; border:1px dotted}

Displaying the dashed border around divisions makes it easy to see the effects of changing the
division’s width within the span.label and span.element declarations. Reduce the width of each division
container class until the dashed border just surrounds the label or input element within the division.
Next, reduce the width of the form’s enclosing division container until the border around the form lies
just outside the borders of the division containers that hold the form’s elements. Be sure to remove
the border property declaration from the span.label and span.element class declarations before you
publish the Web page with the form to the Web site.

Displaying a Gallery of Thumbnails with Captions
As you already know, a thumbnail is a smaller version of a full-size image. Thumbnails take significantly
less time to download and display than their corresponding full-size images. As the size of an image
displayed onscreen increases, so does the file size of the graphics file in which the image is stored. The
larger the file size, the longer it takes the browser to download and display an image.

You use thumbnails in place of full-size images when visitors are likely to view only some of the
images in a collection and to display more images onscreen at once. Although you could use hypertext
links alone to cut down the Web page display time even more, thumbnails at least let the visitor see
what full-size images look like. Suppose for example, that you create a Web site for a realtor who has
full-screen, digital pictures of each house currently under contract. Rather than make visitors wait to
download all the full-screen images of houses in the realtor’s inventory, display each picture as a
thumbnail about one-tenth the size of the original picture. You can then display ten pictures within

P:\010Comp\Tip&Tec\394-8\ch04.vp
Friday, January 04, 2002 4:18:32 PM

Color profile: Generic CMYK printer profile
Composite Default screen

the space and time required to display a single full-screen image. When the site visitor sees the
thumbnail with a description of interest, the visitor will click the thumbnail to retrieve and display
a full-screen picture of the house.

If you use an HTML table to lay out the thumbnails and captions, the browser cannot vary the
number of thumbnails displayed in a row, based solely on the size of the application window. If you
create a table with ten columns, for example, the browser must display all ten thumbnails horizontally—
even when only five thumbnails at a time fit horizontally within the left- and right-hand sides of the
application window. As a result, the ten-column table will force the visitor to scroll horizontally to
see additional images within each row. Using CSS, you can let the Web browser vary the number of
thumbnails displayed in any row based on the width of the browser application window. Thus, the
requirements of our variable-width thumbnail gallery are relatively straightforward. Within the HTML
document, write the code that inserts an image followed by a
 tag and a text description that the
browser centers below the image.

To let the browser determine the number of images it will place horizontally across the
page, place each image (and its caption) within a separate <div> container and float each

<div> container to the left. In addition, style the paragraph element within each <div> container such
that the Web browser will center the paragraph text between the left- and right-hand sides of the
container, as shown here:

div.fLeft {float:left; padding-left:5px; padding-right:5px}

div.fLeft p {text-align:center}

The first rule creates a fLeft class you can apply to a <div> container to float a container (and its
contents) to the left of the element that follows it within the Web page HTML. Whenever there is not
enough room to display the next <div> container within the application window on the current line,
the Web browser will move to the line below the current <div> containers, and display the next container
flush with the left-hand side of the page. The second rule tells the browser to center paragraph text
between the left- and right-hand sides of <div> containers styled using the fLeft class.

Thus, the code to display variable numbers of thumbnails and captions becomes this:

<body>

<div class="fLeft">

<img src="house1_sm.JPG" width="100" height="100" border=0

alt="house 1"
<p>Description /
Caption 1

 </p>

</div>

<div class="fLeft">

<img src="house2_sm.JPG" width="100" height="100" border=0

alt="house 2"
<p>Description /
Caption 2

 </p>

</div>

<div class="fLeft">

2 1 0 H T M L & W e b D e s i g n T i p s & T e c h n i q u e s

Tip&Tec / HTML & Web Design Tips & Techniques / Anderson, King, Jamsa / 9394-8 / Chapter 4

P:\010Comp\Tip&Tec\394-8\ch04.vp
Friday, January 04, 2002 4:18:33 PM

Color profile: Generic CMYK printer profile
Composite Default screen

<img src="house3_sm.JPG" width="100" height="100" border=0

alt="house 3"
<p>Description /
Caption 3

 </p>

</div>

<div class="fLeft">

<img src="house4_sm.JPG" width="100" height="100" border=0

alt="house 4"
<p>Description /
Caption 4

 </p>

</div>

</body>

To work properly, the code in this example requires that each caption contain the same number of
lines, and the length of each line must be no wider than the thumbnail below which the caption is to
appear. If one or more lines within the caption are wider than the image, the Web browser will still
center the caption text relative to the sides of the container. However, the image will appear to the
left and not centered above the text. Use padding-left and padding-right declarations within the div.fLeft
class definition to add blank space between the sides of the image and the left- and right-hand walls
of the <div> container as shown in Figure 4-23.

C h a p t e r 4 : C a s c a d i n g S t y l e S h e e t s (C S S) 2 1 1

Tip&Tec / HTML & Web Design Tips & Techniques / Anderson, King, Jamsa / 9394-8 / Chapter 4

Figure 4-23 Thumbnails separated by left and right padding with centered captions

P:\010Comp\Tip&Tec\394-8\ch04.vp
Friday, January 04, 2002 4:18:33 PM

Color profile: Generic CMYK printer profile
Composite Default screen

2 1 2 H T M L & W e b D e s i g n T i p s & T e c h n i q u e s

Tip&Tec / HTML & Web Design Tips & Techniques / Anderson, King, Jamsa / 9394-8 / Chapter 4

Center the picture within the container by using width padding between the image and the left-
and right-hand sides of the <div> container. The Web browser will then center the text below the
picture—given that the total width of the image plus the blank padding on either side of the image
is greater than the length of each line within the caption.

Controlling the Cursor
In addition to specifying the appearance of the text on a Web page, you can create CSS rules that
instruct the Web browser to display a specific mouse pointer. Normally, you let the Web browser
select the cursor automatically based on the type of content currently under the mouse pointer. For
example, when the visitor moves the mouse over a hyperlink, the Web browser changes the default
mouse pointer (the arrow) into a hand. Changing the cursor from the default arrow to something else
lets the visitor know that there is something special about the text or image under the mouse pointer.

At times, however, the Web browser fails to change the cursor even though the HTML contains
a hidden feature the visitor may find useful. For example, you can include the title attribute in many
HTML tags. The title attribute, when present, instructs the Web browser to display a tool tip when
the mouse pointer hovers over an element whose tag contains the attribute. Suppose for example,
that your Web page contained the following HTML:

<acronym title="HTML & Web Design Tips and Techniques">

HTWDTT</acronym> provides great tips you can use to exploit Web

technologies.

If the site visitor hovers the mouse pointer over HWDTT in HTWDTT provides great tips you can
use to exploit Web technologies, the Web browser displays the tool tip HTML & Web Design Tips
and Techniques after a few seconds.

Unfortunately, Web browsers do nothing to alert site visitors to the availability of a tool
tip defined by an HTML tag’s title attribute. To provide a visual clue that there is “something”

hidden from view within the Web page HTML, you can use the CSS cursor property to display the
help cursor (typically, a question mark), when the visitor moves the mouse over a Web page element.
For example, to change the mouse pointer to the question (?) mark whenever the visitor moves the
mouse over an <acronym>, <abbr>, or user-defined help class element, include the following
declarations in your style sheet:

abbr, acronym, .help {border-bottom:1px dotted black;

cursor:help}

The CSS rule in this example actually provides two visual cues, as shown in Figure 4-24.
By underlining text—with a dotted and not a solid underline—you show the site visitor the

abbreviations, acronyms, and help text throughout the Web page. (Wherever the visitor sees text

P:\010Comp\Tip&Tec\394-8\ch04.vp
Friday, January 04, 2002 4:18:34 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Tip&Tec / HTML & Web Design Tips & Techniques / Anderson, King, Jamsa / 9394-8 / Chapter 4

underlined with black dots, he or she knows that more information is available.) Moreover, to prevent
the visitor from confusing the “help available” underlined text with hypertext links, the rule instructs
the Web browser to display the help cursor (the question mark) as the visitor moves across text with
title information available.

Now, suppose that you rewrite the code in the previous example as follows:

<acronym title="HTML & Web Design Tips and Techniques">

HTWDTT</acronym> provides great tips you can use to exploit

Web technologies.

The Web browser will then place a broken (dotted) line beneath both HWDTT and Web technologies
to let the visitor know that more information is available. As the visitor moves the mouse pointer over
either text element, the Web browser changes the default mouse pointer to a question mark. In addition,
if the visitor lets the question mark mouse pointer hover in place for a few seconds, the Web browser
will display the tool tip defined by the title attribute within the element’s tag in the Web page HTML.

Table 4-2 gives the available cursor property values and a description of each cursor (that is, mouse
pointer) type you can specify.

C h a p t e r 4 : C a s c a d i n g S t y l e S h e e t s (C S S) 2 1 3

Figure 4-24 Web page with tool tip–available items underlined

P:\010Comp\Tip&Tec\394-8\ch04.vp
Friday, January 04, 2002 4:18:34 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Layering Web Page Elements
When positioning elements on a Web page, you normally work in two dimensions. For example, to
position a form 75 pixels away from the left-hand side and 50 pixels from the top of the page, you
would use a <form> tag similar to the following:

<form style="position:absolute; left:75; top:50">

Of course, your <form> tag will have additional attributes, such as action and method (to name
just two), which tell the browser where to send the form results and how to package them, respectively.
However, the point to understand here is that CSS rules let you use absolute and relative positioning
to place any container element (and thereby the element(s) within the container) where you want the
content to appear on the Web page. With absolute positioning, you specify the distance the browser is
to place the element away from the left-hand side and top of the Web page. Similarly, relative positioning
means that the position you specify is relative to an element’s natural position in the document’s
flow. (An element’s “natural position” is its location on the page absent CSS positioning instructions.)

In reality, when you specify an element’s position in two-dimensions, the Web browser adds a
third dimension (depth) behind the scenes. Suppose, for example, your HTML has the following
statements in the order shown here:

2 1 4 H T M L & W e b D e s i g n T i p s & T e c h n i q u e s

Tip&Tec / HTML & Web Design Tips & Techniques / Anderson, King, Jamsa / 9394-8 / Chapter 4

Cursor Value Description

auto The cursor displayed depends on the context.

crosshair A simple crosshair cursor.

default The Web browser’s default cursor, usually an arrow.

hand A hand, normally displayed when the mouse pointer is over a
clickable region within an image or over a hypertext link.

move Four-headed arrow, which indicates that the item can be moved.

e-resize, ne-resize, nw-resize, n-resize,
se-resize, sw-resize, s-resize, w-resize

Resize cursor, indicating you are changing the size of the item.
The resize cursor is typically an arrow that points in the direction
indicated: e=east, arrow points right; s=south, arrow points down;
nw=northwest, arrow points diagonally, up and to the left, and
so on.

text I-beam cursor for selecting text or positioning the insertion point.

wait The wait cursor, typically an hourglass.

help The help cursor, typically the question mark.

Table 4-2 The Available CSS Cursor Types

P:\010Comp\Tip&Tec\394-8\ch04.vp
Friday, January 04, 2002 4:18:35 PM

Color profile: Generic CMYK printer profile
Composite Default screen

<h2 style="position:absolute; top:110px; left:75px;

background-color:yellow; border:solid 2px; font-size:25pt">

This is heading level-2 text</h2>

<h1 style="position:absolute; top:100px; left:50px;

background-color:yellow; border:solid 2px; font-size:35pt">

This is heading level-1 text</h1>

You will see only the level-1 heading on the Web page. The Web browser does not “forget” to
place the level-2 heading on the page. Quite the contrary, the browser first places the level-2 heading
100 pixels from the top and 50 pixels away from the left-hand side of the Web page. Then, the Web
browser places the level-1 heading on top of the level-2 heading. Thus, when a CSS style tells the
browser to place an element where other content already exists on the Web page, the browser layers
the new content in front of what’s already there—unless you adjust the first element’s z-index value.

The CSS z-index property lets you select the layer in which the Web browser will place a Web
page element. When writing HTML statements, things can get a bit messy if you locate elements
on a page using CSS positioning properties while at the same time relying on the statement order
to determine whether an element overlaps or is overlapped by another.

The third dimension, controlled by the z-index property, involves specifying an element’s
location on an axis perpendicular to the Web page. The lower the z-index, the closer the

element is to the page surface. Conversely, the higher the z-index, the further the object’s layer is
away from the page. Thus, if you add the following z-index declarations to the HTML from the previous
example, the Web browser will display the level-2 heading in front of the level-1 heading as shown in
Figure 4-25:

<h2 style="position:absolute; top:110px; left:75px; z-index:2;

background-color:yellow; border:solid 2px; font-size:25pt">

This is heading level-2 text</h2>

<h1 style="position:absolute; top:100px; left:50px; z-index:1;

background-color:yellow; border:solid 2px; font-size:35pt">

This is heading level-1 text</h1>

The z-index of the first element is higher than the z-index of the second. As a result the Web
browser will display the first element (the level-2 heading) in a layer above (that is, in front of)
the second element (the level-1 heading).

� NOTE

Although z-index values can be negative, zero, or positive, use only zero and positive values. Some
versions of Web browsers incorrectly position elements with a negative z-index in front of objects
with a positive z-index. Remember, the z-index is a relative measure. Therefore, you can place one
element behind another by specifying a lower (and not necessarily a negative) z-index.

C h a p t e r 4 : C a s c a d i n g S t y l e S h e e t s (C S S) 2 1 5

Tip&Tec / HTML & Web Design Tips & Techniques / Anderson, King, Jamsa / 9394-8 / Chapter 4

P:\010Comp\Tip&Tec\394-8\ch04.vp
Friday, January 04, 2002 4:18:35 PM

Color profile: Generic CMYK printer profile
Composite Default screen

2 1 6 H T M L & W e b D e s i g n T i p s & T e c h n i q u e s

Tip&Tec / HTML & Web Design Tips & Techniques / Anderson, King, Jamsa / 9394-8 / Chapter 4

Sending Your Style Sheet Through a Validator
Sending your style sheet through a CSS validator is like having a teacher check your CSS design
homework before you receive a final grade from your site visitors. In addition to checking for errors
(such as invalid properties or property values), the CSS validator at http://jigsaw.w3.org/css-validator/
also offers suggestions for improvement. For example, if you send the following external style sheet to
the W3C committee’s CSS validator, you will receive back a report such as the one shown in Figure 4-26:

h1 {color:blue; font-size:40px; font-family:garamond}

p {color:white; background:green; font-family:helvetica;

text-indent:1cm}

body {background:#ADD8E6; color:maroon}

The “Errors” section of the report shows you what you must fix; the “Warnings” section shows
you rules that—although correct—could be improved, and gives you suggestions for improvement;
the “Valid CSS Informations” section at the end of the report shows you what you did right.

Using the W3C CSS validator is a simple process. Bear in mind that the validator will
check only the CSS rules in external (linked) style sheets. Therefore, if you embedded

a style sheet in the Web page header section, you must copy the rules to an external file, which you
can then send to the validator. To validate a style sheet, perform the following steps:

1. If you do not have a permanent (always-on) connection to the Internet, establish a dial-up
connection through your ISP.

2. Start your Web browser, type http://jigsaw.w3.org/css-validator/ into the browser’s Address
field, and press ENTER. Your Web browser, in turn, will display the W3C CSS Validation
Service screen.

Figure 4-25 An element with a higher z-index overlaps elements with a lower z-index

P:\010Comp\Tip&Tec\394-8\ch04.vp
Friday, January 04, 2002 4:18:36 PM

Color profile: Generic CMYK printer profile
Composite Default screen

3. To send a style sheet file to the validator, click the Validate Your Cascading Style Sheet Source
File By Upload hypertext link. The Web server, in turn, will display the Validator screen shown
in Figure 4-27.

4. Into the Upload A CSS Source File field, enter the full pathname of the external CSS file you want
to validate. Rather than enter the pathname, you can click BROWSE and navigate to the file instead.

5. Select the Warnings level, Profile (CSS version), and Medium (all, aural, Braille, handheld,
and so on). If you are validating a style sheet intended for use on a Web page to be displayed
by a Web browser running on a PC or Macintosh system, accept the default selections.

C h a p t e r 4 : C a s c a d i n g S t y l e S h e e t s (C S S) 2 1 7

Tip&Tec / HTML & Web Design Tips & Techniques / Anderson, King, Jamsa / 9394-8 / Chapter 4

Figure 4-26 CSS validation report from the W3C CSS validator

P:\010Comp\Tip&Tec\394-8\ch04.vp
Friday, January 04, 2002 4:18:37 PM

Color profile: Generic CMYK printer profile
Composite Default screen

2 1 8 H T M L & W e b D e s i g n T i p s & T e c h n i q u e s

Tip&Tec / HTML & Web Design Tips & Techniques / Anderson, King, Jamsa / 9394-8 / Chapter 4

6. Click Submit This CSS File For Validation. The Web browser, in turn, will send the file whose
name you entered in Step 4, and issue the validation report similar to the one you saw at the
beginning of this Tip (in Figure 4-26) in a matter of seconds.

Although you can submit entire style sheets or individual CSS rules for validation by using several
different methods, get into the habit of creating and sending only external style sheet files to the validator.
First, by placing CSS rules in linked external style sheets, you are more likely to take advantage of
the true power of CSS to give the pages across large Web sites a consistent look and feel. Second, by
submitting a file with only CSS rules, you don’t have to worry about someone viewing server-side
scripts you may have embedded within the Web page—some of which might reveal sensitive information
about your site.

Figure 4-27 The validator options selection screen

P:\010Comp\Tip&Tec\394-8\ch04.vp
Friday, January 04, 2002 4:18:37 PM

Color profile: Generic CMYK printer profile
Composite Default screen

TE
AM
FL
Y

Team-Fly®

Tip&Tec / HTML & Web Design Tips & Techniques / Anderson, King, Jamsa / 9394-8 /
Blind Folio 219

P:\010Comp\Tip&Tec\394-8\ch04.vp
Friday, January 04, 2002 4:18:37 PM

Color profile: Generic CMYK printer profile
Composite Default screen

CHAPTER 5

XHTML and Emerging Trends

Tip&Tec / HTML & Web Design Tips & Techniques / Anderson, King, Jamsa / 9394-8 / Front Matter

TIPS IN THIS CHAPTER

� Converting HTML to XHTML Using HTML Tidy 233

� Selecting the Correct DOCTYPE for Your Web Page 237

� Validating Your Web Page with an XHTML Validator 238

� Setting the Text Size on an XHTML Web Page with Keywords 242

� Grouping an XHTML Form’s Selection List Items with the <optgroup> Tag 245

� Adding Color to XHTML Tables with Cascading Style Sheet Rules 247

� Embedding Fonts Within an XHTML Web Page with CSS Rules 249

� Inserting an XHTML Page Within Another with an Inline Frame 251

� Updating Multiple XHTML Page Inline Frames at Once 255

� Changing XHTML Page Appearance Based on Media Type 257

� Controlling the Way the Web Browser Prints an XHTML Web Page 261

P:\010Comp\Tip&Tec\394-8\ch05.vp
Friday, January 04, 2002 4:45:43 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Copyright 2002 by The McGraw-Hill Companies, Inc. Click Here for Terms of Use.

In Chapter 1, we introduced you to Hypertext Markup Language (HTML) and the World Wide
Web. You learned that Web browsers request HTML documents (that is, Web pages) from Web

servers. After a Web server receives an HTTP request for a Web page, the server sends the document
over the Internet to the Web browser that requested it. The Web browser, in turn, opens the HTML
document and follows the markup instructions written within the file. The markup instructions are
HTML tags and attributes that tell the Web browser where to place text and objects onscreen and
how the text in the foreground and the background on which objects sit is supposed to look.

As you use the Tips throughout this book to create your own Web pages, you may say to yourself,
“Hey, this stuff is easy,” and you would be correct. Creating a Web page requires no special programming
software or knowledge—all you need is a text editor and an understanding of HTML. Ironically, the
very ease with which one can create Web pages has also been the Web’s greatest source of difficulty.
Having thousands and thousands of people authoring Web pages has made it impossible to get everyone
to write HTML the same way. Forget trying to get thousands or even hundreds of people to accept a
specific way of doing something creative when the two manufacturers of the most popular Web browsers
cannot agree on something as simple as a single tag that lets designers add background music to a
Web page.

Moreover, neither Netscape nor Microsoft forces authors to either write proper HTML (according
to the World Wide Web Consortium [W3C] recommendations) or have their browsers display nothing
at all. Instead, Netscape Navigator, Internet Explorer, and most other Web browsers try to “guess”
what the author meant by improperly written HTML. As a result, browsers have grown in size as
manufacturers added the code necessary to handle the many different (but incorrect) ways to write
the HTML that describes a Web page. The additional code has not only made the browser applications
larger but has also introduced bugs, which sometimes cause even correctly written HTML to behave
differently from one browser to the next.

To address design problems caused by improper coding practices and overly lenient Web browsers,
the World Wide Web Consortium (W3C) rewrote HTML 4.01 as an Extensible Markup Language
(XML) application. Hence the new specification’s name (XML + HTML = XHTML). By applying
the rigorous element and syntax definitions within XML to the previously, more loosely defined HTML
specification, the W3C hopes that browser manufacturers will force authors to write proper XHTML
code. An XML parser, for example, is under no obligation to (and in fact, should not) render improperly
written XML elements. Distributing Web browsers that display only correctly written XHTML will
get everyone to structure Web documents properly and let manufacturers reduce the lines of code
(and as a result, the number of bugs) within their Web browsers.

Although XHTML sports the name of a “new” recommendation from the W3C, it adds no
new features to what’s already available within HTML 4.01. What XHTML does is try to prevent
authors from writing improperly formed HTML by applying the rigorous rules of XML to HTML.
If you have looked at XML in the past and given it up as way too complex for use in encoding simple
Web pages, don’t worry. You can create XHTML 1.0–compliant Web pages without knowing anything
about XML. To write XHTML you use the same HTML tags, attributes, and Cascading Style Sheets
with which you are already familiar. If you do understand a little about XML, however, you will realize
the true promise of XHTML’s future.

221

Tip&Tec / HTML & Web Design Tips & Techniques / Anderson, King, Jamsa / 9394-8 /

P:\010Comp\Tip&Tec\394-8\ch05.vp
Friday, January 04, 2002 4:45:43 PM

Color profile: Generic CMYK printer profile
Composite Default screen

In addition to imposing some “new” rules on encoding HTML (which we will discuss in a moment),
XHTML is both extensible (hence the X in XHTML) and modular. Extensible means that XHTML
lets both manufacturers and (for the first time) authors extend and expand HTML by adding new tags.
Modular means that manufacturers can reduce the size of their browsers by eliminating the code for
XHTML elements not required for their platforms. A soon to be released recommendation from the
W3C will specify exactly which tags belong to which XHTML subsets (or modules) and provide a
formal mechanism for adding new modules to extend the language and for removing existing modules
to eliminate unneeded elements.

Understanding the Requirements for
Creating Valid XHTML Documents
First, understand that XHTML is HTML 4 written as an XML application. What this means is that a
W3C committee met and looked at each tag (or element) within HTML 4 and determined how to define
that element using XML. As a result, from a Web author’s standpoint, the code within an XHTML
Web page file looks almost exactly like the code for the same Web page in an HTML 4 file. You use
the same tags and attributes in both with a couple of exceptions.

Within the XHTML document you will see a space and forward slash “ /” used to close noncontainer
(that is, empty) tags such as
 and <hr>, which become
 and <hr /> when written as XHTML.
In addition, sometime in the future (but not right now) an XHTML file will have all its embedded scripts,
comments, and style sheets contained within CDATA sections, which we will discuss after we go
over XHTML’s current “rules of the road” for Web page markup on the information superhighway.

Your first reaction to XHTML may be, to paraphrase the military officer in the movie “The Treasure
of the Sierra Madre,” “Rules! Rules! We don’t need no stinking rules!” Of course, “intellectual freedom”
and the “rules are meant to be broken” attitude are at the very cornerstones of life on the Internet. The
Web was never intended to be some large library of documents where you had to follow certain rules
or have specific equipment to check files out for viewing. The whole idea was (and is) to create a means
by which anyone with access to the Internet can display anything publicly available regardless of his
or her operating system, Web browser, or computer platform.

The new rules XHTML asks Web browsers to impose on designers have nothing to do with
content. XHTML simply tries to get everyone to write tags the same way, so that every Web browser
can properly draw the page it receives without having to “guess” at the author’s intentions. Viewed
this way, XHTML’s rules actually give you more control and may serve to increase your audience
and available tools. If everyone conforms to the standard, manufacturers can spend less time getting
their browsers to display malformed HTML correctly and more time making browsers smaller, faster,
and able to display the next “new” killer multimedia object you want to include on a Web page.

In total, XHTML’s new requirements are not daunting. In fact, as we discuss each rule in detail within
the remainder of this section, you may find you have been following most of them all along. After
discussing XHTML rules, we take an in-depth look at the Document Type Definition (DTD)— what
it is and what it means to the future of XHTML. However, if you are concerned more with the “here
and now” than with the XHTML in your future, you can skip right to the Tip “Selecting the Correct
DOCTYPE for Your Web Page,” which explains how to select the correct DTD for your Web page.

2 2 2 H T M L & W e b D e s i g n T i p s & T e c h n i q u e s

Tip&Tec / HTML & Web Design Tips & Techniques / Anderson, King, Jamsa / 9394-8 / Chapter 5

P:\010Comp\Tip&Tec\394-8\ch05.vp
Friday, January 04, 2002 4:45:44 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Then, as long as you adhere to the following rules, you’ll be writing proper XHTML
in no time:

• XHTML documents must be well-formed.

• Elements must nest and not overlap.

• All element and attribute names must be written in lowercase.

• Open container tags must be closed, and each empty tag must have a terminator.

• XHTML documents must start with a DOCTYPE declaration.

• All attributes must have values enclosed within quotes.

• XHTML documents must have a <title> element within the header section.

XHTML Documents Must Be Well-Formed
With the exception of a frameset page, a well-formed XHTML document has an <html> root element
that contains two embedded, non-overlapping sections (“header” and “body”) as shown here:

<html>

<head>...</head>

<body>...</body>

</html>

The header section (between <head> and </head> section tags) must begin immediately after
the <html> tag. In addition, the header section must end (with an </head> tag) before the body section
(between <body> and </body> section tags) begins. XHTML frameset documents too must be well-
formed. Within a frameset document, however, you replace the “body” section with the “frames”
section as follows:

<html>

<head>...</head>

<frameset cols="100,400,*">

<frame src="FramedPage1.html" name="left">

<frame src="FramedPade2.html" name="right">

</frameset>

</html>

If you read Chapter 1, you are already familiar with XHTML section tags—they are the same
<html>, <head>, and <body> tags you studied in Chapter 1. In short, you use section tags to organize
the Web page XHTML into two containers (“head” and “body”), which you put within a third, the
“html” container. Each container (or section) serves a different purpose, as described here:

• <html></html> The “html” container, as its name implies, encloses all the XHTML entities,
attributes, scripts, and style sheets the Web browser may process while rendering the Web page.
Place the opening <html> tag immediately after the DOCTYPE description at the start of the

C h a p t e r 5 : X H T M L a n d E m e r g i n g T r e n d s 2 2 3

Tip&Tec / HTML & Web Design Tips & Techniques / Anderson, King, Jamsa / 9394-8 / Chapter 5

P:\010Comp\Tip&Tec\394-8\ch05.vp
Friday, January 04, 2002 4:45:44 PM

Color profile: Generic CMYK printer profile
Composite Default screen

XHTML file and the closing </html> tag at the very end of the file. Nothing should follow
the </html> tag.

• <head></head> The Web browser loads the contents of the Web page “header” section into
memory for possible use later (in the case of scripts and CSS rules), but does not display the
content it finds as part of the Web page itself. The Web page header starts with an opening <head>
tag (immediately after the <html> tag at the top of the file) and ends with a closing </head> tag.
In addition to style sheets and client-side scripts, you can insert tags in the Web page header to
include such information as the name of the Web page author, the date he or she created the page,
and keywords that search engines should use when indexing the Web page to make it easier for
visitors to find. In addition, XHTML requires that you include a <title> element within every
Web page header. Of all the HTML tags and information you place within the Web page header,
the Web browser displays only the text you enclose within start and end title tags (<title></title>)
onscreen. Typically, the Web browser displays the Web page title within the title bar along the
top of the browser’s application window.

• <body></body> The Web page “body” container immediately follows the Web page header
section and contains all the elements you want the browser to display on the Web page. Start the
Web page body section by placing an opening <body> tag immediately after the header section’s
closing </head> tag and end the body section with a closing </body> tag immediately before
the enclosing “html” container’s closing </html> tag.

The following code illustrates the correct placement of the XHTML section tags and the minimum
tags required to define a valid XHTML document:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"

"DTD/xhtml1-transitional.dtd">

<html>

<head><title>My First Valid XHTML Web Page</title></head>

<body bgcolor="white">

<!-- Content the browser is to display goes here. -->

</body>

</html>

Note that all element and attribute names must be lowercase. Whereas you could use all lowercase,
uppercase, or a combination of lowercase and uppercase names when describing an HTML Web page,
XHTML is case-sensitive and requires that you use all lowercase names. However, although you must
write attribute names in lowercase, you can write attribute values as uppercase and/or lowercase—just
make sure to enclose every attribute’s value within quotes.

Elements Must Nest and Not Overlap
Most Web browsers don’t care if you overlap elements by writing code such as the following, in which
the tag starts within a paragraph element and ends outside it:

<p>The following word is written in boldface: bold</p>

2 2 4 H T M L & W e b D e s i g n T i p s & T e c h n i q u e s

Tip&Tec / HTML & Web Design Tips & Techniques / Anderson, King, Jamsa / 9394-8 / Chapter 5

P:\010Comp\Tip&Tec\394-8\ch05.vp
Friday, January 04, 2002 4:45:44 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Technically, overlapping tags is illegal (albeit widely tolerated by Web browsers) in HTML as well.
However, as mentioned previously, XHTML documents must be well-formed. As such, one day (soon)
Web browsers will enforce the XHTML standard and will not “guess” what is meant when the XHTML
statement syntax is wrong. If you always write your closing element (and section) tags in reverse of
the order in which you wrote the opening tags, your elements (and sections) will not overlap. Thus,
you would rewrite the statement in this example as follows:

<p>The following word is written in boldface: bold</p>

All Element and Attribute Names Must Be Written in Lowercase
HTML (unlike XHTML) is case “insensitive,” meaning that <BODY> is the same as <body> within
an HTML document. As a result, many authors try to make the code within their Web page files more
readable by writing element names in all capital letters to set HTML tags off from text content and
attributes (written in lowercase). Thus, a typical HTML document might look like the following:

<HTML>

<HEAD><TITLE>My Web Page Title</TITLE></HEAD>

<BODY bgcolor="lightyellow">

<P>This is written in the <I>default</I> color</P>

<P>This is written in red</P>

<P>Finished up with the default color</P>

</BODY>

</HTML>

Unfortunately, although easy to pick out, none of the tags used in this example are valid in XHTML.
When a Web browser encounters a tag within an XHTML document (or an HTML document, for

that matter), the browser looks up the tag within the DTD. As you will learn from the discussion of
DTDs that follows this look at XHTML rules, a DTD has a list of all language elements (or tags) as
well as a list of which attributes are valid or required for each tag. If you misspell a tag’s name (for
example, if you spell <body> as <boddy>) the browser will not find the element within the DTD and
will therefore ignore it and move on to the next tag in the Web document.

Because XHTML is case-sensitive and the XHTML DTD contains element names in lowercase, you
must write XHTML tags in lowercase. Otherwise, the Web browser will not find the tags you use within
the XHTML DTD and will ignore the undefined tag, and in the case of container tags, the content
within the container as well. In other words, the XHTML DTD has an entry for the <table> tag but
not for the <TABLE> tag. Meaning, if the browser reads the <TABLE> tag, which is not defined
within the DTD, the browser will ignore the tag and move on to the next without displaying the table
or its contents.

Although you must write attributes names in lowercase as well, you can write attribute values in
either upper- or lowercase. The following three lines, for example, are equivalent:

<body bgcolor="lightyellow">

<body bgcolor="LightYellow">

<body bgcolor="LIGHTYELLOW">

C h a p t e r 5 : X H T M L a n d E m e r g i n g T r e n d s 2 2 5

Tip&Tec / HTML & Web Design Tips & Techniques / Anderson, King, Jamsa / 9394-8 / Chapter 5

P:\010Comp\Tip&Tec\394-8\ch05.vp
Friday, January 04, 2002 4:45:44 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Open Container Tags Must Be Closed, and Each Empty Tag Must Have a Terminator
Web page elements that have both an open and a close tag are “container” elements because they
enclose or contain text content, images, or other objects the browser displays onscreen. For example,
the following code illustrates how the start and end paragraph tags (<p></p>) enclose, or contain a
section of text:

<p>This is text within a "paragraph" container.</p>

When you insert a “paragraph” container (as defined by begin and end paragraph tags) within the
Web page HTML, the Web browser displays the container’s contents (that is, the paragraph text) onscreen.

Because the Web browser inserts a blank line (and moves to the left margin) when it encounters
the start of a new paragraph container (that is, a <p> tag), many authors have used <p> tags as
“paragraph marks” to separate paragraphs as shown here:

This is the first paragraph.<p>

This is the second paragraph.<p>

This is the third paragraph.

This practice is not valid in XHTML. You must close each paragraph container that you open
(with a <p> tag) by inserting a closing </p> tag within the Web page XHTML. The requirement
to close open containers extends to all container tags, such as list (,), list item
(), table (<table></table>, form (<form></form>) tags, and so on.

Omitting closing tags for container elements (like for the three paragraph elements in the previous
example) was syntactically incorrect in HTML as well. (Even though Web browsers let you get away
with doing so.) However, unlike HTML, XHTML requires that you close noncontainer (or “empty”)
tags as well. Thus, in HTML you could correctly rewrite the code from the last example as follows:

This is the first section of text.

This is the second section of text.

This is the third section of text.

In XHTML, however, you must terminate empty
 tags with a forward slash (“/”) separated
from the element name by a space as shown here:

This is the first section of text.

This is the second section of text.

The requirement to close empty tags also extends to image (), frame (<frame />),
meta data (<meta />), option (<option />), parameter (<param />) tags, and so on.

You can also use the XHTML empty tag terminator as shorthand to close container tags that happen
to be empty. For example, you might insert the following <applet> tag within the Web page XHTML to
instruct the Web browser to run the Java applet MyApplet.class:

<applet code="MyApplet.class" width="200" height="200"></applet>

2 2 6 H T M L & W e b D e s i g n T i p s & T e c h n i q u e s

Tip&Tec / HTML & Web Design Tips & Techniques / Anderson, King, Jamsa / 9394-8 / Chapter 5

P:\010Comp\Tip&Tec\394-8\ch05.vp
Friday, January 04, 2002 4:45:44 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Although <applet> is a container tag, in this case, it contains no content to display in browsers that do
not support applets. You would insert content for browsers without applet support within the container,
that is, between the <applet> tag and the closing </applet> tag. Because the <applet> container tag is
empty (that is, there is no content between the <applet> and </applet> tags), you can replace the closing
</applet> tag with the XHTML empty tag terminator with the <applet> tag as shown here:

<applet code="javaApplet.class" width="200" height="200" />

The same holds true for all container tags. If a container is empty (that is, when there is no content
after the container’s start tag and before its end tag) you can close the container with a space and
forward slash (“ /”) at the end of the container’s start tag.

All Attributes Must Have Values Enclosed Within Quotes
You will find plenty of tags within HTML documents where the author assigned numeric (and
sometimes single-word text) values to attributes without enclosing the value in quotes. For example,
you might see the following <table> tag used to start the definition for a table that has “invisible”
(that is, zero-width) borders:

<table border=0>

Though the preceding example is a valid HTML statement, XHTML requires that you enclose all
attribute values within quotes—both numeric and text. Therefore, to begin a page layout table (with
zero-width borders) in XHTML you would write:

<table border="0">

In addition to enclosing attribute values within quotes, XHTML also requires that all attributes have
a value. HTML let you use a shortcut called attribute minimization when using attribute that have only
one possible value. When allowed, attribute minimization lets you omit the attribute’s value and specify
only its name within the HTML tag. For example, to insert a check box on a form, you write an <input>
tag whose type attribute is set to “checkbox”, such as that shown here:

<input type="checkbox" name="Win98" value="ON">

If you wanted the browser to place a check mark into the check box when it draws the check box
on the form, HTML lets you write the <input> tag as follows:

<input type="checkbox" name="Win98" value="ON" checked>

Because the checked attribute has only one possible value (“checked”), the Web browser knows what
to do when it encounters the attribute within the tag. XHTML, however, requires that you state each
attribute’s value explicitly (and within quotes)—even when only one value is possible. Thus, in this
example you would write the <input> tag for the initially checked (that is, selected) check box as follows:

<input type="checkbox" name="Win98" value="ON" checked="checked">

C h a p t e r 5 : X H T M L a n d E m e r g i n g T r e n d s 2 2 7

Tip&Tec / HTML & Web Design Tips & Techniques / Anderson, King, Jamsa / 9394-8 / Chapter 5

P:\010Comp\Tip&Tec\394-8\ch05.vp
Friday, January 04, 2002 4:45:45 PM

Color profile: Generic CMYK printer profile
Composite Default screen

2 2 8 H T M L & W e b D e s i g n T i p s & T e c h n i q u e s

Tip&Tec / HTML & Web Design Tips & Techniques / Anderson, King, Jamsa / 9394-8 / Chapter 5

XHTML Documents Must Start with a DOCTYPE Declaration
To save time typing, Web page authors typically omit the DOCTYPE declaration from the beginning
of HTML documents. Each Web browser has a DTD built into its code. The DTD is like the legend
on a roadmap in that the DTD tells the browser how to read the HTML tags (and now XHTML tags)
and attributes that describe the Web page.

Because every browser has a built-in DTD, there was no need in the past to identify a file in which
the browser could find the definitions of the HTML tags and attributes it found within the Web page
HTML. Regardless of the DTD specified within the DOCTYPE declaration, the browser always
checked its internal DTD to determine what each tag (and attribute) it encountered was telling it to
do. Thus, when designers took advantage of new attributes or tags available in HTML version 4.01,
for example, visitors with Web browsers that contained the HTML 3.0 DTD would ignore the “new”
tags or attributes as undefined.

The DOCTYPE declaration, now required by XHTML, lets designers specify the DTD file that
has the definitions of all the tags and attributes used within the XHTML document. Thus, a browser
can retrieve a Web document and read the DOCTYPE declaration at its start to determine the DTD
the browser must have to understand all the tags and attributes used to describe the page. If after checking
its internal code the browser determines its built-in DTD is not the one the Web page requires, the browser
can retrieve the DTD it needs from the URL of the DTD specified within the DOCTYPE declaration.

As such, browsers of the future will be able to support the latest version of XHTML
immediately—without manufacturers having to release a new version of the browser. The Web
designer will simply use the DOCTYPE declaration to point the browser to the DTD for the version
of XHTML used to create the Web page. If the particular DTD required to display a page is built-into
the browser already—great; the browser will simply use its internal DTD to display the page as always.
Conversely, if the DOCTYPE declaration calls for a DTD other than one built-in, the browser simply
retrieves from the URL given within the <!DOCTYPE> element the DTD required to display the
Web page correctly.

To be valid, an XHTML document must begin with a DOCTYPE declaration, such as the one
shown within the first two lines of the following Web page XHTML:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"

"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

<html xmlns="http://www.w3.org/1999/xhtml">

<head><title>My Web Page Title</title></head>

<body>

<!-- Page content goes here. -->

</body>

</html>

Although the <!DOCTYPE> element is split onto two lines for formatting purposes here, you
can write it on a single line within your XHTML document. Whether on one line or several, the
<!DOCTYPE> element must come immediately before the <html> tag at the start of the Web page
definition. Later in this chapter, the Tip “Selecting the Correct DOCTYPE for Your Web Page” will
explain how to write a DOCTYPE declaration that specifies the correct DTD for your Web page. For
now, let’s review the components of a <!DOCTYPE> element, so that you will know how to write
one of your own when the time comes.

P:\010Comp\Tip&Tec\394-8\ch05.vp
Friday, January 04, 2002 4:45:45 PM

Color profile: Generic CMYK printer profile
Composite Default screen

TE
AM
FL
Y

Team-Fly®

The items within the <!DOCTYPE> element in this example are as follows:

• html Indicates that the document’s root element is the <html> tag.

• PUBLIC Indicates the <!DOCTYPE> element has a formal public identifier (FPI), which
follows the keyword PUBLIC. If you create a DTD of your own, you would replace PUBLIC
with SYSTEM and omit the FPI (described next).

• “-//W3C//DTD XHTML 1.0 Transitional//EN” The FPI of the DTD needed to read
the Web page XHTML. The FPI identifies a specific DTD, and the Web browser compares the
FPI to the ID of its internal DTD. If the two match, the browser uses its internal DTD. Conversely,
if the ID of the browser’s built-in DTD is different, the browser retrieves the DTD from the
URL that follows the FPI. Note that the FPI, when present, is a quoted string that begins with
a dash (-).

• “http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd” The Web address,
enclosed within quotes, where the browser can retrieve the document’s DTD, which defines
and gives the syntax for all entities and attributes used within the XHTML document.

XHTML Documents Must Have a <title> Element Within the Header Section
The Web page <title> element is not new to XHTML. In fact, though optional in the past, and
required by XHTML, the <title> element has been around since HTML 2.0. As you surf the Web,
your browser displays the title of each Web page it displays within the title bar across the top of the
browser application window. The Web page title gives the name and describes, in a few words,
the purpose of the Web page.

To create a Web page title, insert the title’s text between start and end title tags (<title></title>)
within the Web page header section, as shown in the following code:

<html>

<head>

<title>Konrad's Page of XHTML Tips and Techniques</title>

</head>

<body>

... Content the Web browser displays goes here ...

</body>

</html>

Use the Web page title to describe the contents of the page to your site visitors. That way, each
time the visitor glances at the browser application window’s title bar, the page title will remind him
or her of the name and purpose of the Web page currently displayed by the browser.

In addition to reminding visitors of their current location within your Web site, titles are also used
for the following:

• Web browsers use title text when a visitor bookmarks a page for future reference. Specifically,
the Web browser adds the text within the <title> element to the list of favorites in Internet Explorer
or to the list of bookmarks in Netscape Navigator when the visitor selects Favorites |

C h a p t e r 5 : X H T M L a n d E m e r g i n g T r e n d s 2 2 9

Tip&Tec / HTML & Web Design Tips & Techniques / Anderson, King, Jamsa / 9394-8 / Chapter 5

P:\010Comp\Tip&Tec\394-8\ch05.vp
Friday, January 04, 2002 4:45:45 PM

Color profile: Generic CMYK printer profile
Composite Default screen

2 3 0 H T M L & W e b D e s i g n T i p s & T e c h n i q u e s

Tip&Tec / HTML & Web Design Tips & Techniques / Anderson, King, Jamsa / 9394-8 / Chapter 5

Add to Favorites (in Explorer) or Bookmarks | Add Bookmark (in Navigator) from the
browser’s Standard toolbar.

• Spiders (automated Web search programs) use title text when listing your Web page on
search engines.

• Titles let visitors keep track of where they are in a multisection Web site. For example, on a
site about Web design, you might group all pages about markup languages within an “HTML”
section, those about PHP, JavaScript, and ASP in a “Scripting” section, and those about
animation, video, and sound within a “Multimedia” section. By starting the Web page title
of the Web pages in each section with the section’s name, you make it easy for a visitor to
remember where they were on the site when they come across a page to which they want
to return later.

Understanding What Else You Must Know About XHTML
With an understanding of the few, simple rules detailed in the preceding section, you are ready to
start creating XHTML documents. As such, you could skip the next section and move right to the
Tips, which start by showing you a tool (HTML Tidy) you can use to convert existing HTML documents
to XHTML with a few mouse clicks. Of course, given that you used proper coding practices to create
the HTML documents initially, your new XHTML code will look much like the current HTML. In
fact, often the only difference you will see between HTML and XHTML is that previously unterminated
empty (noncontainer) tags now have a space–forward slash (“ /”) terminator (as explained by the rule
“Open container tags must be closed and each empty tag must have a terminator” in the preceding section).

In other words, if you are familiar with HTML, for the most part, you already know XHTML
as well. Rather than repeat the same tags and attributes you saw in Chapter 1 by presenting them as
“new” material under the guise of XHTML, we refer you to Chapter 1 to learn all about HTML tags,
attributes, and how to create a Web page.

While reading the Tips within this chapter, bear in mind that the tags presented are a part of the
HTML 4.01 standard. However, many Web browsers did not support them. For example, though
a part of the HTML 4.0 (and 4.01) specification, most browsers did not support the <iframe> tag
(presented in the Tip “Inserting an XHTML Page Within Another with an Inline Frame”). In addition,
Cascading Style Sheet (CSS) support, though around for several years, is only now supported
reasonably well in Internet Explorer 5.5 (and later) and Netscape Navigator 6.1 (and later). Thus,
although “technically” not “XHTML only,” the Tips presented here show advanced uses for several
HTML elements and CSS rules not available in older Web browsers. However, as browsers become
XHTML-compliant, the majority (if not all) will support the techniques you will learn within this
chapter’s Tips.

Whenever you exploit advanced features, make sure you know your audience. Check the
sites like http://www.w3schools.com to see what browsers and hardware capabilities are seeing
widespread use throughout the Web. For example, you will find Web browser usage statistics at
http://www.w3schools.com/browsers/browsers_stats.asp. After you determine which browser(s)
your target audience is likely using, determine capabilities available within specific Web browsers
(both by version and type), at such sites as http://www.Webreview.com. For example, the chart at

P:\010Comp\Tip&Tec\394-8\ch05.vp
Friday, January 04, 2002 4:45:46 PM

Color profile: Generic CMYK printer profile
Composite Default screen

http://www.webreview.com/browsers/browsers.shtml shows exactly which browsers (by version and
platform) support frames, java applets, JavaScript, and more. Although it should go without saying,
use only elements and CSS techniques supported within the Web browsers used by the majority of
your site’s visitors.

Using the CDATA Section to Hide Scripts and Style Sheets
When you embed style sheets or scripts within HTML documents, you typically “hide” them from
browsers without CSS or script support by enclosing them within comment tags. For example, the
following HTML shows an embedded style sheet within the Web page header, and an embedded
script within the Web page body:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"

"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

<html>

<head>

<title>Embedding Style Sheets and Scripts</title>

<style type="text/css">

<!-- ** embedded style sheet **

body {background-color:lightyellow}

p {color:blue; font-face:arial; font-weight:bold}

-->

</style>

</head>

<body>

<script type="text/JavaScript">

<!-- ** embedded script **

If 5 < 10

document.write ("<p>5 is still less than 10!!!</p>");

-->

</script>

<!-- this is a comment! -->

<p>This is where Web page text belongs.</p>

</body>

</html>

Currently, both Netscape Navigator 6.2 and Internet Explorer 6 will display the preceding Web page
correctly. Moreover, the W3C validator (at http://validator.w3.org/) validates the page without errors
as well. However, future versions of XHTML-compliant browsers may not display the Web page
correctly. According to the XHTML 1.0 specification, XML parsers (all the latest version Web browsers
will one day be XML parsers) may silently remove the contents of comments. As such, though the
browser supports style sheets and scripts, it may simply not “see” them because it ignores all comments
(including those within <style> and <script> elements).

Tip&Tec / HTML & Web Design Tips & Techniques / Anderson, King, Jamsa / 9394-8 / Chapter 5

C h a p t e r 5 : X H T M L a n d E m e r g i n g T r e n d s 2 3 1

P:\010Comp\Tip&Tec\394-8\ch05.vp
Friday, January 04, 2002 4:45:46 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Unfortunately, you cannot simply drop the comment tags from around the style sheet or script,
because then the parser (that is, the Web browser) will parse symbols such as “<,” “&,” “--,” and
“]]>” within the style sheet or script as part of the page markup. The browser would treat the
less-than sign (<) in the following If statement, for example, as the start of a tag and expect
a valid element name to follow:

If 5 < 10

document.write ("<p>5 is still less than 10!!!</p>");

So, if you cannot use a comment tag and you cannot go without one, what can you do?
The answer is you can either use external style sheets and scripts or put your embedded sheets

and scripts into CDATA sections. CDATA stands for “character data,” which the browser should
treat like a character literal (that is, like a text string) when parsing the Web document. As such,
CDATA is not an XHTML tag per se (hence the uppercase). Instead, CDATA delimits a section
or group of statements the browser must treat differently.

For example, rather than embed the script in the previous example within the Web page header,
write the CSS rules within the style sheet in an external file such as styles.css, and then write the
style sheet within the Web page header as:

<style>

<link type="text/css" rel=stylesheet href="styles.css" />

</style>

Similarly, to use an external script file, place the script near the end of the previous example into
a file named MyScript.js for example. Then, replace the <script> element with the following:

<script type="text/JavaScript" src="../scripts/MyScript.js" />

If you want to keep style sheets and scripts embedded within the XHTML document, define them
within CDATA sections. There is nothing sinister or complicated about the CDATA section. The only
problem is that it is not yet supported by many Web browsers. However, as mentioned, all Web browsers
will one day be XML parsers. As such, you will one day use CDATA sections in place of comment
blocks to hide style sheets and scripts, which is why we are discussing the CDATA block now.

You begin a CDATA block the same way you start a DOCTYPE declaration—with a less-than
sign followed by an exclamation point (“<!”) as shown here:

<![CDATA[If 5 < 10

method.write ("<p>5 is still less than 10!!!</p>");]]>

Note that you enclose both the CDATA section and the contents of the section (the JavaScript
in this example) within brackets (“[” and “]”). When the XML parser encounters “<![DATA” in the
Web page XHTML, it knows to ignore everything as “escaped” character data until it encounters
the “]]>” that ends the character data declaration.

2 3 2 H T M L & W e b D e s i g n T i p s & T e c h n i q u e s

Tip&Tec / HTML & Web Design Tips & Techniques / Anderson, King, Jamsa / 9394-8 / Chapter 5

P:\010Comp\Tip&Tec\394-8\ch05.vp
Friday, January 04, 2002 4:45:46 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Converting HTML to XHTML Using HTML Tidy
Just because something is easy to do does not mean it will be done correctly. You will undoubtedly
find this to be true when, as a Web page designer, you must fix yet another Web page with badly
formed HTML that does not conform to the W3C standard. The beauty of the Web is that anyone
with a text editor can create a Web page. Unfortunately, Web browsers (such as Netscape Navigator
and Internet Explorer) let novice authors get away with sloppy coding such as missing “end” tags,
unquoted attribute values, malformed tables, and so on. Moreover, both Netscape and Microsoft
add fuel to the fire by “extending” HTML with their own proprietary tags. Fortunately, XHTML,
like “the new sheriff in town,” is going to tame the wild, wild Web by forcing Web authors (and
Web browsers) to comply with the “law”—the XHTML standard.

If you are like most designers, who must work under constant scheduling pressures, the last thing
you want to do is spend a lot of time correcting other people’s code—especially when you could be
creating the next “killer” site that brings you fame and glory instead. However, for those times when
you must clean up some code or want to make sure your latest creation complies with the XHTML
standard, HTML Tidy is the tool you need. Unlike HTML validation programs (such as the one at
http://validator.w3.org/), HTML Tidy not only tells you what’s wrong but also fixes most problems
it finds. For example, the program will fix missing and mismatched tags such as those found in the
following malformed HTML:

<i><h1>Level 1 heading in italics</i>

<p>First paragraph with bold, important text.

<p>Second paragraph with additional bold text.

HTML Tidy corrects the code in this example, so that it reads as follows:

<h1><i>Level 1 heading in italics</i></h1>

<p>First paragraph with bold, important text.</p>

<p>second paragraph with additional bold text.</p>

Before you can use HTML Tidy the first time, you must download a copy of the program
by performing the following steps:

1. If you do not have a permanent, always-on Internet connection, use your modem to establish a
dial-up connection through your ISP.

2. Enter http://www.w3.org/People/Raggett/tidy/#download into your Web browser’s Address
field and press ENTER. Your Web browser, in turn, will display the portion of the HTML Tidy
home page shown in Figure 5-1.

3. Find the HTML Tidy executable for your operating system. The HTML Tidy home page has
hyperlinks you can use to retrieve HTML Tidy for Windows, UnixWare, Linux, OS/2, Solaris,
FreeBSD, and several other operating systems. (In addition, you can download the HTML Tidy
source code, written in C, and compile your own executable.) For Windows (95/98/NT/2000/XP),
download HTML Tidy with a Windows front-end by clicking on the TidyGUI hyperlink. Your
Web browser, in turn, will retrieve the Web page at http://perso.wanadoo.fr/ablavier/TidyGUI/.

C h a p t e r 5 : X H T M L a n d E m e r g i n g T r e n d s 2 3 3

Tip&Tec / HTML & Web Design Tips & Techniques / Anderson, King, Jamsa / 9394-8 / Chapter 5

P:\010Comp\Tip&Tec\394-8\ch05.vp
Friday, January 04, 2002 4:45:47 PM

Color profile: Generic CMYK printer profile
Composite Default screen

2 3 4 H T M L & W e b D e s i g n T i p s & T e c h n i q u e s

Tip&Tec / HTML & Web Design Tips & Techniques / Anderson, King, Jamsa / 9394-8 / Chapter 5

4. Page down to the “Download and Installation” section near the bottom of the Web page (or
type http://perso.wanadoo.fr/ablavier/TidyGUI/#download into the browser Address field
and press ENTER).

5. Click the TidyGUI-exe.zip hyperlink. Your Web browser, in turn, will display a File Download
dialog box. (The specific dialog box you see depends on your browser and its version.)

6. Select the dialog box option to save the ZIP file to disk. For example, within the Internet Explorer 6
File Download dialog box, click Save. Your browser, in turn, will display a Save As dialog box.
(Again, the specific dialog box you see will depend on your browser.)

7. Use the drop-down list button to the right of the Save In field to navigate to the folder in which
you want to save the ZIP file. For example, you might save the file within C:\WebTools. Next,
click Save. The Web browser, in turn, will download and save TidyGUI-exe.zip in the folder
you selected.

Figure 5-1 The download section of the HTML Tidy home page

P:\010Comp\Tip&Tec\394-8\ch05.vp
Friday, January 04, 2002 4:45:47 PM

Color profile: Generic CMYK printer profile
Composite Default screen

After you complete Step 7, extract TidyGUI.exe within the folder in which you stored the ZIP file.
To convert an HTML document to XHTML with TidyGUI, perform the following steps:

1. Select Start | Run. Windows, in turn, will display the Run dialog box.

2. Into the Open field within the Run dialog box, enter TidyGUI’s full pathname. For example,
if you saved TidyGUI.exe within the C:\WebTools folder in the previous procedure, type
C:\WebTools\TidyGUI.exe. Then, click OK. Windows, in turn, will start TidyGUI, displaying
the TidyGUI main screen shown here:.

3. By default, TidyGUI will validate and correct the HTML within a file but will not change the
document’s type. (In other words, if you supply TidyGUI an HTML document, the program
will output an HTML document.) To have TidyGUI convert HTML into XHTML, change the
default configuration by clicking Configuration. HTML Tidy, in turn, will display the Tidy
Configuration dialog box shown here:

C h a p t e r 5 : X H T M L a n d E m e r g i n g T r e n d s 2 3 5

Tip&Tec / HTML & Web Design Tips & Techniques / Anderson, King, Jamsa / 9394-8 / Chapter 5

P:\010Comp\Tip&Tec\394-8\ch05.vp
Friday, January 04, 2002 4:45:48 PM

Color profile: Generic CMYK printer profile
Composite Default screen

4. Click the XML tab and then click a check mark into the Output As XHTML checkbox.

5. Click Apply and then click the close button (the “X”) in the upper-right corner of the Tidy
Configuration dialog box. TidyGUI, in turn, will close the Tidy Configuration dialog box,
so that you can work with the program’s main screen (see Step 2).

6. Into the Source file field at the top of the TidyGUI main screen, enter the pathname of the HTML
document you want to convert to XHTML. Then, click the Tidy! button below the Source File
field. TidyGUI, in turn, will display general comments and advice about the source file’s code
within the top pane on the TidyGUI main screen and any warnings about code you should change
within the bottom pane.

7. To store the generated XHTML to a disk file, click the Show Output button on the TidyGUI
main screen. TidyGUI, in turn, will display the XHTML within a Tidy Output dialog box such
as this:

8. Click Save As in the upper-left corner of the Tidy Output dialog box. TidyGUI, in turn, will
display the Save As dialog box you can use to store the XHTML document the program produced
in a disk file.

After you complete Step 8, click the close button (the “X”) in the upper-right corner of the Tidy
Output dialog box to close the dialog box and return to the TidyGUI main screen. Then, repeat Steps 6–8
for each Web document you want to convert from HTML to XHTML.

In addition to converting HTML to XHTML, you can also use TidyGUI (or the MS-DOS HTML
Tidy) to validate and correct HTML, XHTML, and even XML documents. If you want to validate
and correct errors within a document without changing its type, simply skip Steps 3–5 in the previous
procedure (or clear the Output As XHTML check box in Step 4). Without one of the XML tab’s check
boxes checked, TidyGUI will generate an output file of the same type as the input (or source) document.

HTML Tidy has about 50 configuration options you can use to control the way the program
validates and/or converts your Web document. For example, by setting the doctype option to Strict,

2 3 6 H T M L & W e b D e s i g n T i p s & T e c h n i q u e s

Tip&Tec / HTML & Web Design Tips & Techniques / Anderson, King, Jamsa / 9394-8 / Chapter 5

P:\010Comp\Tip&Tec\394-8\ch05.vp
Friday, January 04, 2002 4:45:48 PM

Color profile: Generic CMYK printer profile
Composite Default screen

and setting the output-xhtml option and clean option to “yes”, you can tell HTML Tidy (and TidyGUI)
to generate an XHTML document that adheres to the XHTML 1.0 “strict” DTD. The “clean” attribute
tells HTML Tidy to replace presentational attributes and tags with CSS rules as required by the XHTML
“strict” DTD. For a thorough description of each configuration option, refer to the Using A Configuration
File section of the HTML Tidy home page at http://www.w3.org/People/Raggett/tidy/#config.

Selecting the Correct DOCTYPE for Your Web Page
Technically, every Web document should begin with a DOCTYPE declaration that tells the Web
browser the type of code to expect within the file. However, most designers omit the DOCTYPE
from the start of the Web page HTML. This works because browsers “assume” that the Web page
file contains HTML (tags, attributes, and text content) and follow the file’s instructions to display
page content onscreen.

Unlike the HTML versions that precede it, the XHTML specification requires that you include
a DOCTYPE before the Web page “root” element (that is, before the <html> tag) as shown here:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"

"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

<html xmlns="http://www.w3.org/1999/xhtml">

<head>

<title>XHTML Document with a doctype declaration</title>

</head>

<body>

<p>Web page content.</p>

</body>

</html>

The “html” which follows the keyword DOCTYPE in this example tells the Web browser the
file contains HTML. (More specifically, it says the document’s “root” element is the <html> tag.)
Following the keyword PUBLIC within the DOCTYPE is a literal (that is, a quoted string) called the
“formal public identifier,” or FPI. The FPI identifies the Web document’s DTD, which in this case is
the Strict version of the W3C XHTML specification, version 1.0. The EN indicates that the specification
named by the FPI is in English. Finally, the DOCTYPE gives the URL (within quotes) where the Web
browser can retrieve the DTD (http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd, in this example).

A DTD is the file that contains all the markup rules and lists all the character entities and elements
you can use within the Web page HTML. In “language” terms, the DTD contains all the special symbols,
words, and syntax (or rules) that govern the ways in which you can combine the words into sentences
to describe a Web page. By specifying that a Web document is “strictly” compliant with the XHTML
1.0 standard, for example, you tell the Web browser to hold the Web page HTML to the standard as
given within the DTD. Therefore, the Web browser will treat as text content any tags or attributes
within the Web page file not defined within the DTD. Moreover, the browser will not display any
malformed elements (such as paragraphs with a <p> tag and no terminating </p>) it encounters.

C h a p t e r 5 : X H T M L a n d E m e r g i n g T r e n d s 2 3 7

Tip&Tec / HTML & Web Design Tips & Techniques / Anderson, King, Jamsa / 9394-8 / Chapter 5

P:\010Comp\Tip&Tec\394-8\ch05.vp
Friday, January 04, 2002 4:45:49 PM

Color profile: Generic CMYK printer profile
Composite Default screen

2 3 8 H T M L & W e b D e s i g n T i p s & T e c h n i q u e s

Tip&Tec / HTML & Web Design Tips & Techniques / Anderson, King, Jamsa / 9394-8 / Chapter 5

Currently, three XHTML document types exist: Strict, Transitional, and Frameset. Use
the Strict DTD, as shown here, for Web documents that have no deprecated (that is, obsolete)

elements or attributes and within which you use CSS rules to handle all appearance-related issues
(such as color, typeface, font size, and so on):

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"

"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

A Web page file that starts with the DOCTYPE in this example cannot use any tags or attributes
marked “DEPRECATED” within HTML 4.0 specification. Because they are not defined within the
XHTML version 1.0 Strict DTD (http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd), the Web
browser simply ignores any deprecated tags or attributes it finds within the document.

When a Web page uses obsolete (deprecated) tags and/or attributes, use the Transitional XHTML
DTD as follows:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"

"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

If your site must support visitors that use older Web browsers without CSS support, you must use
the Transitional DTD, because you use (now obsolete) HTML tags and attributes (such as <center>,
, align, color, face, and so on) to control the appearance of content.

Finally, for Web pages on which you use HTML frames to divide the browser application window
so that you can display multiple Web pages onscreen at once, use the Frameset DTD shown here:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Frameset//EN"

"http://www.w3.org/TR/xhtml1/DTD/xhtml1-frameset.dtd">

In addition to elements and attributes relating to frames, the Frameset DTD includes the attributes
and elements found in the Transitional DTD.

Although you can still use deprecated tags when you select the Transitional or the Frameset DTD,
you should avoid doing so. The W3C has removed all deprecated tags from the (soon to be released)
XHTML 1.1 specification. As such, eliminating these tags from your XHTML pages now will save
you a lot of work later. Please refer to http://www.w3.org/TR/html4/index/elements.html for a list
of deprecated tags. There you will find a table with all HTML 4.01 (and by extension XHTML 1.0)
elements (tags) presented in table form. Note that the Depr. column contains a “D” to indicate those
deprecated tags you should avoid using in all your XHTML pages now (and work to remove from
your existing HTML pages as well).

Validating Your Web Page with an XHTML Validator
In the past, both Netscape Navigator and Internet Explorer have been very forgiving when it comes to
malformed HTML. If you forgot an </body> tag, for example, the browsers would still display your

P:\010Comp\Tip&Tec\394-8\ch05.vp
Friday, January 04, 2002 4:45:49 PM

Color profile: Generic CMYK printer profile
Composite Default screen

TE
AM
FL
Y

Team-Fly®

C h a p t e r 5 : X H T M L a n d E m e r g i n g T r e n d s 2 3 9

Tip&Tec / HTML & Web Design Tips & Techniques / Anderson, King, Jamsa / 9394-8 / Chapter 5

Web page. Similarly, if you forgot to enclose tag attributes in quotes, the browsers still used the
attribute values when rendering content. Moreover, both browsers even did their best to display
content within improperly nested tags, such as those shown here:

<p><h2><center>Example: Improper Nesting.</h2></center>

What you open first, you must close last</p>.

In this example, the start and end center tags (<center></center>) should enclose the start and end
level-two heading tags (<h2></h2>) and the </p> tag should follow the after the word last.

Forcing the browser to handle code that does not conform to an HTML standard (as defined by
a W3C specification) does not come without cost. Browsers applications have swollen in size as
Netscape and Microsoft add code to figure out what malformed HTML intends to describe—and to
handle proprietary tags and attributes each company supplied to “enhance” HTML. Larger browser
applications load and run more slowly; more code means more bugs (which cause errant browser
behavior and system lockups); and using proprietary tags and attributes means that a Web page that
looks fine in one browser may look bad or may not even display in another. The XHTML standard
attempts to provide at least a partial solution to these Web design headaches.

When you indicate that a Web page is XHTML-compliant, Web browsers know that they can find
all tags, attributes, and syntax used by the Web document within the DTD. (To be XHTML-compliant,
the Web page HTML must include a DOCTYPE declaration that specifies the DTD at the beginning
of the Web page file.) Anything not within the DTD browsers will either display as text or simply
ignore. This includes malformed HTML, such as that shown at the beginning of this Tip. If your
DOCTYPE declaration indicates that the Web page is compliant with the XHTML 1.0 Strict DTD,
for example, the browser should hold you to that declaration and ignore HTML whose syntax does
not conform to that specified within the DTD. Currently, Netscape Navigator 6 and Internet Explorer
6 still display malformed HTML—even when the DOCTYPE specifies XHTML 1.0 Strict DTD.
However, to ensure that your Web pages work the way you want them to in the next generation of
browsers, make sure you follow the W3C’s recommendations.

After you create a Web page, use the HTML Validation service at http://validator.w3.org/
to see if your XHTML complies with the W3C standard for your document type. To use

the validation service, perform the following steps:

1. If you do not have a permanent (always-on) connection to the Internet, use your modem to
establish a dial-up connection through your ISP.

2. After you start your Web browser, type http://validator.w3.org/ into the browser’s Address
field and then press ENTER. Your Web browser, in turn, will display the W3C HTML Validation
Service screen shown in Figure 5-2.

P:\010Comp\Tip&Tec\394-8\ch05.vp
Friday, January 04, 2002 4:45:50 PM

Color profile: Generic CMYK printer profile
Composite Default screen

3. To validate a page you have not yet published to the Web server, click the Upload Files
hyperlink near the bottom of the page. Your Web browser, in turn, will retrieve the Web
page with the file upload form at http://validator.w3.org/file-upload.html, as shown here:

2 4 0 H T M L & W e b D e s i g n T i p s & T e c h n i q u e s

Tip&Tec / HTML & Web Design Tips & Techniques / Anderson, King, Jamsa / 9394-8 / Chapter 5

Figure 5-2 The W3C HTML Validation Service Web page

P:\010Comp\Tip&Tec\394-8\ch05.vp
Friday, January 04, 2002 4:45:50 PM

Color profile: Generic CMYK printer profile
Composite Default screen

4. Type the full pathname of the XHTML document into the File field at the top of the upload
form. Or, use the Browse button to the right of the File field to navigate to and select the file
you want to validate on a local or network drive.

5. Click the Validate This Document button at the bottom of the form.

After you complete Step 5, your Web browser will send the Web page you entered (or selected)
in Step 4 to the W3C Web site. The site’s validation program will check the XHTML document and
send to your Web browser a results page similar to that shown in Figure 5-3.

Review the document type shown to the right of the Document Type label near the center of
the information block at the top of the results page to make sure you used the correct DOCTYPE
declaration within your Web page XHTML. For example, the results shown in Figure 5-3 indicate
that the Web page ShowMe.htm was validated against the XHTML 1.0 Strict DTD.

Below the document information block, the validation program lists any warnings and errors. Note
that your XHTML document is valid (that is, complies with the standard) only when there are no errors.
As such, if you see errors, correct them within your Web document and repeat the validation procedure.
(The validation program not only lists errors but also offers suggestions on corrections you must make
to bring the code into compliance.)

C h a p t e r 5 : X H T M L a n d E m e r g i n g T r e n d s 2 4 1

Tip&Tec / HTML & Web Design Tips & Techniques / Anderson, King, Jamsa / 9394-8 / Chapter 5

Figure 5-3 The W3C HTML Validation Service results page

P:\010Comp\Tip&Tec\394-8\ch05.vp
Friday, January 04, 2002 4:45:51 PM

Color profile: Generic CMYK printer profile
Composite Default screen

In addition to validating Web documents stored in files on local or network drives, you can also
validate any Web page already published to a Web server. To do so, perform Steps 1 and 2 in the
previous procedure. Then, in place of Steps 3 and 4, type the URL of the Web page you want to
validate into the Address field near the middle of the W3C HTML Validation Page (shown previously
in Figure 5-2). Next, click the Validate This Page button just above the Upload Files hyperlink on the
W3C HTML Validation Service Web page. Rather than accepting a file sent by your Web browser,
the validation program will then retrieve the Web page at the Web address you specified and produce
a validation report similar to that you saw in Figure 5-3.

As you develop new Web pages, validate each page before you publish it to the Web server.
However, if you previously published pages and want to see if they comply with an XHTML (or
HTML) standard, you might use the in-place validation option.

Setting the Text Size on an XHTML Web Page
with Keywords
When specifying the size of Web page text, you typically have two goals: make the text large enough
for visitors to read comfortably and vary the size of specific words or phrases for emphasis. Text size
is especially important when a Web page has a lot of text. If the text size is too small, the strain of
reading page content frustrates visitors and may result in their leaving without reading all the content.
Conversely, if you make the text unusually large, it may distract visitors and cause them to miss important
information you are trying to convey. The concept of changing text size for emphasis has been employed
for a long time. Prior to Cascading Style Sheets (which you learned about in Chapter 4), you used the
size attribute within the tag to select the relative size for the text on a Web page. Setting size
to seven (7), the largest setting, for example, makes text characters a little more than 2.5 times the
size of the middle size of four (4). Using CSS rules, you can specify text size using units of measure
such as pixels, points, inches, centimeters, and so on. In addition to these units, CSS lets you specify
text size through the seven keywords shown in the “Keyword” column of Table 5-1. Although not

2 4 2 H T M L & W e b D e s i g n T i p s & T e c h n i q u e s

Tip&Tec / HTML & Web Design Tips & Techniques / Anderson, King, Jamsa / 9394-8 / Chapter 5

Keyword IE 5.5 Size
IE 6 and Netscape Navigator
(NN) 6.1 Size NN 4.7 Size

xx-small
10 pixels

9 pixels 9 pixels

x-small
13 pixels

10 pixels

11 pixels

Small
16 pixels

13 pixels

14 pixels

Medium
18 pixels

16 pixels

16 pixels

Table 5-1 Size Keywords and Text Size for IE 5.5, IE 6.0, NN 4.7, and NN 6.1

P:\010Comp\Tip&Tec\394-8\ch05.vp
Friday, January 04, 2002 4:45:51 PM

Color profile: Generic CMYK printer profile
Composite Default screen

new to XHTML, using keywords to specify text size gives you an easy way to make older HTML
pages—which set text size using the size attribute within the now deprecated tag—compliant
with the XHTML Strict standard. (Though Transitional XHTML lets you use deprecated tags [like
], browsers adhering to future version of XHTML standard will apply the Strict standard,
which includes no deprecated tags.)

When you use a keyword to specify text size, the Web browser brand and its version determine the
actual size that the text appears onscreen. As shown in the preceding table, Internet Explorer version 5
displays “medium” text at 18-pixels, whereas Internet Explorer version 6 and Netscape Navigator
(versions 5 and 6) display “medium” text at 16 pixels. Figure 5-4 shows the size of text for each of
the seven keywords as displayed by Internet Explorer 6.

To set the text size using a keyword, set the font-size property to a keyword value within
a CSS rule or inline within an HTML container tag. For example, the following code shows

how to use the style attribute to set the font-size property inline:

<p style="font-size: xx-small">xx-small text

x-small text

small text

medium text

large text

x-large text

xx-large text</p>

To set the size of all text content on a page to a keyword size, insert a rule such as the following in
a CSS within the Web page header section as shown here:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"

"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

<html xmlns="http://www.w3.org/1999/xhtml">

<head>

<title>Text Size Keywords</title>

<style type="text/css">

C h a p t e r 5 : X H T M L a n d E m e r g i n g T r e n d s 2 4 3

Tip&Tec / HTML & Web Design Tips & Techniques / Anderson, King, Jamsa / 9394-8 / Chapter 5

Keyword IE 5.5 Size
IE 6 and Netscape Navigator
(NN) 6.1 Size NN 4.7 Size

Large
23 pixels

18 pixels

24 pixels

x-large
32 pixels

23 pixels

36 pixels

xx-large
48 pixels

32 pixels

54 pixels

Table 5-1 Size Keywords and Text Size for IE 5.5, IE 6.0, NN 4.7, and NN 6.1 (continued)

P:\010Comp\Tip&Tec\394-8\ch05.vp
Friday, January 04, 2002 4:45:52 PM

Color profile: Generic CMYK printer profile
Composite Default screen

body {font-size:large}

</style>

</head>

<body bgcolor="#ADD8E6">

<!-- Web Page Content -->

</body>

</html>

After you set the text size using one of the seven size keywords, you can change it using the relative
keywords smaller and larger. As its name implies, applying the keyword smaller tells the Web browser
to reduce the text size down one notch on the keyword scale. Similarly, applying the keyword larger
tells the browser to increase text size up one notch. Thus, given the Web page described by the preceding
code in which all body text is large, you might write the following HTML within the Web page body
to emphasize certain words:

<p>To emphasize a word you might make it

larger.

Make a word smaller also draws the

visitor's attention.</p>

2 4 4 H T M L & W e b D e s i g n T i p s & T e c h n i q u e s

Tip&Tec / HTML & Web Design Tips & Techniques / Anderson, King, Jamsa / 9394-8 / Chapter 5

Figure 5-4 Text size for each keyword as displayed by Internet Explorer

P:\010Comp\Tip&Tec\394-8\ch05.vp
Friday, January 04, 2002 4:45:52 PM

Color profile: Generic CMYK printer profile
Composite Default screen

C h a p t e r 5 : X H T M L a n d E m e r g i n g T r e n d s 2 4 5

Tip&Tec / HTML & Web Design Tips & Techniques / Anderson, King, Jamsa / 9394-8 / Chapter 5

In this example, the Web browser will display the word larger as x-large text (stepping up one notch
from large in the keyword sale) and the word smaller as medium text (one step down from large).

Grouping an XHTML Form’s Selection List Items
with the <optgroup> Tag
A selection list on an XHTML (and HTML) form presents a list of items within a scrollable area.
You may use a selection list in place of check boxes to save space onscreen—especially when you
have a large number of items from which the visitor is to make his or her selections. (A selection list,
unlike a set of check boxes, also lets you specify whether a visitor may select only one or multiple items.)
In Chapter 3 on HTML forms, you learned how to create a selection list by inserting a <select> element
similar to the following between the form’s start and end form tags (<form></form>):

<select size="10" name="AreasOfInterest" multiple="Yes">

<option value="Win98">Windows 98</option>

<option value="WinXp">Windows XP</option>

<option value="WinNT">Windows NT</option>

<option value="DT">Desktop</option>

<option value="LT">Laptop</option>

<option value="PDA">PDA</option>

<option value="Prtr">Printers</option>

<option value="Mon">Monitors</option>

</select>

The text between each pair of start and end option tags (<option></option>) represents an item on
the list, as shown here:

P:\010Comp\Tip&Tec\394-8\ch05.vp
Friday, January 04, 2002 4:45:52 PM

Color profile: Generic CMYK printer profile
Composite Default screen

2 4 6 H T M L & W e b D e s i g n T i p s & T e c h n i q u e s

Tip&Tec / HTML & Web Design Tips & Techniques / Anderson, King, Jamsa / 9394-8 / Chapter 5

The <optgroup> element lets you group selection list items logically. If a selection list
contains many items or if the list has groups of related items (as is the case in the preceding

example), use the <optgroup> tag to add a “heading” at the start of each item group as shown here:

Groups of related choices are easier for the visitors to remember and grasp than a single long
(and possibly diverse) list of options. To break a selection list into groups of items, as shown in
this example, insert <optgroup> tags within the selection list’s options as follows:

<select size="10" name="AreasOfInterest" multiple="Yes">

<optgroup label="Operating Systems">

<option value="Win98">Windows 98</option>

<option value="WinXp">Windows XP</option>

<option value="WinNT">Windows NT</option>

</optgroup>

<optgroup> label="Hardware">

<option value="DT">Desktop</option>

<option value="LT">Laptop</option>

<option value="PDA">PDA</option>

<option value="Prtr">Printers</option>

<option value="Mon">Monitors</option>

</optgroup>

</select>

Note that each option group is described by a set of start and end option group tags (<optgroup></
optgroup>). The <optgroup> tag’s label attribute gives the text the Web browser displays onscreen as
the option group heading.

As of this writing, you cannot nest option groups to create subgroups. However, the HTML 4.01
specification indicates that future versions of HTML (and now XHTML) may allow nested groups to
let authors create a multilevel hierarchy of selection list choices.

P:\010Comp\Tip&Tec\394-8\ch05.vp
Friday, January 04, 2002 4:45:53 PM

Color profile: Generic CMYK printer profile
Composite Default screen

C h a p t e r 5 : X H T M L a n d E m e r g i n g T r e n d s 2 4 7

Tip&Tec / HTML & Web Design Tips & Techniques / Anderson, King, Jamsa / 9394-8 / Chapter 5

Adding Color to XHTML Tables with
Cascading Style Sheet Rules
You typically use XHTML tables for two purposes: to position elements on a Web page and to display
tabular data. As you learned in Chapter 4, you can use CSS rules to position Web page objects precisely.
Therefore, as more and more browsers provide CSS support, you will no longer need tables for page
layout one day. Not only does CSS make tables less important for page layout, CSS also enhances an
XHTML table’s ability to display data in tabular form. Using CSS rules and <thead>, <tfoot>, and
<tbody> tags you can color and format each section (“header,” “footer,” and “body”) within a table
to set its data apart.

Note that <thead>, <tfoot>, and <tbody> tags are not unique to XHTML. After all, as mentioned
in this chapter’s introduction, XHTML is nothing more than HTML 4.01 rewritten as an XML application.
As such, you will find all XHTML tags in HTML 4.01 as well. We present these “table” tags here,
however, rather than in the Chapter 2 (which covers HTML tables), because older versions of Web
browsers do not support them. For example, prior to version 6.1, Netscape Navigator did not support
the <thead>, <tfoot>, and <tbody> tags. Thus, one of the additional benefits of moving from HTML to
XHTML is that XHTML-compliant Web browsers will support all the tags available within HTML 4.01
standard—the last version of the “HTML” standard the W3C will produce. (Future HTML specifications
will be released as XHTML 1.0, 1.1, and so on.)

To create a table with a header, footer, and body, first use the standard <tr> and <td> tags
to describe the table’s rows and columns. Then, insert the <thead>, <tfoot>, and <tbody>

tags within the table’s start and end table tags (<table></table>) as shown here:

<table cellspacing="0">

<thead><tr><td>Header C1</td><td>Header C2</td></tr></thead>

<tfoot><tr><td>Footer C1</td><td>Footer C2</td></tr></tfoot>

<tbody>

<tr><td>Body R1,C1</td><td>Body R1,C2</td></tr>

<tr><td>Body R2,C1</td><td>Body R2,C2</td></tr>

<tr><td>Body R3,C1</td><td>Body R3,C2</td></tr>

</tbody>

</table>

The table in this example has a single-row, two-column header and footer, and a body section with
three rows and two columns. You can put as many rows as you want into the table’s header or footer,
and a table’s header can have more rows than its footer, and vice versa. Simply insert an additional
set of open and close table row tags (<tr></tr>) within the table footer or header definition for each
row that you want to insert in either section. Both the table header and footer must, however, be the

P:\010Comp\Tip&Tec\394-8\ch05.vp
Friday, January 04, 2002 4:45:53 PM

Color profile: Generic CMYK printer profile
Composite Default screen

same width as the table body. Moreover, if your table has a footer (as defined within <tfoot> and
</tfoot> tags), the footer definition must appear after the table header definition (if any) and immediately
before the <tbody> tag that begins the table’s body.

After you create your table, you can apply CSS rules such as the following to style each of the three
sections within the table independently, as shown in Figure 5-5:

<style type="text/css">

td {border-style:solid; border-width:1px 1px;

border-color:black; padding-left:10px; padding-right:10px}

thead {color:black; background:lightgreen; font-weight:bold;

text-align:center}

tfoot {color:white; background:blue; font-weight:bold;

text-align:center}

tbody {text-align:right; background:lightblue}

</style>

Although the table header and footer must span the table’s width, neither section must have the same
number of columns as the table’s body. In fact, you normally want a single-cell header and footer with
one or more rows regardless of the number of cells within the table body. When you want a single
cell in one row to span multiple cells in subsequent rows, set the colspan attribute within the cell’s
<td> tag to the number of columns the cell is to span. For example, to create a single-cell header
and footer for the two-column table defined earlier in this Tip, replace the table’s header and footer
declarations with the following:

<thead><tr><td colspan="2">Header</td></tr></thead>

<tfoot><tr><td colspan="2">Footer</td></tr></tfoot>

2 4 8 H T M L & W e b D e s i g n T i p s & T e c h n i q u e s

Tip&Tec / HTML & Web Design Tips & Techniques / Anderson, King, Jamsa / 9394-8 / Chapter 5

Figure 5-5 An XHTML table with CSS rule–styled header, body, and footer sections

P:\010Comp\Tip&Tec\394-8\ch05.vp
Friday, January 04, 2002 4:45:54 PM

Color profile: Generic CMYK printer profile
Composite Default screen

TE
AM
FL
Y

Team-Fly®

In addition to suggesting that you use CSS rules to style different sections of a table, the HTML
specification states that Web browsers may one day scroll the rows within the table body between a
stationary table header and footer rows. Moreover, browsers may also reproduce the table header and
footer above and below table body rows for tables that span multiple pages when printed. Unfortunately,
as of this writing, neither Netscape Navigator nor Internet Explorer supports either of these features.

As a final note, do not confuse table heading cells (as defined by the <th> tags) with the table header
section. A table may have both heading cells and a header section. For example, to create a row of
heading cells below the table header, add a set of <tr><td></td></tr> tags within the table body. (Each
set of <th></th> tags adds a heading column to the row in which it is defined.) If you define a row of
heading cells as the first row within the table body, you can use a CSS rule such as the following to
create a table with headings below the header section as shown in Figure 5-6:

th {text-align:center; background:white}

Embedding Fonts Within an XHTML Web Page
with CSS Rules
As you create XHTML Web pages, you will rely increasingly on CSS when describing the appearance
of Web page text to the Web browser displaying your XHTML Web page. In fact, the tag,
long used to specify how text should look, deprecated in HTML 4.01 and XHTML 1.0, is no longer
present within the XHTML 1.1 specification. Fortunately, CSS provides the font-family property you

C h a p t e r 5 : X H T M L a n d E m e r g i n g T r e n d s 2 4 9

Tip&Tec / HTML & Web Design Tips & Techniques / Anderson, King, Jamsa / 9394-8 / Chapter 5

Figure 5-6 An XHTML table with both a header section and a row of heading cells

P:\010Comp\Tip&Tec\394-8\ch05.vp
Friday, January 04, 2002 4:45:54 PM

Color profile: Generic CMYK printer profile
Composite Default screen

can use in place of the tag to specify the typeface on your HTML pages you created in the
past and on future XHTML Web pages you create.

By using the CSS font-family property, you can tell the Web browser to display text in a specific
typeface. For example, you might use the following CSS rule to tell the Web browser to display
level-two headings on the Web page using the typeface Comic Sans MS:

<head>

<style>

h2 {font-family: "comic sans ms"}

</style>

</head>

When you use the font-family property to select a specific typeface in a CSS rule, you assume
that the font is available on the visitor’s computer. If the font is not available, the Web browser will
substitute a default font (as defined by the browser’s preferences). To overcome this problem, CSS
(Level 2) lets the browser download the fonts from your Web server when a CSS rule calls for a font
not available on the visitor’s system. Although this capability is relatively new, it offers the promise
of creating Web pages using nonstandard (custom) fonts, which Web browsers will display by
downloading the fonts from the Web server as necessary. As a result, you can design a Web page
with the knowledge that your visitors will see text in the typeface you selected (rather than in the
browser’s default typeface).

Keep in mind that the Web browser must download from the Web server any embedded fonts in
addition to the other elements on the Web page (such as graphics, animations, and so on). Moreover,
some Web browsers require that font files be in a specific format or the browser will not download
them. For example, Internet Explorer will download only fonts saved in Embedded Object Type
(EOT) formatted files. (You can learn about EOT files and download a free tool that lets you create
and save Internet Explorer downloadable fonts in a EOT file by visiting http://www.microsoft.com/
typography/web/embedding/weft2/.) Netscape Navigator, meanwhile, can download fonts stored
in Portable Font Resource (PFR) files (developed by Bitstream Inc). (For more information about
generating Netscape Navigator-downloadable fonts as PFR files, visit http://devedge.netscape.com/.)

To download fonts with an XHTML document, specify the font to download in a CSS
@font-face declaration, such as that shown in the following style sheet:

<head>

<style>

@font-face {font-family:"new geneva";

src:url(http://www.MyServer.com/fonts/geneva1.eot)}

</style>

</head>

The @font-face declaration instructs the Web browser to download the file specified by
font-family property (New Geneva, in this example) from the Web address specified by the src
property (http://www.MyServer.com/fonts/geneva1.eot). To format text using a downloaded font,

2 5 0 H T M L & W e b D e s i g n T i p s & T e c h n i q u e s

Tip&Tec / HTML & Web Design Tips & Techniques / Anderson, King, Jamsa / 9394-8 / Chapter 5

P:\010Comp\Tip&Tec\394-8\ch05.vp
Friday, January 04, 2002 4:45:55 PM

Color profile: Generic CMYK printer profile
Composite Default screen

specify the font’s name in a CSS rule exactly as you would any other font. For example, the following
style sheet tells the Web browser to use the New Geneva typeface for paragraph text:

<head>

<style>

@font-face {font-family:"new geneva";

src:url(http://www.MyServer.com/fonts/geneva1.eot)}

p {font-family:"new geneva", courier;

color :blue}

</style>

</head>

In this example, the first statement in the style sheet tells the Web browser to download the file
named geneva1.eot from the fonts folder on the Web server at http://www.MyServer.com. The Web
browser, in turn, downloads the font file and assigns it the name new geneva. The next statement tells
the Web browser to use the downloaded typeface to format paragraph text (that is, text that follows a
<p> tag). If the Web browser cannot or will not download the font you specified (using the @font-face
declaration), the browser will use the alternate typeface (if any) you specified within the CSS rule
(Courier, in this example). If neither font is available, the Web browser will use its default font.

The Web browser stores font files (in this example, the file geneva1.eot) within the browser’s
Temporary Internet Files folder on the visitor’s computer. As such, the browser need not download
previously downloaded font files each time the visitor returns to the same Web page. When available,
the browser retrieves font files from its Internet files cache (on the visitor’s hard drive), so that the
Web page loads faster on subsequent visits.

Bear in mind that you cannot simply copy EOT and PFR files downloaded by your Web browser
to the Fonts folder on your hard drive and start using them on Web pages you create. Fonts, like other
intellectual property, have copyrights. Each EOT and PFR file you create (or pay someone else to create
for you) has a built-in security model. Web browsers will only display a downloaded font when the font
is referenced from a document root specified by the font file’s author. Therefore, if you use WEFT,
for example, to create a font, you can specify that the font is only to be used on Web pages from
http://www.YourDomain.com. If some other Web page author embeds the font file within a Web
page he (or she) places on http://www.HisDomain.com, the Web browser retrieving the page will
see that the document root (http://www.HisDomain.com) does not match the document root within
the downloaded font file (http://www.YourDomain.com). As a result, the Web browser will use its
default typeface (rather than your copyrighted typeface) to style the text content.

Inserting an XHTML Page Within Another
with an Inline Frame
To display multiple Web pages onscreen at the same time, you use frames. In Chapter 1, you learned
how to create frames using <frame> and <frameset> tags. When you divide the Web browser’s
application window into multiple parts (that is, into frames) with a <frameset> tag, the browser can

C h a p t e r 5 : X H T M L a n d E m e r g i n g T r e n d s 2 5 1

Tip&Tec / HTML & Web Design Tips & Techniques / Anderson, King, Jamsa / 9394-8 / Chapter 5

P:\010Comp\Tip&Tec\394-8\ch05.vp
Friday, January 04, 2002 4:45:55 PM

Color profile: Generic CMYK printer profile
Composite Default screen

2 5 2 H T M L & W e b D e s i g n T i p s & T e c h n i q u e s

Tip&Tec / HTML & Web Design Tips & Techniques / Anderson, King, Jamsa / 9394-8 / Chapter 5

display a different Web page within each frame. Then, while the frames remain stationary onscreen,
the visitor can scroll the page in each frame independently to view page content that does not fit
within the frame.

In the past, frames have been an issue with Web designers. Part of the problem was that many
authors simply did not understand how to code frameset pages properly. However, even when properly
written, many older browsers had no frames support, so designers were constantly writing two sets of
pages for many Web sites—one with “frames” documents and one without. Fortunately, XHTML
represents the evolution of HTML from being a combination page description/content formatting
language to a structural markup language (which most would argue was its original purpose).

In the future, using CSS rules to format text content and exploiting CSS positioning capabilities to
handle page layout issues will let Web browser manufacturers concentrate on enhancing their software
to handle more complex structures (such as frames). Relieving Web authors of the burden to create
two Web pages (one with frames and one without) each time they create a framed page will likely
make framed XHTML pages more prevalent than framed HTML pages. In addition, XHTML-
compliant Web browsers will support the inline frame tag (<iframe>), which lets you insert one
Web page within another as easily as the tag lets you place a picture on a Web page.

When you want to display one Web page within another without dividing the application window
into frames, you use an <iframe> tag to embed an inline frame into the page. The scrollable frame
that the <iframe> tag generates creates an inline frame that “sits” on the Web page with other objects
(such as XHTML tables, graphics images, java applets, and so on) inserted on the page. Like the
content within a <frame> tag, the visitor can scroll the Web page displayed within an inline frame
to view page content that extends beyond the frame’s borders. However, unlike frames created with
a <frameset> tag, the inline frame an <iframe> tag creates remains attached to a specific location on
the Web page. Therefore, while a frameset’s frames remain stationary, an inline frame moves as the
visitor scrolls the document with the embedded <iframe> tag.

To place an inline frame on a Web page, insert an <inline> tag, such as that shown within
the following Web page HTML, where you want the rectangular frame to appear:

<iframe src="WebPageURL">

<!-- alternate content for browsers which do not support

the <iframe> tag -->

</iframe>

Replace WebPageURL in this example with the Web address (that is, the URL) of the Web page
you want the browser to display within the inline frame.

Suppose for example, you want to simulate “scrollable tables” in which the visitor can scroll the
data within the table’s body between a stationary table header and footer. Rather than create a single
table, create three tables: one with the table header, a second with the table footer, and the third with
the table body. Insert the table header and footer onto the Web page as you would any other table.
However, insert the table body into a second Web page, which you display between the “header”
and “footer” tables on the first page as shown here:

P:\010Comp\Tip&Tec\394-8\ch05.vp
Friday, January 04, 2002 4:45:56 PM

Color profile: Generic CMYK printer profile
Composite Default screen

C h a p t e r 5 : X H T M L a n d E m e r g i n g T r e n d s 2 5 3

Tip&Tec / HTML & Web Design Tips & Techniques / Anderson, King, Jamsa / 9394-8 / Chapter 5

<body>

<!-- Web page content before the composite "table" -->

<!-- "Header" Table -->

<table cellspacing="0" width="525">

<tr><td colspan="7" class="header">

Hours Worked -- 11/01/2002 - 11/30/2002</td></tr>

<tr><th width="80"> </th><th>MON</th><th>TUE</th>

<th>WED</th><th>THU</th><th>FRI</th><th>Total</th></tr>

</table>

<!-- The scrollable "table" body within an in-line frame -->

<iframe src="HoursWorked.htm" width="525"

height="100" scrolling="auto">

<p>**The hours table data should be displayed here!**</p>

</iframe>

<!-- "Footer" Table -->

<table cellspacing="0" width="525">

<tr><td class="footer">© NVBizNet.com (702)-361-0141

</td></tr>

</table>

<body>

In this example, the src attribute in the <iframe> tag tells the Web browser to display the Web page
HoursWorked.htm within the inline frame. (HoursWorked.htm is a Web page with a single week of
hours-worked information displayed in tabular form.) The <iframe> tag’s width and height attributes
instruct the Web browser to make the inline frame 525 pixels wide by 100 pixels tall. Finally, setting
the scrolling attribute to “auto” instructs the Web browser to insert both vertical and horizontal scrollbars
when the content on the Web page displayed within the frame is either wider or taller than the frame
as shown in Figure 5-7.

As you can see from the preceding example, you insert an inline frame on a Web page much like
you insert a graphics image—only you use a set of start and end inline frame tags (<inline></inline>)
to insert an inline frame rather than the tag you use to insert an image. Inline frames—like
images—take up space on a Web page. To position the frame precisely on the page, insert its <iframe>
tag into a cell within a page layout table (as you learned to do with text, graphics images, and other
objects in Chapter 2) or use CSS positioning rules (which you learned about in Chapter 4).

You can let a site visitor click a hypertext link to change the Web page displayed within an inline
frame. However, to do this you must name the frame. To assign a name to an inline frame, use the
<inline> tag’s name attribute, as shown here:

<iframe src="HoursWorked.htm" width="525"

height="100" scrolling="auto" name="HoursTableFrame">

<p>**The hours table data should be displayed here!**</p>

</iframe>

P:\010Comp\Tip&Tec\394-8\ch05.vp
Friday, January 04, 2002 4:45:56 PM

Color profile: Generic CMYK printer profile
Composite Default screen

The name attribute in this example sets the name of the inline frame to “HoursTableFrame.” As
such, you can instruct the Web browser to display the page a hyperlink retrieves within the inline
frame by assigning “HoursTableFrame” to the hyperlink’s target attribute as follows:

Employee hours 01/07/02 – 01/11/02

Employee hours 01/14/02 – 01/18/02

Employee hours 01/21/02 – 01/25/02

<!-- Links to pages with additional hours worked tables -->

When clicked, each of the hyperlinks in this example will retrieve a Web page and display the
page content within the inline frame “HoursTableFrame”. Thus, in this example, the visitor can select
the week of hours worked—data the browser displays as a “scrollable table” within an inline frame.

Both Netscape Navigator 6.1 (and later) and Internet Explorer 5.5 (and later) support the <iframe>
tag. For additional browsers with inline frames support, check the <iframe> tag information available
at http://www.htmlcompendium.org/Menus/0framefy.htm, where you will find a list of HTML and
XHTML elements and which browsers support what elements and attributes.

2 5 4 H T M L & W e b D e s i g n T i p s & T e c h n i q u e s

Tip&Tec / HTML & Web Design Tips & Techniques / Anderson, King, Jamsa / 9394-8 / Chapter 5

Figure 5-7 A Web page that uses an inline frame to create a scrollable table

P:\010Comp\Tip&Tec\394-8\ch05.vp
Friday, January 04, 2002 4:45:56 PM

Color profile: Generic CMYK printer profile
Composite Default screen

C h a p t e r 5 : X H T M L a n d E m e r g i n g T r e n d s 2 5 5

Tip&Tec / HTML & Web Design Tips & Techniques / Anderson, King, Jamsa / 9394-8 / Chapter 5

Updating Multiple XHTML Page Inline Frames at Once
Frames let you display two or more Web pages within the browser application window at the same
time. For example, in Chapter 1, you used frames to display three Web pages onscreen: a banner or
logo in a frame along the top of the screen; a menu within a frame down the screen’s left side; and a
content page (initially, the site’s home page) in a frame to the right of the menu. The preceding Tip
showed you how to insert an inline frame within an XHTML Web page as you would a graphics
image. Like other objects visible on the Web page, you position inline frames with CSS positioning
rules (which you learned about in Chapter 4) or by inserting the inline frames within table cells
located where you want the content within the frames to appear.

If you want to float text along the side and bottom of an inline frame, you need only insert an
align attribute within the frame’s <iframe> tag, as shown here:

<body>

<!-- Content that precedes the inline frame -->

<p>

<iframe width=200 height=200 src="RoastPic.htm"

align="right"></iframe>

<!-- Text content which flows along the frame's left-hand

side—the inline frame is aligned "right." -->

</p>

<!-- additional page content -->

</body>

In this example, Web page content within the same paragraph (container) as the inline frame flows
along the frame’s left side. Setting the <iframe> tag’s align attribute to “right” instructs the browser
to display the 200-pixel by 200-pixel frame flush with the right-hand side of its container, which in
this case, is the Web page body. To float text along an inline frame’s right side, set the align attribute
within its <iframe> tag to “left.”

Suppose, for example, that you have an unordered (that is, bulleted) list of recipe titles and want to
display a picture of the “finished” product to the right of the list whenever a visitor clicks on a recipe
title within the list. You might use code similar to the following to describe the Web page body:

<body>

<p>

<iframe name="FoodPictureFrame" width=250 height=250

src="RoastPic.htm" align="right" scrolling="no"></iframe>

Yankee Pot Roast

Roast Duck

P:\010Comp\Tip&Tec\394-8\ch05.vp
Friday, January 04, 2002 4:45:57 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Chicken Kiev

</p>

<!-- additional page content -->

</body>

Note that each item in the bulleted list is a hypertext link whose target attribute tells the Web
browser to display the Web page retrieved (by clicking the hyperlink) within the same inline frame,
“FoodPictureFrame”. As such, each time a visitor clicks a recipe within the bulleted list, the Web
browser retrieves the Web page with the picture of the cooked item and displays the page within
the inline frame to the right of the list.

Now, suppose that you also want to display cooking instructions in an inline frame below the
bulleted list. (By putting the food recipe within a frame, you can let the visitor scroll through long
recipes while at the same time keeping the item list and picture visible onscreen.) To be useful, the
cooking instructions within the inline frame below the item list must tell how to prepare the meal
displayed within the inline frame (“FoodPictureFrame”) to the right of the list. As such, when a
visitor clicks a list item, the browser must update the content in two frames—the frame that shows
the meal and the frame that shows the recipe.

To change the content of both frames when a visitor clicks on a hypertext link, you need
only add a bit of JavaScript to each hyperlink <a> tag. (Chapter 8 presents JavaScript in

detail. However, you need not refer to that chapter before you write the JavaScript you need now.) By
clicking on a hyperlink, a site visitor triggers the hyperlink’s onClick event. Within the hyperlink’s
<a> tag, then, you can tell the Web browser to execute one or more JavaScript statements whenever
the browser detects a mouse click on the link. Thus, to change the contents in two inline frames at
once, you might change the code shown previously to the following:

<body>

<iframe name="FoodPictureFrame" width=250 height=250

src="RoastPic.htm" align="right" scrolling="no"

hspace="0" vspace="0"></iframe>

<a href="RoastPic.htm" target="FoodPictureFrame"

onClick="window.RecipeFrame.location='RoastRecipe.htm'">

Yankee Pot Roast

<a href="DuckPic.htm" target="FoodPictureFrame"

onClick="window.RecipeFrame.location='DuckRecipe.htm'">

Roast Duck

<a href="ChickenPic.htm" target="FoodPictureFrame"

onClick="window.RecipeFrame.location='ChickenRecipe.htm'">

Chicken Kiev

<div style="position:relative; top:175px">

2 5 6 H T M L & W e b D e s i g n T i p s & T e c h n i q u e s

Tip&Tec / HTML & Web Design Tips & Techniques / Anderson, King, Jamsa / 9394-8 / Chapter 5

P:\010Comp\Tip&Tec\394-8\ch05.vp
Friday, January 04, 2002 4:45:57 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Recipe:

<iframe name="RecipeFrame" src="RoastRecipe.htm"

width="100%" height="100" scrolling="auto"></iframe>

</div>

</body>

Each <a> tag in this example now has a JavaScript statement that tells the Web browser to load
a Web page into the inline frame named “RecipeFrame” (defined within the division container at
the bottom of the page). For example, clicking on the first hypertext link, Yankee Pot Roast, triggers
the onClick event within the hyperlink’s <a> tag. The Web browser, in turn, executes the JavaScript
statement tied to the onClick event, which instructs the browser to load the Web page RoastRecipe.htm
into the inline frame “RecipeFrame”. After executing the JavaScript statement, the browser loads
the Web page given by the <a> tag’s href attribute (RoastPic.htm) into the inline frame named by
its target attribute (“FoodPictureFrame”).

Thus, the code in this example loads two Web pages—one as instructed by the hypertext link
and the other as instructed within the JavaScript statement (triggered by the <a> tag’s onClick event).
Although, the JavaScript in this example only loads a single Web page, you can load multiple pages
by adding additional statements within the quoted string that follows onClick=. Simply separate the
statements you want the browser to execute with a semicolon (;), as shown here:

onClick="window.InlineFrameName.location='WebPageURL';
window.InlineFrameName.location='WebPageURL';
window.InlineFrameName.location='WebPageURL';"

In each of the three statements in this example, you would replace InlineFrameName with the name
of the inline frame into which you want the Web browser to load the Web page, whose Web address
you type in place of WebPageURL at the end of the statement.

Changing XHTML Page Appearance Based on Media Type
Until recently, you could design Web pages knowing that site visitors would display your creations
on a monitor attached to a PC. Although screen resolutions vary, standard 15- and 17-inch monitors
give you plenty of room to display the graphics and animations needed to spice up a page and drive
home the message in its text content. These days, in addition to desktop or laptop computer screens,
visitors view Web pages on their televisions, cell phones, personal digital assistants (PDAs), and
other wireless devices. What complicates matters for you, the designer, is that each type of non-PC
device differs in physical size, layout, and the way in which the visitor interacts with the device while
surfing the Web. Therefore, when creating a page with text content intended for both wired (PC) and
wireless visitors, you must vary the content’s appearance (and perhaps the page layout) based on the
media used to display it.

For example, an article on a Web page with a 36pt heading and 18pt type may fit comfortably on
a single 17-inch computer screen. However, after retrieving the page on a PDA (such as a Palm Pilot
or Handspring Visor), a visitor might see only the heading and a few sentences of content. Because

C h a p t e r 5 : X H T M L a n d E m e r g i n g T r e n d s 2 5 7

Tip&Tec / HTML & Web Design Tips & Techniques / Anderson, King, Jamsa / 9394-8 / Chapter 5

P:\010Comp\Tip&Tec\394-8\ch05.vp
Friday, January 04, 2002 4:45:58 PM

Color profile: Generic CMYK printer profile
Composite Default screen

paging through multiple screens while reading distracts the visitor, you want to fit as much text on a
single screen as possible. Therefore, you want the PDA’s Web browser to display headings and text
using a 12pt character size, for example. To set the headings off from regular text, you might display
the headings in boldface.

Before CSS rules with media attributes, you had to create multiple Web pages to display even the
same content using different text styles. Imagine the time and expense involved in creating and managing
multiple copies of every Web page on a large news site that might generate several hundred (and perhaps
over a thousand) new Web pages each day. Not to mention the added load on the Web server due to
the server taking time to determine the visitor’s media type so it could select the correct Web page
format to send for each HTTP request.

Fortunately, CSS lets you write rules that tell the visitor’s browser how to style the content
based on the browser’s display type. For example, to display a Web page with 36pt headings

and 18pt type on a computer screen while displaying the same page in 12pt type on a handheld (PDA)
device, you can include style sheets such as the following within your Web documents:

<head>

<style type="text/css" media="screen">

<!--

h1 {font-size:36pt; text-align:center; font-weight:bold}

body {font-size:18pt}

-->

</style>

<style type="text/css" media="handheld">

<!--

h1 {font-size:12pt; font-weight:bold}

body {font-size:12pt}

-->

</style>

</head>

Note that each of the two style sheets in this example has a media attribute. The media type descriptor
assigned to the media attribute in the first style sheet is “screen,” and the media type descriptor for the
second style sheet is “handheld.” This means that a Web browser will apply the CSS rules within
the first style sheet only when the browser is running on a device (such as a PC) whose media type
(that is, display type) is “screen.” Similarly, a Web browser running on a PDA (that is, on a handheld
device such as a PocketPC) will one day “know” its media type is “handheld” and will therefore apply
the CSS rules within the second style sheet.

Unfortunately, none of the microbrowsers on handheld devices today are as sophisticated as those
on PCs. The Palm OS, for example, supports only HTML 3.2, and cellular phone Web browsers use
Handheld Device Markup Language (HDML), Wireless Device Markup Language (WML), or a very
limited subset of HTML. However, when accepted, the soon-to-be-released module-based XHTML
(XHTML version 1.1) will let manufacturers create Web browsers with only the subset of XHTML
necessary to display Web content based on device type. In fact, the W3C released XHTML Basic in
December 2000 exactly with this in mind. By removing from XHTML the tags that mobile phones,

2 5 8 H T M L & W e b D e s i g n T i p s & T e c h n i q u e s

Tip&Tec / HTML & Web Design Tips & Techniques / Anderson, King, Jamsa / 9394-8 / Chapter 5

P:\010Comp\Tip&Tec\394-8\ch05.vp
Friday, January 04, 2002 4:45:58 PM

Color profile: Generic CMYK printer profile
Composite Default screen

TE
AM
FL
Y

Team-Fly®

PDAs, pagers, and set-top boxes could not physically support, the W3C gave manufacturers a smaller
DTD they could embed within their browsers. (The smaller the DTD, the less device memory the browser
consumes and the less processing power it requires.)

Typically, a handheld device does not connect directly to the Internet. Instead, the handheld
communicates with a proxy server, which in turn, retrieves a Web page from the Web server and passes
a filtered version of the Web page HTML back to the wireless device for display. Proxy servers, which
are currently using older versions of HTML, will soon switch to XHTML and become more “intelligent.”
Rather than simply filter and pass HTML codes to handheld devices, as they do now, proxy servers
will download the appropriate style sheets (based on the media type of the device they are feeding)
and apply the CSS rules to the Web content before they pass the formatted content on to the wireless
device. Thus, although a cellular phone’s Web browser may not support XHTML or CSS, the proxy
server that sends Web content to the Web browser will. By including the media descriptor within your
style sheets now, you make your Web pages ready for display on non-PC platforms in the future.

CSS Level 1 identifies two media types: “screen” and “print.” CSS Level 2 has ten media type
descriptors (shown in Table 5-2) that represent target devices for XHTML content.

Interestingly, the CSS (Level 2) standard notes that due to rapidly changing technology, you
should not consider the media type list within the standard (as shown here) as definitive of all media
types. However, Web page authors (like you) should not rely on media type names not yet defined
within the CSS standard. Meaning: Check the latest revision of the CSS standard periodically; the
list of media types will grow as manufacturers provide Web access (and Web browsers) on more
and more of the devices we use daily.

Although the example at the beginning of this Tip shows how you embed a separate style sheet for
each media type, you can use the CSS @media rule to specify rules for multiple media types within a

C h a p t e r 5 : X H T M L a n d E m e r g i n g T r e n d s 2 5 9

Tip&Tec / HTML & Web Design Tips & Techniques / Anderson, King, Jamsa / 9394-8 / Chapter 5

Media Type Descriptor Apply Style Sheet Rules to

“all” All device types

“aural” Speech synthesizers

“Braille” Braille and tactile feedback devices

“embossed” Paginated Braille printers

“handheld” Handheld devices (such as PDAs and cell phones)

“print” Paginated media (such as the printed page) or printed pages onscreen
(such as a “print preview”)

“projection” Projectors, and printing to film slides and transparencies

“screen” Color computer screens

“tty” Devices with fixed-pitch character grids, such as teletype machines

“tv” Television-type devices (low resolution, color, limited scrollability, sound capable)

Table 5-2 CSS Level 2 Media Type Descriptors

P:\010Comp\Tip&Tec\394-8\ch05.vp
Friday, January 04, 2002 4:45:58 PM

Color profile: Generic CMYK printer profile
Composite Default screen

single style sheet. For example, you can specify rules for handheld, print, and screen devices within
the same style sheet, as shown here:

<head>

<style type="text/css">

<!--

@media screen, print {

h1 {font-size:36pt; text-align:center; font-weight:bold}

body {font-size:18pt} }

@media handheld {

h1 {font-size:12pt; font-weight:bold}

body {font-size:12pt} }

-->

</style>

</head>

Note that each @media rule specifies its target media type(s) (separated by commas) followed by
a set of rules (within curly braces). Thus, in this example, a PC-based browser (whose media type is
“screen”) will apply the two CSS rules within the first @media rule, whereas the proxy sever for a
Web browser running on a PDA will apply the two CSS rules within the second @media rule.

Rather than embed style sheets (especially those intended for specific media types) within your
XHTML documents, consider linking to style sheets stored as files external to the Web page. By
using an @import command with syntax, as shown here, you can reduce the amount of code the
browser retrieves:

@import (<style sheet URL>) <media type list>;

Suppose, for example, that you stored the CSS rules in the previous example within two external
files (SmallDisplay.css and NormalDisplay.css) within the /StyleSheets folder on your Web site. If
you include the following code within the Web page HTML, the visitor’s Web browser will retrieve
only the external style sheet file whose media type(s) the browser supports:

@import (/StyleSheets/NormalDisplay.css) screen, print;

@import (/StyleSheets/SmallDisplay.css) handheld;

Thus, the proxy server for browsers running on a cell phone will retrieve only SmallDisplay.css,
whereas the PC-based browser will retrieve only NormalDisplay.css, because they do not support the
“handheld” media type. Note that if a handheld device (such as a PDA) has print capability, its proxy
server will download both external style sheets.

2 6 0 H T M L & W e b D e s i g n T i p s & T e c h n i q u e s

Tip&Tec / HTML & Web Design Tips & Techniques / Anderson, King, Jamsa / 9394-8 / Chapter 5

P:\010Comp\Tip&Tec\394-8\ch05.vp
Friday, January 04, 2002 4:45:59 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Controlling the Way the Web Browser
Prints an XHTML Web Page
If you have a long Web page and you think that your visitors will want it, you can use a CSS rule to
control the page breaks on the printed output. There is no practical limit as to the length of a single
Web page when viewed onscreen. The browser lets the site visitor scroll through the Web documents
without visible page breaks. Each piece of paper, however, has a finite length. As such, the Web browser
must eject a page after printing to the last printable line on the page.

Unfortunately, the Web browser may overrun the physical page break when printing the content
on a large (long) Web page. If the browser attempts to print all the way to the bottom edge of a
page on a laser printer, for example, the visitor will not be able to see the content “printed” in the
nonprintable margin at the bottom of one page and top of the next. Moreover, if your Web page
has pictures, the browser may print part of a picture on one page and the rest on another. Finally, if
the visitor has a dot matrix printer, the browser may print a line of text on the perforation between
pages only to have the text become unreadable when the visitor separates the individual pages of the
continuous form computer paper. Fortunately, you can use a CSS rule to ensure that browsers print
your Web pages with page breaks where you want them.

Say, for example, that you create a long Web page, and you want to make sure that Web
browsers print the content on the page with page breaks between paragraphs and either

before or after (but not within) the graphics images on the page. You can use the CSS page-break-after
and page-break-before properties to tell the Web browser to eject a page and continue printing on the
next page where you want each page break to occur within your Web page HTML. Table 5-3 describes
the instructions the Web browser receives based on each value available for the page-break-after and
page-break-before properties.

For example, the following CSS rule tells the Web browser to eject a page before printing each
level-one heading:

h1 {page-break-before: always}

C h a p t e r 5 : X H T M L a n d E m e r g i n g T r e n d s 2 6 1

Tip&Tec / HTML & Web Design Tips & Techniques / Anderson, King, Jamsa / 9394-8 / Chapter 5

Value page-break-before page-break-after

“auto” Neither force nor prevent a page break
before the element.

Neither force nor prevent a page break after
the element.

“always” Force a page break before the element. Force a page break after the element.

“avoid” Override the page-break-before “always”
setting for the current element and do not
force a page break before the element.

Override the page-break-after “always” setting
for the current element and do not force a page
break after the element.

Table 5-3 CSS page-break-before and page-break-after Options for Paginating Printed Output

P:\010Comp\Tip&Tec\394-8\ch05.vp
Friday, January 04, 2002 4:45:59 PM

Color profile: Generic CMYK printer profile
Composite Default screen

After adding the preceding rule to a CSS in the Web page header, you can use the rule to control
page breaks in printouts by inserting level-one headings wherever you want a page break to occur, as
shown here:

<html>

<head>

<style>

h1 {page-break-before:always}

</style>

</head>

<body>

<h1 style="page-break-before:auto"> This heading defines the

start of the document </h1>

<p> This represents text on page 1… </p>

<h1> This heading starts a new page </h1>

<p> This represents text on page 2… </p>

<h1 style="page-break-before:avoid">

No page break before this heading</h1>

<p> This represents additional text on page 2… </p>

<h1> This heading starts a new page </h1>

<p> This represents text on page 3… </p>

<body>

</html>

To avoid printing a blank page at the beginning of the document, the Web page in this example
has an in-line style within the first <h1> tag that sets the page-break-before property for the element
to “auto.” Setting the page-break-before property to “auto” tells the Web browser to neither avoid nor
force a page break before the element. Note too that the page-break-before property is set to “avoid”
within the third <h1> tag. This tells the Web browser not to force a page break before the element,
which means that the third level-1 heading prints on the same page with the second level-1 heading
(if physically possible).

2 6 2 H T M L & W e b D e s i g n T i p s & T e c h n i q u e s

Tip&Tec / HTML & Web Design Tips & Techniques / Anderson, King, Jamsa / 9394-8 / Chapter 5

Value page-break-before page-break-after

“left” Force the number of page breaks necessary
for the element to appear on a left-hand
(that is, an odd-numbered) page.

Force the number of page breaks necessary after
printing the element such that the content printed
immediately after the element appears on a
left-hand (that is, an odd-numbered) page.

“right” Force the number of page breaks necessary
for the element to appear on a left-hand
(that is, an even-numbered) page.

Force the number of page breaks necessary after
printing the element such that the content printed
immediately after the element appears on a
right-hand (that is, even-numbered) page.

Table 5-3 CSS page-break-before and page-break-after Options for Paginating Printed Output
(continued)

P:\010Comp\Tip&Tec\394-8\ch05.vp
Friday, January 04, 2002 4:46:00 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Thus, by assigning page-break-before (or page-break-after) property values to elements within
a style sheet in the Web page header, you control whether the browser ejects a page prior to printing
a particular type of element. To gain additional control over pagination, you can override existing
CSS rules by inserting in-line styles within tags that insert elements on the page. Often you will omit
style sheet rules altogether and use only inline styles to control pagination. For example, if you want
to make sure that a graphics image or an XHTML table starts at the top of a printed page (so that
the picture or tabular data is not split onto two pages), you would simply use inline styles, such
as the following:

<table style="page-break-before:always">

Remember that in addition to controlling pagination, you can also use CSS rules to control the
character size and typeface used to print a Web page. As such, you can make the Web page printout
look much different than it appears onscreen. Within the previous Tip, “Changing XHTML Page
Appearance Based on Media Type,” you learned how to create style sheet rules for specific media
types. For example, to print the Web page text content using only the Courier typeface, you would
include the following @media rule within a style sheet in the Web page header:

@media print {body {font-face:courier}}

Although the @media rule in this example applies to all body text, you can write “print” media
rules for the browser to apply to individual Web page elements.

C h a p t e r 5 : X H T M L a n d E m e r g i n g T r e n d s 2 6 3

Tip&Tec / HTML & Web Design Tips & Techniques / Anderson, King, Jamsa / 9394-8 / Chapter 5

P:\010Comp\Tip&Tec\394-8\ch05.vp
Friday, January 04, 2002 4:46:00 PM

Color profile: Generic CMYK printer profile
Composite Default screen

CHAPTER 6

Graphics

Tip&Tec / HTML & Web Design Tips & Techniques / Anderson, King, Jamsa / 9394-8 / Front Matter

TIPS IN THIS CHAPTER

� Working with Cross-Platform Issues When Creating Graphics Images for the Web 274

� Specifying Image Dimensions Within an Image Tag 277

� Working with the alt Attribute and Text-Only Viewers 278

� Creating a Tool Tip by Inserting a title Attribute in an Image Tag 281

� Compressing Photographs into a JPEG File 283

� Saving Clip Art and Text to a GIF-Formatted File 286

� Making Images Appear to Load Faster 288

� Working with the PNG-8 and PNG-24 File Formats 290

� Converting Graphics into Web Images with Image-Editing Programs 291

� Creating Web-Friendly Graphics Images on Your Scanner 292

� Creating Colorful Horizontal Rules 294

� Retrieving a Fast-Loading “Teaser” Image with the lowsrc Attribute 296

� Ensuring Accurate Color Presentation with the Web-Safe Color Palette 298

� Creating Graphical Hyperlink Anchors 300

� Creating Tiled Backgrounds from Graphics Images 301

� Creating Transparency in a GIF Image 304

P:\010Comp\Tip&Tec\394-8\ch06.vp
Friday, January 04, 2002 6:04:35 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Copyright 2002 by The McGraw-Hill Companies, Inc. Click Here for Terms of Use.

To most Internet users, the Web is and has always been a visual medium. However, in the
beginning, graphics were foreign to the World Wide Web. In fact, graphics images were more

than rare—Web designers did not use them. Computers were slow, Internet connections were slow,
and when people “surfed” the Web, the best they could expect was white text slowly appearing against
a green or black monitor background. It was a dark, boring time for Internet users. Fortunately, those
days are long gone.

Today, Web pages with graphics images abound, and the Internet (the electronic roadway that
transports information) has become faster and faster. To compare the speed at which information
travels across the Internet today, as opposed to ten years ago, would be like comparing a Model-T
Ford to a Ferrari. In other words, today’s Internet is a lot faster. Moreover, computers running the
latest Web browsers, such as Internet Explorer and Netscape Navigator, process and load Web pages
faster than ever before.

All this is important because graphics files are larger than text files and require more time to move
across the Internet and onto a visitor’s computer. Back in the days when a 2400 baud modem was the
standard Internet connection, no one was willing to wait the minutes (and perhaps hours) it would
have taken to download even a single graphics image. In addition, fewer applications were available
to create the graphics and compress them into smaller files. Developing the hardware and software
necessary to make graphics a reality on the Internet would take time.

Understanding a Graphics Role in Web Design
You place graphics onto a Web page for the same reasons you include pictures in a brochure or
magazine—to help the readers gain a better understanding of what you are trying to say. The goal is
to have graphics complement the written text. For example, a Web site designed to promote a major
university like the University of California at Berkeley would show images of the campus, classrooms,
and possibly the professors and other university staff. Visitors to the Web site would not only read
about the benefits of attending the university, but they would also be able to see the campus. By
viewing Web pages such as the one in Figure 6-1, visitors gain a thorough understanding of what
life at Berkeley is like.

265

Tip&Tec / HTML & Web Design Tips & Techniques / Anderson, King, Jamsa / 9394-8 /

� Retrieving Full-Size Images after Clicking on Thumbnails 307

� Preloading and Caching Images Behind the Scenes 309

� Expanding the Web-Safe Color Palette with Dithering Techniques 311

� Smoothing the Edges of Text Converted into a Graphic Through Anti-Aliasing 313

P:\010Comp\Tip&Tec\394-8\ch06.vp
Friday, January 04, 2002 6:04:36 PM

Color profile: Generic CMYK printer profile
Composite Default screen

2 6 6 H T M L & W e b D e s i g n T i p s & T e c h n i q u e s

Tip&Tec / HTML & Web Design Tips & Techniques / Anderson, King, Jamsa / 9394-8 / Chapter 6

Text alone cannot convey as much information as text combined with a few well-chosen images.
When you use descriptive text, however well-written, you must rely on the reader’s imagination to
construct an image of what you are describing. Conversely, when you use text and add pictures for
emphasis, your readers can see exactly what you have in mind.

Unfortunately, when adding illustrations to your Web pages, like with anything else, you can have
too much of a good thing. In Figure 6-1, a few well-placed images and descriptive text gives visitors
a slice of life at the university. However, a picture of every dormitory room, and images of every
building and classroom is too much information. Before you add graphics to a Web page, ask yourself
what images best illustrate what you are trying to say. If the goal of the Web site is to attract new
students, then choose images that would best achieve that goal.

As you create a Web site, never forget your responsibilities as a designer. Do not give your visitors
too much information on a single page or too many choices all at once. It is up to you to decide what
your visitors see and when they see it. If you give visitors too much data at one time, you run the risk
of causing information overload, which may result in visitors making the wrong choices or reaching

Figure 6-1 Life on the UC Berkeley campus, described in words and pictures

P:\010Comp\Tip&Tec\394-8\ch06.vp
Friday, January 04, 2002 6:04:37 PM

Color profile: Generic CMYK printer profile
Composite Default screen

the wrong conclusions. (You will learn more about striking a balance between Web images and text
later in this chapter in “Balancing Text and Graphics on a Web Page”.)

Creating Web Graphics
When you add images to your Web page, you have several choices as to where to get the graphics.
You can purchase CDs with ready-made images, or you can download Web graphics from Web sites
that sell graphics (such as http://www.photosphere.com or http://creative.gettyimages.com). Another
option is to use a digital or film camera to take photographs. You can then save the digital camera’s
images to disk or use a scanner to scan previously printed photos into files on your computer. Finally,
you can create digital clip art and illustrations by using design applications, such as Adobe Photoshop
and ImageReady.

Unless you purchase ready-made graphics, you will need one or more programs to help you process
and prepare the images for use on the Internet. Not only will graphics applications save you time
preparing images, but they also give you control over the image content. Say, for example, that you
have a picture of yourself and three friends taken at the Grand Canyon, and you want to focus attention
on the people in the picture and not the scenery. To accomplish this, you might open the image in
Photoshop (or another image-editing program) and crop (cut out) the areas of the image you do not
want people to see. Cropping an image directs the visitor’s eyes to exactly what you want the visitor
to see by removing unwanted portions of the picture, as shown in Figure 6-2.

C h a p t e r 6 : G r a p h i c s 2 6 7

Tip&Tec / HTML & Web Design Tips & Techniques / Anderson, King, Jamsa / 9394-8 / Chapter 6

Figure 6-2 Cropping an image helps to focus the viewer’s eyes on the details of the image and
avoids unnecessary distraction

P:\010Comp\Tip&Tec\394-8\ch06.vp
Friday, January 04, 2002 6:04:37 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Understanding Image File Formats
When a visitor retrieves a Web page that has pictures, the total size of the image files determines how
long it will take the Web browser to download and display the page. If your graphics files are too large,
site visitors may lose patience and move on to other, faster-loading Web sites. Fortunately, different
compression schemes are available to reduce the size of graphics files. Some of the schemes use lossy
compression; others are lossless. A lossy compression scheme reduces graphics file size by removing
color data. Conversely, lossless compression reduces the size of a file by compressing large blocks of
the same color. Although some of the color information is actually lost during lossy compression, with
lossless compression, all the color information remains in the file—the Web browser simply decompresses
the color data to redisplay the compressed blocks of color.

The final stage of image preparation involves selecting a file format to use when saving the picture
to a disk file. The three most common file formats for Web graphics are JPEG (pronounced “j-peg;”
it uses a lossy compression scheme developed by Joint Photographic Experts Group), Graphic Interchange
Format (GIF), and Portable Network Graphic (PNG). Both GIF and PNG file formats use a lossless
compression scheme to reduce file size. The smaller the graphics file’s size, the faster the Web browser
can download and display the picture on the Web page. Therefore, compressing graphics files reduces
the long wait times normally associated with Web pages that have large images. Of the three formats, the
JPEG format is used primarily for photographs, whereas the GIF format is most often used for clip
art, illustrations, and drawings.

Using the JPEG format reduces the file size of images containing a lot of color (such as photographs)
by removing (lossy) certain colors and then using the remaining colors in a dithering, or pixel-color-
mixing scheme that fools the eye into seeing colors that are no longer in the picture. Although a JPEG
image could contain a maximum of 16.7 million colors, the compression process removes most of
those colors to achieve significant file size reductions.

Whereas a JPEG-formatted file can hold millions of colors, a GIF file can house a maximum of
only 256. The GIF format reduces a compression scheme called Run Length Encoding (RLE) to compress
large solid areas of color (such as those found in clip art). For example, suppose an image has a solid
block of blue color running left to right across the width of the image. When you save the file, the
GIF compression scheme records the coordinates of the blue block and removes the block of color
from the file. When the Web browser opens the previously saved GIF image, the browser uses the
coordinates and run length to re-create the block of color within the image. The technique of recording
the coordinates of solid color areas creates GIF files with very small file sizes. Because the saved size of
a GIF file image depends on the colors in the image, graphics that contain few colors compress down
to small file sizes.

The PNG format uses a combination of the GIF and JPEG compression schemes. The PNG format
comes in two flavors: PNG-8 and PNG-24. The PNG-8 format can work only with graphics that have a
maximum of 256 colors. Therefore, the PNG-8 format closely resembles the GIF file format. In addition,
PNG-8 uses an RLE compression method similar to GIF compression. Using the PNG-8 format on a clip
art image produces small file sizes similar to those of the GIF format. The PNG-24 format can handle
images with millions of colors, and is used to minimize the size of photographic image files. However,
because the PNG format does not remove pixels of color like the JPEG format does, saving a photograph
using the PNG-24 format often creates files with an unacceptably large size for use on a Web page.

2 6 8 H T M L & W e b D e s i g n T i p s & T e c h n i q u e s

Tip&Tec / HTML & Web Design Tips & Techniques / Anderson, King, Jamsa / 9394-8 / Chapter 6

P:\010Comp\Tip&Tec\394-8\ch06.vp
Friday, January 04, 2002 6:04:38 PM

Color profile: Generic CMYK printer profile
Composite Default screen

TE
AM
FL
Y

Team-Fly®

When selecting a graphics file format, you must ensure that the majority of (and hopefully all)
your site visitors can open the graphics files you insert on your Web pages. Although almost all Web
browsers can decompress and display GIF- and JPEG-formatted files, the same does not hold true for
PNG graphics. (Some Web surfers using older browsers may not be able to display PNG-formatted
images.) Therefore, before selecting a graphics file format, make sure you know your audience and
the capabilities of the Web browsers your visitors will most likely be using.

� NOTE

Netscape Navigator and Internet Explorer have provided limited support for PNG-formatted graphics
files since 1997. However, for full support of the PNG format, including image transparency, PNG
images are best viewed using Internet Explorer versions 5 and up and Netscape Navigator versions 6
and higher.

Placing Web Graphics into a Web Page
Placing images into a Web page requires a graphics image file and the HTML tag. For example,
the following tag instructs the Web browser to load and display a graphics file named image.jpg:

Within the tag, the src attribute tells the Web browser the source of the graphics image
(that is, the name of the file) the browser is to display.

� NOTE

To make your image tag compliant with XHTML, the tag must have an end tag or the start tag must
end with />. For example, (include a space before the trailing / and > of
empty elements), or .

To insert pictures onto a Web page, create an tag for each picture between the start and end
body tags (<body></body>). The Web browser will display images on the Web page in the order in
which the tags appear with the HTML document. For example, the following code tells the
Web browser to display two graphics images:

<html>

<head><title>Example of three image tags</title></head>

<body>

</body>

</html>

C h a p t e r 6 : G r a p h i c s 2 6 9

Tip&Tec / HTML & Web Design Tips & Techniques / Anderson, King, Jamsa / 9394-8 / Chapter 6

P:\010Comp\Tip&Tec\394-8\ch06.vp
Friday, January 04, 2002 6:04:38 PM

Color profile: Generic CMYK printer profile
Composite Default screen

In this example, the Web browser will try to display the images left-to-right across the application
window. If the width of the browser window is not wide enough to accommodate the horizontal
placement of the images, the browser will places the images vertically down the Web browser window.

Dealing with Internet Access Speeds
Another important consideration when including graphics on a Web page is the time delay incurred
downloading the image files. Although Internet connection options such as Digital Subscriber Lines
(DSL) and cable modems let you send large amounts of data across the Internet in a short amount
of time, not everyone has access to a high-speed Internet connection. Whenever you add additional
graphics to a Web page, you increase the amount of time required to completely download the page
and its content from the Web server.

If visitors to your Web page have a slow, 28.8-baud connection to the Internet, the browser will need
about fifteen to twenty seconds to download 40KB to 50KB of data. For most Web surfers, thirty seconds
is the maximum they are willing to wait for their browsers to display your page content. Therefore, keep
the file size of each of the site’s Web pages small to ensure that your visitors will wait for the browser to
display all the page content rather than clicking a hyperlink to go elsewhere on the Web. Remember, your
visitors will have no more patience when surfing the Web than you do.

To get an accurate file size, right-click the picture’s filename, and select Properties from the
pop-up menu. (On a Macintosh, CONTROL-click on the filename and then choose Get Info.) The file
size in the Properties dialog box (Macintosh: the file size in parentheses in the Get Info dialog box)
is an accurate measurement of the graphic file’s real size, as shown in Figure 6-3.

Graphics are an indispensable part of the Internet. However, if large graphics files cause visitors to
leave your site rather than wait for the images to download, the graphics are not doing you any good.
Remember, graphics are a means to an end and not an end in of themselves.

Copyright Issues When Dealing with Web Graphics
No discussion of Web graphics would be complete without mentioning copyright laws. Although
copyright laws vary from country to country, if you are an American citizen, you must follow the
copyright laws passed by the United States Congress.

U.S. copyright laws protect the rights of people who create new products (inventors) and the
intellectual property that belongs to the writers and artists. For example, the text in this book falls
under standard U.S. copyright laws that make it illegal for anyone to copy the information contained
in these pages (intellectual property) and resell or distribute the copied passages without the express,
written permission of the publisher.

In addition to text, graphics and artwork fall under the protection of U.S. copyright laws, and that
includes graphics and artwork displayed on Web pages. Just because an image appears on the Internet
and you can download and save that image to a file on your hard drive, does not mean that you can
use that image without violating copyright laws. The birth of the Internet did not change U.S. copyright
laws, it just made the rules harder to enforce.

If you plan to copy images from one site and use them on another, never take anything for granted.
In many cases, you will find on the Web page a disclaimer that says images on the page are not to be

2 7 0 H T M L & W e b D e s i g n T i p s & T e c h n i q u e s

Tip&Tec / HTML & Web Design Tips & Techniques / Anderson, King, Jamsa / 9394-8 / Chapter 6

P:\010Comp\Tip&Tec\394-8\ch06.vp
Friday, January 04, 2002 6:04:38 PM

Color profile: Generic CMYK printer profile
Composite Default screen

copied and used without the author’s permission. However, whether you see a disclaimer or not, always
e-mail or write the author before you use an image. Explain exactly what you want to do with the author’s
pictures and ask for his or her permission to use the pictures. If the author says “no,” do not use the
images. Conversely, if the author agrees to let you use his or her material, try to get the permission in
writing. For example, send to the author a letter that explains what you plan to do with the images, and
leave a place for the author’s signature. (The standard term for this type of document is a “release form”.)
When you write a release form, be specific as to how you intend to use the images. The author is
probably not going to sign a generic release that does not state what you intend to do with the images.

Some authors will specify the number of times you can use their images or the condition in
which you are to display their pictures. For example, when you purchase clip art or photographs from a
commercial dealer or Web site, the site’s owner(s) may let you use the images as you see fit with certain
exceptions, such as prohibitions against using the pictures on Web sites that deal with pornographic
material or hate group literature. Always read the release form carefully, and if you are unsure as to the
terms of the release, ask the copyright holder for clarification.

Many Web sites offer free clip art; however, they often limit its use to personal Web sites, as opposed
to business-related sites. If you use clip art from sources such as Microsoft Office clip art gallery or
from such Web sites as the Microsoft Design Gallery Live (at http://dgl.microsoft.com), check the
usage license carefully.

Finally, always enclose a self-addressed, stamped envelope the grantor can use to return the signed
release form to you. Remember, you are the one asking permission of the author, so make the process

C h a p t e r 6 : G r a p h i c s 2 7 1

Tip&Tec / HTML & Web Design Tips & Techniques / Anderson, King, Jamsa / 9394-8 / Chapter 6

Figure 6-3 The properties dialog box (Windows, left) and the Get Info dialog box (Macintosh,
right) give you an accurate measurement of the size of a graphic file

Windows operating system Macintosh operating system

P:\010Comp\Tip&Tec\394-8\ch06.vp
Friday, January 04, 2002 6:04:39 PM

Color profile: Generic CMYK printer profile
Composite Default screen

2 7 2 H T M L & W e b D e s i g n T i p s & T e c h n i q u e s

Tip&Tec / HTML & Web Design Tips & Techniques / Anderson, King, Jamsa / 9394-8 / Chapter 6

as easy as possible. The bottom line—never assume you can use something you did not create. Always
ask permission first. If the author says “no,” do not use the images. If the author says “yes,” get the
authorization in writing and be specific as to what you intend to do with the images. Remember,
the images are not your property. They belong to someone else—even after you get permission
to use them. Respect the intellectual properties of others, as you would want others to respect your
ownership rights on things you create.

Balancing Text and Graphics on a Web Page
Sometimes words alone are not enough to convey a message. However, creating a Web page that includes
both text and pictures is more involved than randomly inserting graphics on the page. You must strike
a proper balance between information presented as text and information conveyed through images.
True, a single picture can sometimes provide more meaning than ten Web pages of text. However,
even the most meaningful images require a bit of explanation.

For example, most sports enthusiasts would immediately recognize a photograph of Mark McGwire
without any text describing the great baseball player. If, however, you add a text box under the image
with “Mark McGwire, of the St Louis Cardinals, hitting his 62nd home run breaking Roger Maris’
long-held record,” you turn the image into a historical photograph. The text conveys an important
historical date, and when combined with the image, the two create a snapshot in time and generate
a more powerful message than either one alone.

Always choose photographs that support the associated text. For example, replacing the photograph
of the city of Paris and the Eiffel Tower with a photo of Wichita, Kansas would be absurd. However,
many Web designers insert images on a page without a clear idea of how the images relate to the Web
page text.

In addition to balancing text and graphics, if the Web page contains more than one image, choose
one of the images as the “main” picture that conveys the theme of the Web page. Place the “theme”
image in a prominent position on the page. Web pages that contain a dominant image, such as the one
shown at the top of Figure 6-4, help readers focus their eyes. Conversely, Web pages with multiple
pictures and no dominant (theme) image can appear confusing to visitors, as shown in the bottom
image of Figure 6-4.

Color is an excellent tool you can use to attract visitor attention. Color images grab attention better than
black and white, and the good news is that displaying a color image on a Web page does not cost any more
than using a black and white picture. The same is not true when using color in print media, where printing
in color can cost hundreds, if not thousands of dollars more than printing in black and white.

A trick you can use to focus visitor attention on specific pictures on a page is to use a combination
of color and black and whites images. Use a color-dominant image on a page where other (less important)
images are black and white. Because people are naturally drawn to view the color picture first, you can
focus your visitors’ eyes on the picture that conveys the gist of your message when they first view the
Web page and then have the visitors move on to view other pictures that further drive your point home.

In addition, when you insert images on a Web page, avoid placing them in the middle with text
running down either side. Instead, place images along the left or right side of the page with the text
flowing along the opposite side. Placing an image in the middle of a column of text, as in Figure 6-5,

P:\010Comp\Tip&Tec\394-8\ch06.vp
Friday, January 04, 2002 6:04:40 PM

Color profile: Generic CMYK printer profile
Composite Default screen

C h a p t e r 6 : G r a p h i c s 2 7 3

Tip&Tec / HTML & Web Design Tips & Techniques / Anderson, King, Jamsa / 9394-8 / Chapter 6

Figure 6-4 Web pages with a dominant image help to focus the attention of visitors (top),
but Web pages without a dominant image lack focus (bottom)

P:\010Comp\Tip&Tec\394-8\ch06.vp
Friday, January 04, 2002 6:04:40 PM

Color profile: Generic CMYK printer profile
Composite Default screen

2 7 4 H T M L & W e b D e s i g n T i p s & T e c h n i q u e s

Tip&Tec / HTML & Web Design Tips & Techniques / Anderson, King, Jamsa / 9394-8 / Chapter 6

forces the reader’s eyes to skip back and forth over the graphic. Not only does this confuse visitors,
but it also causes undue eyestrain.

Combining text and images on a Web page is not at all difficult. Doing so is a matter of choosing
meaningful pictures and then following a few simple rules. Always choose images that relate to the
text. If the text does not fit the image, either change the image or rewrite the text. If a picture is worth
a thousand words, a picture combined with some well-written text can convey volumes of information
quickly and in a small space on the Web page.

Working with Cross-Platform Issues
When Creating Graphics Images for the Web
After you insert a graphics image on a Web page, the way the image appears on the visitor’s monitor
involves many factors. One of these factors is the visitor’s operating system. An image displayed by
a Macintosh computer looks different when displayed on a Windows system, as shown in Figure 6-6.

Figure 6-5 The text flowing down the right side of the page is easier to read

P:\010Comp\Tip&Tec\394-8\ch06.vp
Friday, January 04, 2002 6:04:41 PM

Color profile: Generic CMYK printer profile
Composite Default screen

When displaying a picture, the Web browser reads and displays the contents of the graphics image
file one pixel at a time. The browser determines the color it is to display onscreen by finding each
pixel’s color value in the system’s color lookup table (CLUT). Thus, the CLUT determines the colors
the Web browser will display when interpreting the contents of the graphics file. Unfortunately, the
Windows and Macintosh operating systems use different color lookup tables, which is why you see a
shift in the colors when a browser displays the same image on one operating system versus the other.

Another issue is the shift in gamma between Windows and Macintosh monitors. The gamma of
the monitor defines the midpoint between light and dark. Macintosh monitors average a 1.8 gamma
and Windows monitors average a 2.2 gamma. The difference in gamma between the two operating
systems translates into images that appear 15 to 20 percent darker when created on a Macintosh and
displayed on a Windows computer. Said another way, images appear 15 to 20 percent lighter when
created on a Windows system and displayed on a Macintosh.

A solution that resolves both the color-shift and gamma issues is to create one image for
the Macintosh and a second image for Windows computers. However, in many cases, you

do not know who will be viewing your images and what operating system they will be using. Therefore,
view your images using the color table and gamma of both the Macintosh and Windows operating
systems. Doing so will point out potential problems and let you correct them before you publish the
image on the Web site.

C h a p t e r 6 : G r a p h i c s 2 7 5

Tip&Tec / HTML & Web Design Tips & Techniques / Anderson, King, Jamsa / 9394-8 / Chapter 6

Figure 6-6 Displaying grayscale images on a Macintosh and Windows computer causes a shift
in the brightness of the image

An image displayed on
a Windows machine

The same image displayed
on a Macintosh machine

P:\010Comp\Tip&Tec\394-8\ch06.vp
Friday, January 04, 2002 6:04:42 PM

Color profile: Generic CMYK printer profile
Composite Default screen

To view an image using the color table and gamma of another operating system, you have two
choices. You could purchase both a Macintosh and a Windows computer system and then open and
view your graphics images in Web browsers on both systems. Or, a more practical method is to use
an image-editing program that lets you view images as they appear in both operating systems. For
example, Adobe Photoshop version 5.5 or higher lets you view Web graphics using the Windows or
Macintosh color lookup table and gamma. Simply open the image in Photoshop, select View | Proof
Setup, and choose Macintosh RGB or Windows RGB, depending on your current operating system,
as shown in Figure 6-7.

If you use Photoshop for Windows and you choose Macintosh RGB, the visible image shifts into
the color table and gamma of a Macintosh monitor. Conversely, if you work in Photoshop for Macintosh
and you choose Windows RGB, the visible image shifts into the color table and gamma of a
Windows monitor.

If you find that the image is not satisfactory when viewed under the Windows or under the Macintosh
operating system, use an image-editing program (such as Photoshop, ImageReady, and so on) to adjust the
picture’s colors and brightness. Continue to make changes until the picture’s appearance is acceptable
under both operating systems.

2 7 6 H T M L & W e b D e s i g n T i p s & T e c h n i q u e s

Tip&Tec / HTML & Web Design Tips & Techniques / Anderson, King, Jamsa / 9394-8 / Chapter 6

Figure 6-7 Using the Proof Setup option of Windows RGB alerts you to any potential
cross-platform problems

P:\010Comp\Tip&Tec\394-8\ch06.vp
Friday, January 04, 2002 6:04:43 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Specifying Image Dimensions Within an Image Tag
At the start of this chapter, you learned that the tag instructs the Web browser to load and
display a graphics file on the Web page. For example, the following HTML shows an tag in
which the src attribute instructs the Web browser to retrieve and display the picture stored in the file
landscape.jpg, using a width of 200 pixels and a height of 80 pixels:

When adding the width and height attributes to an tag, you need to understand
how the Web browser uses the attribute values you specify. The width and height attributes

define the graphic’s dimensions onscreen, which may be different from the actual height and width of
the picture in the graphics file. Say, for example, that the picture in landscape.jpg has an actual size
of 200 pixels by 80 pixels. Then, inserting the image tag in the preceding example in the Web page
HTML tells the Web browser to display the image at 100 percent of the picture’s actual size (200×80).
However, if by accident you reverse the settings, so the width attribute is 80 and the height is 200, the
image will appear distorted, as shown in Figure 6-8.

C h a p t e r 6 : G r a p h i c s 2 7 7

Tip&Tec / HTML & Web Design Tips & Techniques / Anderson, King, Jamsa / 9394-8 / Chapter 6

Figure 6-8 Reversing the width and height attributes creates a distorted image in the
browser window

Correct width and height

Graphic with width and
height attributes reversed

P:\010Comp\Tip&Tec\394-8\ch06.vp
Friday, January 04, 2002 6:04:44 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Although changing width and height attributes may seem like a practical approach to getting an
image to fit within an area on a Web page, you should not use this approach on photographs. The
width and height attributes should reflect the exact dimensions of the image in the file. If a photographic
image is too large to fit where you want it to on a Web page, open the original image file in an image-
editing application such as Photoshop and resize the image to fit on the Web page.

When width and height attributes in an tag match the actual dimensions of the image in the
graphics file, the Web browser does not have to spend time resizing the image. If a browser must resize
an image, the browser will add pixels to make the image larger or remove pixels to reduce the size of
the image. Unfortunately, forcing the browser to resize an image increases the amount of time required
to display the image, and consequently, the remainder of the Web page. Moreover, image-editing
programs such as Photoshop do a better “quality” job than Web browsers when resizing an image.
This is especially evident when you use width and height attributes to increase the dimensions of a
picture—the image will appear grainy and blurred. Therefore, if you care about the quality of an
image, set the width and height attributes to reflect the actual dimensions of the image in the file.

The most important reason for using the width and height attributes in each tag is to make
it possible for the browser to accurately position text or other Web content around the picture. When
you omit width and height attributes, the Web browser cannot accurately place images and text onscreen
until after the browser downloads images completely. As a result, one of two things will happen:

• The browser may load and display the Web page text. Then, after the browser downloads the
graphics images, the browser will reload the page and place the text and images where they belong.

• The browser will not display the Web page text until the browser downloads all the graphics
images on the page. As a result, your visitors will see only a blank screen while waiting for the
browser to finishing retrieving image file contents from the Web server.

Because image files are larger and therefore load more slowly than the Web page text, not specifying
the dimensions of the image in each of your tags often keeps the browser from displaying text
onscreen. Remember, you must hold your visitors’ attention while they wait for the browser to download
and display your pictures. If visitors get bored, due to staring at a blank screen, for example, they will go
elsewhere. When you supply width and height attributes in your tags, the Web browser reserves
space for each picture and continues to load and display text while waiting for the images to download.
As a result, your site visitors can see and read your text content while they wait for the browser to finish
downloading and displaying images on the Web page. By getting the browser to display the Web page text
quickly, you give the visitor something to read while the browser downloads the graphics and visitors may
not notice the time it takes to display the pictures onscreen.

Working with the alt Attribute and Text-Only Viewers
The alternate text attribute (alt) is an important addition to an tag. When you use the alt
attribute, it instructs the Web browser to display a text string before downloading a graphics image.
In addition, the Web browser will continue to display the alternate text (specified by the alt attribute)
if the browser cannot download and display the graphics image for some reason. For example, the

2 7 8 H T M L & W e b D e s i g n T i p s & T e c h n i q u e s

Tip&Tec / HTML & Web Design Tips & Techniques / Anderson, King, Jamsa / 9394-8 / Chapter 6

P:\010Comp\Tip&Tec\394-8\ch06.vp
Friday, January 04, 2002 6:04:44 PM

Color profile: Generic CMYK printer profile
Composite Default screen

TE
AM
FL
Y

Team-Fly®

C h a p t e r 6 : G r a p h i c s 2 7 9

Tip&Tec / HTML & Web Design Tips & Techniques / Anderson, King, Jamsa / 9394-8 / Chapter 6

following HTML tells the Web browser to display text that describes the contents of the picture the
visitor would have seen, if the browser is unable to download and display image1.jpg.

To use the alt attribute in the tag, insert a src attribute such as that shown in the
following example:

<html>

<head><title>Example of alternate text</title></head>

<body>

<img src="image1.jpg" width="100" height="50"

alt="A picture of James Elliott,

The founder of InGen, Inc.">

</body>

</html>

A Web browser will display the alternate text (“A picture of James Elliott, The founder of InGen,
Inc.”, in this example) when visitors display the Web page using a browser with graphics turned off,
or if the visitors are using a text-only browser. Although the majority of Web surfers today use browsers
capable of displaying graphics, alternate text gives those with text-only browsers a sense of what the
images are supposed to convey.

If the browser is unable to retrieve and display the picture, the alternate text will remain onscreen
in the image placeholder.

When a visitor to your Web site sets his or her browser not to load graphics images, the browser
draws a box onscreen wherever you inserted an image tag in the Web page. The browser then displays
the alternate text in the image placeholder (that is, in the empty box where the picture would normally
go) as shown in Figure 6-9.

Remember, add width and height that specify the picture’s dimensions to each image tag you insert in
the Web page HTML. Otherwise, the Web browser will not be able to draw a box of the proper size while
downloading or in place of the graphics image. (An image placeholder with the proper dimensions will
keep the surrounding text content arranged the way you designed it on the Web page—even if the browser
does not display the image itself for some reason.)

Keep the alternate text short and to the point. Say, for example, that you use an image in place of
the bullet symbol next to each item in an unordered (that is, bulleted) list. You might use the following
 tag to display a bullet graphic (in the file red.gif) onscreen:

The alternate text, “This is a red bullet” would take up more space than the original graphics image.
Moreover, because the width and height attributes tell the browser to reserve a 10 by 10 pixel area for
the bullet, there is not enough room to display the alternate text, as shown here:

P:\010Comp\Tip&Tec\394-8\ch06.vp
Friday, January 04, 2002 6:04:45 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Thus, when displaying small graphics images or when displaying nonessential graphics (such as
background tiles and graphical horizontal lines), keep the text short or use an alt attribute with a null
string such as the one at the end of the following tag:

Text-reading programs for the visually impaired use the alt attribute (with or without text) to
identify each picture for the visually impaired. When visually impaired visitors to your Web site open
the Web page, a text-reader program, such as Jaws, reads the body text and alternate text in each image
tag to the visitor. Therefore, keep alternate text short and to the point, and make sure that the text reflects
the meaning of the graphic. The alternate text for redundant graphics images, such as bullets, should
be one word, such as bullet, or left blank. When a text-reader program encounters an alt attribute with
a null string, the program ignores the image and continues reading the body text displayed in the Web
browser window.

The World Wide Web Consortium (W3C) considers the use of alt so important that the standards
body has made it a required element of a properly formed tag. Therefore, not only is omitting
an alt attribute in all your tags considered bad coding, but doing so also makes your
tag malformed according to the W3C standard.

2 8 0 H T M L & W e b D e s i g n T i p s & T e c h n i q u e s

Tip&Tec / HTML & Web Design Tips & Techniques / Anderson, King, Jamsa / 9394-8 / Chapter 6

Figure 6-9 The alt attribute replaces the image with text

P:\010Comp\Tip&Tec\394-8\ch06.vp
Friday, January 04, 2002 6:04:45 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Sometimes, as you saw in the previous illustration, the placeholder for an image is too small
to let you describe the image with an alternate text string (assigned to the alt attribute). If you need
more room, such as when you want to describe a map, a graph, or other complex image, use the longdesc
attribute to supplement the alt attribute. The value of the longdesc attribute points the user to a separate
HTML file that contains the full description of the image. Say, for example, that you create a
business organizational chart and use the following tag to insert the picture of the chart
(in business.gif) onscreen:

<img src="business.gif" alt="Business Organizational Chart"

longdesc="chart.html">

The HTML document (chart.html) identified in the longdesc attribute contains a detailed plain-text
description of all the data in the business.gif image. When visitors to your Web site move over a graphic
containing a longdesc attribute, the Web browser opens a window containing the information in the
HTML document (in this example, chart.html). The chart.html document is a text-only document.

Unfortunately, many Web browsers do not yet support the longdesc attribute. As such, providing
a separate hypertext link to the file with the text description is a good idea (in addition to adding the
longdesc attribute to the tag).

Creating a Tool Tip by Inserting
a title Attribute in an Image Tag
You can use the title attribute within an tag to describe (in words) a graphics image to your
visitors in the form of a tool tip. The HTML 4.0 specifications state that using the title attribute as
a tool tip is appropriate.

To create the text, insert the title attribute within an image tag as follows:

<img src="landscape.jpg" width="200" height="80"

alt="The Kansas Plains" title="Come visit Kansas today">

When a visitor moves the mouse pointer over an image for a few seconds, the browser will display
the text assigned to the title attribute as a tool tip next to the mouse pointer. Figure 6-10 illustrates
how Internet Explorer displays the image and title specified in the preceding tag.

Because tool tip text remains onscreen for only a few seconds, make the text short or your visitors
will not be able to read the entire title before it disappears. Moreover, some Web browsers do not
handle titles with long text strings correctly. Some browsers will not wrap the long text from one line
to the next. Other browsers have a maximum length for the tool tip box and truncate the text to fit the
width of the box. Unlike the alt attribute, the title attribute is relatively new and many Web browsers
do not yet support it. Fortunately, the title attribute works in Internet Explorer version 4 and higher,
and it is fully supported in Netscape version 6 and higher.

C h a p t e r 6 : G r a p h i c s 2 8 1

Tip&Tec / HTML & Web Design Tips & Techniques / Anderson, King, Jamsa / 9394-8 / Chapter 6

P:\010Comp\Tip&Tec\394-8\ch06.vp
Friday, January 04, 2002 6:04:46 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Do not confuse the title attribute with the start and end title tags (<title></title>). The title attribute
defines text as a tool tip, whereas you insert the start and end title tags in the header section of an
HTML document to specify text the browser is to display in the title bar of the browser’s application
window. For example, Figure 6-11 shows the results of displaying the following HTML with both a
<title> tag and an tag with a title attribute in a Web browser application window:

<html>

<head>

<title>This is the title of a Web page</title>

</head>

<body>

<center>

<img src="landscape.jpg"

width="200" height="80"

alt="The Kansas Plains"

title="Come visit Kansas today">

</center>

</body>

</html>

2 8 2 H T M L & W e b D e s i g n T i p s & T e c h n i q u e s

Tip&Tec / HTML & Web Design Tips & Techniques / Anderson, King, Jamsa / 9394-8 / Chapter 6

Figure 6-10 The title attribute displays the title text in a tool tip format in Windows, and as
a balloon on a Macintosh

Internet Explorer: Windows

Internet Explorer: Macintosh

P:\010Comp\Tip&Tec\394-8\ch06.vp
Friday, January 04, 2002 6:04:46 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Compressing Photographs into a JPEG File
The members of the Joint Photographic Experts Group created the JPEG format (pronounced “j-peg”)
to handle the unique problems associated with displaying images on the Internet. The major problem
with sending photographic images across the Internet is the large file size of each picture. Uncompressed
graphics files are commonly larger than 1MB. As such, a Web browser connected to the Internet through
a 28.8-baud modem would take several minutes to download and display a single picture. As you can
see, trying to retrieve Web pages with pictures that have large file sizes could cause a major problem.

The JPEG format solves this problem by significantly reducing the file size of photographic images.
It accomplishes file size reduction by selectively removing colors from the image and replacing the
missing color information by mixing the remaining colors in a dither pattern. A dither pattern uses
two or more of the remaining colors within the graphics image, to produce a third color. The dithering
process lets the program saving the image save three colors using two pixels instead of three, which
reduces the size of the image file. By reducing the number of pixels, files saved using the JPEG format
have much smaller file sizes. In fact, JPEG images commonly have file sizes that are 1/100th the size
of the original file.

C h a p t e r 6 : G r a p h i c s 2 8 3

Tip&Tec / HTML & Web Design Tips & Techniques / Anderson, King, Jamsa / 9394-8 / Chapter 6

Figure 6-11 A Web page containing a title in the title bar, and a tool tip using the title attribute
(shown in Macintosh Internet Explorer)

P:\010Comp\Tip&Tec\394-8\ch06.vp
Friday, January 04, 2002 6:04:47 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Using color reduction to save a graphics file in the JPEG format is called lossy compression, which
is compression by loss of information. Remember, when you apply the JPEG compression scheme to
a photographic image, the information removed cannot be recovered. Therefore, you should always
make a copy of the original image, and save the copy to a new filename using the JPEG format. That
way you have the original image with all its color information for use later and the compressed file
(with a significantly smaller file size) to use on your Web pages.

Because the JPEG format removes pixels from the original image, the compression scheme reduces
the picture’s visual quality. Designers consider loss of picture quality an inescapable part of life on the
Internet and attempt to balance the loss of quality with the speed of the download. The image in
Figure 6-12 was saved with a 30-percent compression level (more on compression levels in “Converting
Graphics into Web Images with Image-Editing Programs,” later in this chapter).

Because the JPEG compression format removes colors from the original image based on a specific
set of instructions, you cannot create a JPEG image using a Web-safe palette. In addition, images saved
in the JPEG format must use the RGB (red, green, and blue) color space, not grayscale (shades of gray)
or CMYK (cyan, magenta, yellow, and black). Finally, the JPEG format gives you the option of saving
the image using a progressive or nonprogressive mode. The progressive mode loads the file in three
passes. This gives the appearance of a blurred image that slowly gets clearer as more information is
loaded. The nonprogressive mode loads the image in one pass, from top to bottom. The advantage
of the progressive mode is not that it loads the final image faster, but that viewers have something
to entertain them, rather than seeing the image slowly load from the top to the bottom, as shown in
Figure 6-13.

2 8 4 H T M L & W e b D e s i g n T i p s & T e c h n i q u e s

Tip&Tec / HTML & Web Design Tips & Techniques / Anderson, King, Jamsa / 9394-8 / Chapter 6

Figure 6-12 The JPEG format reduces file size and image quality

Original image

JPEG image

P:\010Comp\Tip&Tec\394-8\ch06.vp
Friday, January 04, 2002 6:04:48 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Before you save photographic images in the JPEG format, here are a few tips for making
the file size even smaller:

• Soft tonal qualities JPEG images compress smaller when they contain soft shifts of color.
Sharpening an image is counterproductive when the image is compressed using the JPEG format.

• Additional blurring Although blurring is not the best way to handle photographic images,
applying a soft blur to background areas before saving the file in the JPEG format creates a
smaller file size.

• Decreased saturation Although not always effective, decreasing the saturation, or intensity,
of the colors in a photographic image can create smaller file sizes.

• Reduced image contrast Reducing the contrast in an image (similar to blurring) usually
creates smaller file sizes.

• Weighted optimization If you own Photoshop 6.0, you can use weighted optimization to
control the compression of an image. Weighted optimization lets you use 8-bit alpha channels

C h a p t e r 6 : G r a p h i c s 2 8 5

Tip&Tec / HTML & Web Design Tips & Techniques / Anderson, King, Jamsa / 9394-8 / Chapter 6

Figure 6-13 The progressive method of loading a JPEG file keeps the viewer entertained as the
image loads

Final pass

First pass

Second pass

P:\010Comp\Tip&Tec\394-8\ch06.vp
Friday, January 04, 2002 6:04:49 PM

Color profile: Generic CMYK printer profile
Composite Default screen

2 8 6 H T M L & W e b D e s i g n T i p s & T e c h n i q u e s

Tip&Tec / HTML & Web Design Tips & Techniques / Anderson, King, Jamsa / 9394-8 / Chapter 6

to set image optimization on a per-pixel basis and smoothly vary compression settings across
a graphics image. Weighted optimization lets you generate higher compression in areas of an
image like a blue sky, and less compression in areas of the same image that contain details.

When you display photographs on a Web page, you have to strike a balance between the quality
of the image and the wait time needed to download large high-resolution pictures. The JPEG format
helps you maintain that balance.

Saving Clip Art and Text to a GIF-Formatted File
The GIF (Graphics Interchange Format), as mentioned earlier, is another format you can use to
compress graphics files intended for display on the Internet. The GIF format works best on clip art,
text, logos, and images that contain many sharp edges and few colors—just the opposite of the types
of images for which the JPEG format provides the best compression.

When you save a color graphics image using the GIF format, the conversion process reduces the
number of bits allowed to describe the color of each pixel in the file from 24 bits to 8 bits. Consequently,
GIF compression reduces the maximum number of colors in a file from 16.7 million to 256. (There
are only 256 possible combinations for each of the 8 bits of information available to describe the
color of each pixel in a GIF file.) If the original color image contains more than 256 colors, the GIF
format retains a representative sample of the major color areas in the original image’s color table and
uses that sample to create the GIF image. Because photographs typically contain thousands, if not
millions, of colors, trying to save photographs in a GIF file will produce unacceptable visual results
(see Figure 6-14), as well as creating images with huge file sizes.

The GIF format makes image files smaller both by reducing the number of bits used to describe
each color in the file and by compressing the bits that remain using the RLE (Run Length Encoding)
technique. RLE is a compression scheme most suitable for compressing large areas of solid color.
The GIF format identifies large blocks of solid color and records the location of the areas. When the
file is saved, the solid blocks of color are removed from the image and replaced by the coordinates, or
location, of the original color. When the Web browser loads the file, it replaces the solid blocks of
color using the prerecorded coordinates. Because clip art, logos, and text contain large areas of the
same color, the GIF format is ideal for compressing these types of image files.

Images saved in the GIF format use the RGB (red, green, and blue) color space with 256 colors or
less, not CMYK (cyan, magenta, yellow, and black). In addition, the GIF format gives you the option
of saving the image using an interlaced or noninterlaced mode. The interlaced mode loads the file in
three separate passes. This gives the appearance of a blurred image that slowly gets clearer as more
image information is loaded. The noninterlaced mode loads the image in one pass, from the top to
bottom. The advantage of the interlaced mode is not that it loads the final image faster, but that the
viewers have something to entertain them, rather than seeing the image slowly load from the top to
the bottom, as shown in Figure 6-15.

P:\010Comp\Tip&Tec\394-8\ch06.vp
Friday, January 04, 2002 6:04:49 PM

Color profile: Generic CMYK printer profile
Composite Default screen

C h a p t e r 6 : G r a p h i c s 2 8 7

Tip&Tec / HTML & Web Design Tips & Techniques / Anderson, King, Jamsa / 9394-8 / Chapter 6

Figure 6-14 The GIF format applied to a photograph creates a block or stepped appearance
to the soft area of the image

Original image

GIF image

Figure 6-15 The interlaced method of loading a GIF file keeps the viewer entertained as the
image loads

First pass Second pass Final pass

P:\010Comp\Tip&Tec\394-8\ch06.vp
Friday, January 04, 2002 6:04:50 PM

Color profile: Generic CMYK printer profile
Composite Default screen

The following are some tricks and considerations that will help you to produce a file with
the smallest possible size when saving a graphics in the GIF format:

• Solid areas of color GIF images compress smaller when the image contains large solid
areas of color; areas of a GIF image that contain shifting colors will not compress as well.

• Number of colors Using fewer colors produces smaller files. The number of colors in the
image determines the size of a GIF image. If a GIF image contains four colors, it compresses
significantly smaller than an image containing 20 colors. The less color, the smaller the file
size, and the faster the file downloads.

• Reduced dithering Dithering is a process whereby the computer uses two colors to produce
a third color. Dithering creates a file with more colors and makes it difficult for the GIF format
to compress the image.

Making Images Appear to Load Faster
The reason for using the progressive or interlaced option is not to decrease the amount of time it takes
to load a Web image. The primary purpose is to give visitors to your Web site something to look at
while they wait for the browser to finish downloading your graphics images.

You use the progressive and interlaced options to instruct the Web browser how to load a graphics
file. Absent both options, the Web browser loads the file from the top to bottom. Consequently, visitors
to your Web site see the images appear onscreen one scan-line (that is, one horizontal row of pixels)
at a time.

When you use the progressive or interlaced options with a JPEG or GIF graphic file, the Web browser
loads the image in three passes. (Some programs allow you to choose the number of passes.) In the first
pass, the browser loads every third scan line, then the next third, and finally completes the image by
loading the final third set of scan lines.

Say, for example, that the large file sizes for the graphics on your Web site are causing the images
to load slowly. If you do not save the files using the progressive or interlaced option, the visitor sees
a box appear onscreen and the image slowly paints itself into the box from the top to the bottom.
Visitors have no idea what the image is until the browser has finished downloading it. As a result,
your visitors may get bored and either stop the browser from loading the graphics or worse yet,
move to another Web site.

When you use the progressive or interlaced option, the Web browser quickly loads one third of the
image. Although the image is blurry, the visitors can get a general idea of the picture’s content. Now,
if they stop the browser from continuing to download graphics on the Web page, at least they see a
blurred representation of the image instead of only half a picture. (Of course, you hope that seeing the
complete, albeit blurred, images on the Web page will keep your visitors interested enough to wait for
the browser to finish downloading the pictures entirely.)

To use the progressive or interlaced option, you must open the graphic file in an image-
editing application, and save the file using the Progressive option for files stored in the

JPEG format and the Interlaced option for files stored in the GIF format. For example, if you use

2 8 8 H T M L & W e b D e s i g n T i p s & T e c h n i q u e s

Tip&Tec / HTML & Web Design Tips & Techniques / Anderson, King, Jamsa / 9394-8 / Chapter 6

P:\010Comp\Tip&Tec\394-8\ch06.vp
Friday, January 04, 2002 6:04:51 PM

Color profile: Generic CMYK printer profile
Composite Default screen

TE
AM
FL
Y

Team-Fly®

Adobe Photoshop, open the image in Photoshop and select File | Save For Web. Then, select progressive
(for JPEG-formatted files) or interlaced (for GIF-formatted files), as shown in Figure 6-16.

Remember that when you create a Web page, it is not about buttons and HTML code. Moreover,
most visitors to your Web site will never examine your HTML code. The most important consideration
during the design phase is figuring out how to keep your visitors entertained and informed. Using the
progressive and interlace options helps keeps visitors where you want them.

� NOTE

When you use an image-editing program to save a picture as a JPEG or a GIF file, you have the
option of using the Progressive option for the JPEG format and the Interlaced option for the GIF
format. Understand that the Progressive and Interlaced options are not a function of the HTML
code. Rather, they are options selected when you save the file.

C h a p t e r 6 : G r a p h i c s 2 8 9

Tip&Tec / HTML & Web Design Tips & Techniques / Anderson, King, Jamsa / 9394-8 / Chapter 6

Figure 6-16 The Save For Web dialog box in Photoshop lets you select the Progressive (JPEG)
or Interlaced (GIF) option when saving the file

Select the Progressive option

P:\010Comp\Tip&Tec\394-8\ch06.vp
Friday, January 04, 2002 6:04:52 PM

Color profile: Generic CMYK printer profile
Composite Default screen

2 9 0 H T M L & W e b D e s i g n T i p s & T e c h n i q u e s

Tip&Tec / HTML & Web Design Tips & Techniques / Anderson, King, Jamsa / 9394-8 / Chapter 6

Working with the PNG-8 and PNG-24 File Formats
The PNG (Portable Network Graphic) format is the latest addition to the list of image file formats.
The PNG-8 and PNG-24 formats are two of the newest and the most versatile of the formats used to
compress graphics files for the Internet. A third PNG format, the PNG-32, gives more control over
image color; however, the PNG-8 and PNG-24 are the two most widely used of the PNG formats.

For the Web, PNG really has three main advantages over GIF:

• Alpha channels Variable transparency

• Gamma correction Cross-platform control of image brightness

• Two-dimensional interlacing A method of progressive display

PNG also compresses better than GIF in almost every case, but the difference is generally only around
5 to 25 percent, not a large enough factor to encourage Web designers to switch on that basis alone.

By performing compression similar to the GIF format, the PNG-8 format reduces the colors in the
original image to a maximum of 256. In addition, the PNG-8 format uses RLE (Run Length Encoding)
compression to reduce the size of the file (as was described in “Saving Clip Art and Text to a GIF-
Formatted File” earlier in this chapter). Conversely, the PNG-24 format is capable of saving photographic
images in the same way as the JPEG format with one exception: The PNG-24 format does not reduce
file size by removing color from the image. It is, therefore, a lossless file compression method.

You can use the PNG-8 format to reduce the file size in clip art, logos, and text by
compressing large, flat areas of color. Like the GIF format, the PNG format uses lossless

compression techniques. (Remember, the JPEG format performs lossy compression by removing some
of the original file’s color data.) Lossless compression means that the PNG-24 format reduces the
picture’s file size without losing any of the original color data. In addition, the PNG-8 and PNG-24
formats use RLE compression (like the GIF format) to reduce the size of the file without reducing the
quality of the image, as shown in Figure 6-17.

Although PNG is an excellent file format, it does have two major problems. First, because the
PNG-24 format does not remove color information from the file, it cannot compress graphics files to
as small a size as the JPEG format. (Remember, you are trying to reduce the file size of the image as
much as possible, without giving up too much image quality, because Web browsers can download
and display smaller files faster than larger files.) Therefore, for the present, the JPEG format is the
format to use when saving photographic images for use on a Web page.

The second problem, and perhaps the most important, is that the PNG-8 and PNG-24 formats have
only recently received full support from the most-used browsers—Netscape Navigator 6 and Internet
Explorer 5. Although earlier versions of Explorer and Navigator supported the PNG format, that support
was limited to the display of the PNG-formatted graphic. Support for variable transparency and two-
dimensional interlacing was sporadic. As of this writing, some polls suggest up to 20 percent of Web
visitors do not have the latest versions of Navigator or Explorer, and therefore are incapable of viewing
PNG-formatted images. Keep this in mind when using the PNG format.

P:\010Comp\Tip&Tec\394-8\ch06.vp
Friday, January 04, 2002 6:04:52 PM

Color profile: Generic CMYK printer profile
Composite Default screen

C h a p t e r 6 : G r a p h i c s 2 9 1

Tip&Tec / HTML & Web Design Tips & Techniques / Anderson, King, Jamsa / 9394-8 / Chapter 6

Converting Graphics into Web Images
with Image-Editing Programs
In order to save images for use on the Internet, you must use one of three formats: JPEG, GIF, ir
PNG. In truth, Web page image file formats are actually compression schemes, designed to reduce
the file size of a graphics image. File size is an important consideration when saving graphics files
because the larger the file size, the longer it takes the Web browser to download and display the
graphics image, and visitors to your Web site do not want to wait.

Understand that file compression is not a function of HTML code. When you use an tag such as
the following to instruct the Web browser to load and display a graphic file, the tag does not
determine the compression format of the file:

In this example, an image-editing program compressed the graphics image using the JPEG format
and then saved the compressed picture in the file named photo.jpg. The src attribute in the tag
(src=“photo.jpg”) does not make the file a JPEG-compressed image. Instead, the src attribute just
identifies a graphic file previously saved in the JPEG format.

Figure 6-17 The PNG format reduces file size without sacrificing image quality

Original image (233k)

PNG image (166k)

P:\010Comp\Tip&Tec\394-8\ch06.vp
Friday, January 04, 2002 6:04:53 PM

Color profile: Generic CMYK printer profile
Composite Default screen

To save files in the JPEG, GIF, or PNG format then, you will need an image-editing
program. Two of the most popular commercial image-editing programs on the market are

Adobe Photoshop and Macromedia Fireworks. In addition to commercially produced programs, many
image-editing programs are available on the Internet. On sites such as http://www.shareware.com and
http://www.tucows.com you will find a number of downloadable shareware and freeware image-
editing applications.

Say, for example, that you have an RGB graphics image and you want to use that image on a
Web page, but the file size is too large (over 1MB). If you have Photoshop, you can open the image
and select File | Save For Web. Photoshop, in turn, will display the Save For Web dialog box.

All image-editing programs that let you save files in the JPEG format let you control the
quality of the image. The quality option is a value from 0 to 100 percent (or 1 to 10). If you select
100 percent, the image-editing program tries to reduce the size of the image file while at the same
time removing the minimum possible amount of color information. Incrementally lowering the image
quality percentage (down to a value of zero) instructs the image-editing program to remove more and
more color to produce a graphics image file that is smaller and smaller. Figure 6-18 shows the difference
between JPEG images saved with quality values of 100, 60, and 20 percent.

In short, the lower the quality percentage you select, the smaller the file size and the poorer the visual
quality of the image when displayed by a Web browser. What you need to do is strike a balance between
quality and file size. On average, the best quality-versus-file-size setting for photographic images is
around 30 percent. However, the percentage that works best often depends on the image. Always try
to reduce the quality option to its lowest value without sacrificing too much of the quality of the
original image.

Creating Web-Friendly Graphics Images on Your Scanner
This chapter discusses creating and working with graphics images and preparing them for display on
a Web page. However, in order to prepare and save Web images, they must first be loaded onto your
computer. One of the most overlooked areas of Web design is how you go about scanning the images
you want to use on your Web pages.

A scanner takes a photograph and divides the image into small pieces called samples. The number of
samples (or pixels) per linear inch the scanner saves becomes the resolution of the scanned image. Each
one of those pixels represents a piece (that is, a dot) of color in the image. Therefore, if you optically
scan an image at a higher resolution, the image contains more pixels and therefore, more information.
The problem is that the higher the scan resolution, the larger the file size. A 5 by 5 RGB image scanned
at an optical resolution of 72 spi (samples per inch) produces a file with a size of 380KB (the number
of pixels in the saved image determines the size of the image file). If you scan the same picture at an
optical resolution of 300 spi, you produce an image with more dots (pixels) and a file size of 6.4MB.
The problem is that while the picture looks clearer (due to its higher resolution), at 6.4 million bytes, the
image file will take too long to download if you insert the picture on a Web page.

The W3C sets the average resolution of a Web graphic to 72 ppi (for 72 pixels per linear inch) to
match the number of pixels in a linear inch on an average computer monitor. However, that does not
mean that you should scan all images intended for display on a Web page at 72 spi.

2 9 2 H T M L & W e b D e s i g n T i p s & T e c h n i q u e s

Tip&Tec / HTML & Web Design Tips & Techniques / Anderson, King, Jamsa / 9394-8 / Chapter 6

P:\010Comp\Tip&Tec\394-8\ch06.vp
Friday, January 04, 2002 6:04:53 PM

Color profile: Generic CMYK printer profile
Composite Default screen

C h a p t e r 6 : G r a p h i c s 2 9 3

Tip&Tec / HTML & Web Design Tips & Techniques / Anderson, King, Jamsa / 9394-8 / Chapter 6

If the image you want to display on a Web page is in perfect condition and is the exact
width and height you need, scan the image at a resolution of 72 spi and save the picture

to a file using either the JPEG or GIF format. Unfortunately, some pictures you want to use will not
be in perfect condition and may not have the exact dimensions you need. When you run into an image
that requires restoration or color touchup work or when you need to change the picture’s original
width and height, scan the image at a higher optical resolution, and before saving the image, reduce
the resolution to 72 spi.

When you scan a photograph at a higher resolution, image-editing programs such as Adobe Photoshop
have more information (more pixels) available to correct the problems associated with the image (dust and
scratches or areas of discoloration). When you increase the dimensions of a scanned image, you force the
image-editing program to insert more pixels into the image and to color the new pixels based on an
average of the surrounding pixel color values.

Because images scanned at lower resolutions do not have many pixels, the image will blur quickly
as you increase the picture’s dimensions. Conversely, if you scan the picture at a higher resolution,
the file contains more information (pixels). Therefore, the image appears clearer when you increase the
dimensions of the image.

Figure 6-18 The quality value in a JPEG-compressed image controls the visual quality of
the image

Best: 100% compression

Medium: 60% compression

Low: 20% compression

P:\010Comp\Tip&Tec\394-8\ch06.vp
Friday, January 04, 2002 6:04:54 PM

Color profile: Generic CMYK printer profile
Composite Default screen

2 9 4 H T M L & W e b D e s i g n T i p s & T e c h n i q u e s

Tip&Tec / HTML & Web Design Tips & Techniques / Anderson, King, Jamsa / 9394-8 / Chapter 6

After you finish editing the image, you can reduce the size of the graphics file by saving the file
at the W3C standard of 72 ppi. In addition, save the image using either the JPEG or GIF file format
to further compress the data and reduce the file size. For example, to change the resolution of a graphic
in Photoshop, select Image | Image Size, change the resolution option to 72, and then click OK, as
shown in Figure 6-19 (above).

� NOTE

Use the term spi when referring to the resolution of the picture as you scan the image. Use the term
ppi when referring to the resolution of the image after you use an image-editing program to change
the picture’s resolution, and save the file.

Creating Colorful Horizontal Rules
Graphics displayed on a Web page serve all types of purposes; they attract attention, create a visual
picture for your visitors, and support the written text on the Web page. However, in addition to using
images to convey information, you can also use graphics to help organize the content on a Web page.

For example, you can create horizontal rules (that is, draw horizontal lines) to organize text
or groups of images on a Web page by inserting horizontal rule tags (<hr>) as shown in the
following HTML:

<html>

<head>

<title>Example of Horizontal Lines</title>

</head>

Figure 6-19 The Image Size dialog box in Photoshop lets you modify the resolution of the
scanned image

P:\010Comp\Tip&Tec\394-8\ch06.vp
Friday, January 04, 2002 6:04:55 PM

Color profile: Generic CMYK printer profile
Composite Default screen

<body>

<p>This line of text is separated from the next

line by a horizontal rule line</p>

<hr>

<p>This line of text is separated from the text

above by a horizontal rule line</p>

</body>

</html>

In this example, the <hr> tag creates a visible break between the two lines of text, as shown in
Figure 6-20.

However, although you can use them to divide a Web page into sections, horizontal rules lack
pizzazz. To add some zing to your Web pages, substitute colorful graphics for the functional (albeit
boring), standard horizontal rules.

Suppose, for example, that you use an image editing and creation program such as
Photoshop to create a 600-pixel-wide by 5-pixel-high graphic of a horizontal line. After

saving the graphics image as a small GIF file (line.gif) of only about 645 bytes, you can use the image
of the horizontal line in place of the horizontal rules used in the previous code as follows:

<html>

<head>

<title>Example of Horizontal Lines</title>

</head>

<body>

<p>This line of text is separated from the next

line by a horizontal rule line</p>

<p align="center">

</p>

<p>This line of text is separated from the text

above by a horizontal rule line</p>

</body>

</html>

C h a p t e r 6 : G r a p h i c s 2 9 5

Tip&Tec / HTML & Web Design Tips & Techniques / Anderson, King, Jamsa / 9394-8 / Chapter 6

Figure 6-20 The horizontal rule separates and organizes areas of a Web page

P:\010Comp\Tip&Tec\394-8\ch06.vp
Friday, January 04, 2002 6:04:55 PM

Color profile: Generic CMYK printer profile
Composite Default screen

In this example, the start and end paragraph tags (<p align=“center”></p>) center the graphic file
line.gif within the browser application window and place a colorful horizontal line between the two
lines of text, as shown in Figure 6-21 (above).

� NOTE

The appearance of graphics images you can use for horizontal rules is limited only by your imagination.
As such, dress up your Web pages by creating and inserting colorful graphics that not only organize
the material on the Web page, but also are attractive and eye-catching.

Retrieving a Fast-Loading “Teaser” Image
with the lowsrc Attribute
The amount of time it takes to load and display an image you insert on a Web page depends on the
picture’s file size and the speed of the visitor’s Internet connection. Images with larger file sizes take
longer to load and display than small graphics files. Ideally, you want to use good-looking images
that the Web browser can download and display quickly. Unfortunately, some images you want to
use are neither small nor fast-loading.

Say, for example, that you want to display a landscape. For visual impact and picture quality, you need
to use a large 600-pixel-wide by 300-pixel-tall image. After reading the Tips in this chapter, you decide
to save the image to a file using the JPEG format to make the picture’s file size as small as possible.
However, after you save the image, you see that the picture’s file size is still over 200KB. As such,
visitors to your Web site that connect to the Internet at a 28.8-baud connection speed will have to
wait over 30 seconds for their Web browsers to download and display the landscape.

To give visitors something look at while they are waiting for the browser to display the large image,
use an image-editing program to create a low-resolution copy of the original picture. Then, use the
lowsrc attribute in the tag to tell Web browsers to retrieve and display the faster-loading (smaller
file size), low-resolution image before downloading the original image as follows:

<img src="land.jpg" lowsrc="landlow.jpg"

width="600" height="300">

2 9 6 H T M L & W e b D e s i g n T i p s & T e c h n i q u e s

Tip&Tec / HTML & Web Design Tips & Techniques / Anderson, King, Jamsa / 9394-8 / Chapter 6

Figure 6-21 The graphic file named line.gif separates the two lines of text

P:\010Comp\Tip&Tec\394-8\ch06.vp
Friday, January 04, 2002 6:04:56 PM

Color profile: Generic CMYK printer profile
Composite Default screen

The graphics file specified by the lowsrc attribute (landlow.jpg) is a low-resolution copy of the
original image (land.jpg). When the Web browser encounters the tag in this example, the browser
loads the image named by the lowsrc attribute first and then loads the original image named by the
src attribute.

Because the lowsrc image (landlow.jpg) has a smaller file size than the original image (land.jpg),
the browser can quickly download and display landlow.jpg. As such, visitors will be able to view a
low-resolution version of the landscape while the browser downloads the original, high-resolution
picture. After retrieving the higher resolution image, the browser displays that image over the low-
resolution image specified by the lowsrc attribute. Therefore, the visitor looking at the low-resolution
image will see it apparently go from blurred to crystal clarity—as if by magic.

As previously stated, the main reason for using the lowsrc attribute is to display a low-
resolution (faster-loading) image. However, instead of using the lowsrc attribute to load

and display a low-resolution copy of the same image, why not create a bit of excitement by using a
single tag to load two different images (see Figure 6-22)?

In the preceding example, you used an image-editing program to create a low-resolution copy of
the original image, that is, of the landscape. However, instead of making a copy of the image, try
using a completely different picture. You can set the lowsrc attribute to the filename of any image

C h a p t e r 6 : G r a p h i c s 2 9 7

Tip&Tec / HTML & Web Design Tips & Techniques / Anderson, King, Jamsa / 9394-8 / Chapter 6

Figure 6-22 The lowsrc image of curtains loads first

P:\010Comp\Tip&Tec\394-8\ch06.vp
Friday, January 04, 2002 6:04:57 PM

Color profile: Generic CMYK printer profile
Composite Default screen

2 9 8 H T M L & W e b D e s i g n T i p s & T e c h n i q u e s

Tip&Tec / HTML & Web Design Tips & Techniques / Anderson, King, Jamsa / 9394-8 / Chapter 6

and not just to a copy of the original. The following example shows how you can use an tag to
load an image of curtains with the words “Coming Attractions” between the curtains while waiting
for the Web browser to download and displays the picture in photo.jpg:

Thus, when the visitor retrieves the Web page, the visitor sees a set of curtains (in the file curtains.jpg),
which is later replaced by the image specified by the src attribute (photo.jpg), as shown in Figure 6-22.

The trick in selecting a “good” low-resolution (quick-loading) image is to pick a picture that
attracts the attention of your Web site’s visitors. That way, the visitors will stay until the browser
downloads the larger (slow-loading) image(s), rather than becoming impatient and moving on to
another Web site.

Ensuring Accurate Color Presentation
with the Web-Safe Color Palette
One of the greatest challenges you will face when creating artwork for a Web page is to use Web-safe
colors. The Web-safe color pallette consists of 216 colors that Web browsers can reproduce accurately,
both in a Windows and a Macintosh environment.

Most visitors to your Web site are not Web designers, and many of them have older systems with
video cards that support a maximum of 256 colors. In contrast, you may create Web pages on a computer
with a video card capable of displaying millions, if not billions of colors. Therefore, it is easy for you
to create artwork that looks great on your system but looks grainy and washed out on a system with
less color capability.

Say, for example, that you create an image containing thousands or even millions of colors. Because
your monitor and video card are capable of displaying that many colors, the image looks great. However,
when a visitor using a system that supports only 256 (or thousands) of colors accesses your Web site, the
Web browser must map the colors in your image to a smaller number of colors in the color palette on
the visitor’s system. Consequently, the browser will shift the colors in your image to the closet matching
available color on the visitor’s system.

When you design graphics for the Internet, two things may happen if you use colors outside the
Web-safe color palette. First, older monitors and video cards able to display only 256 colors will shift
the colors in your image, making the artwork appear washed out. Second, some systems will “dither” the
image colors. Dithering is a process by which an older system begins to mix existing colors in an effort
to reproduce colors outside the hardware’s displayable range of colors. Dithering makes solid color
areas appear with a pattern, as shown in Figure 6-23.

To ensure that artwork has only Web-safe colors, open the image in an image-editing
program and index the colors in the image. When you index an illustration, you instruct

the image-editing program to shift the colors into those colors available in the Web-safe palette. For

P:\010Comp\Tip&Tec\394-8\ch06.vp
Friday, January 04, 2002 6:04:57 PM

Color profile: Generic CMYK printer profile
Composite Default screen

TE
AM
FL
Y

Team-Fly®

example, to convert the colors of an image into the Web-safe color palette using Adobe Photoshop,
perform these steps:

1. Open the image.

2. Select Image | Mode | Indexed Color.

3. After Photoshop displays the Indexed Color dialog box, choose Web from the Palette
drop-down menu and click OK, as shown in Figure 6-24.

A better way to save a GIF image is with Photoshop 5.5 and higher, using the Save For Web
option. To save a graphics image using Save For Web, open the image in Photoshop and select File |
Save For Web. Photoshop opens the Save For Web dialog box and lets you choose how you want to
save the file. Not only does the Save For Web feature let you save a GIF image in the Web-safe color
palette, it also lets you lock certain colors and remove others from the image’s color palette.

Although computers shipped for the last several years have had the ability to display more than
256 colors, avoid creating Web page artwork in the GIF format with colors outside the Web-safe
color palette, if possible. By doing so, you reduce the chances that some of your visitors will see a
poor-quality image. As with all Web design work, the use of the Web-safe color palette is dependent

C h a p t e r 6 : G r a p h i c s 2 9 9

Tip&Tec / HTML & Web Design Tips & Techniques / Anderson, King, Jamsa / 9394-8 / Chapter 6

Figure 6-23 Designing images using colors outside the Web-safe color palette causes
unwanted dithering

Web-safe color palette Non–Web-safe color palette

P:\010Comp\Tip&Tec\394-8\ch06.vp
Friday, January 04, 2002 6:04:58 PM

Color profile: Generic CMYK printer profile
Composite Default screen

upon your target audience. If, through research, you discover that your target audience uses older
computer hardware, use the Web-safe color palette.

Creating Graphical Hyperlink Anchors
One of the easiest ways to let visitors move from page to page on your Web site is to provide
hypertext links to other pages on each of your site’s Web pages. As described in Chapter 1, you
create a hypertext link by inserting the “link text” (that is, the text on which the visitor clicks to
follow the hyperlink to another page) between start and end anchor tags (<a>) in the Web
page HTML.

Graphics links serve a variety of purposes. Visitors use links to move from page to page and
Web site to Web site with the click of a button. You can also use graphic links to let visitors download
graphics images and other files, or you can use them to start an e-mail program so the visitor can send
an e-mail message. Clickable graphics (that is, text defined as a link) is a common feature on most
Web pages. In fact, most visitors to your Web site know exactly what happens when they click on a
graphic link. They may not know how to write the HTML code that creates the link; however, they
have an idea of what will happen when they click the link’s image. Creating graphics links is the
easiest and most common way to make your Web pages interactive.

In addition to using text as a hypertext link, you can use graphics images. Say, for example,
that you want to give visitors a way to send you an e-mail message. You could create

a hypertext link. However, instead of using text between the hyperlink’s start and end anchor tags
(<a>), you can insert a graphics image, such as a picture of a mailbox, as follows:

<img src="mailbox.gif"

border="0"

width="15" height="20">

3 0 0 H T M L & W e b D e s i g n T i p s & T e c h n i q u e s

Tip&Tec / HTML & Web Design Tips & Techniques / Anderson, King, Jamsa / 9394-8 / Chapter 6

Figure 6-24 The Indexed Color dialog box controls the color space of the active
Photoshop document

P:\010Comp\Tip&Tec\394-8\ch06.vp
Friday, January 04, 2002 6:04:59 PM

Color profile: Generic CMYK printer profile
Composite Default screen

In this example, the tag replaces the text used to anchor the hyperlink in the preceding
example. Because the start and end anchor tags (<a>) enclose the tag, the image inserted
by the tag (the picture of a mailbox in the file mailbox.gif, in this example) becomes the
clickable link, as shown in Figure 6-25 (above).

Notice the addition of the border attribute to the tag. When you use a graphics image as
a hypertext link, the Web browser will draw a border around the image—just as the browser draws a
line under hyperlink text. To instruct the Web browser not to draw a border around the image, set the
border attribute to zero within the tag.

When you use a graphics image as a clickable link, make sure the picture illustrates what happens
when visitors click the image. For example, you might use a mailbox for a link that sends e-mail, an
illustration of a home for a link that returns to the site’s home page, or a question mark for a link that
displays a Web page with on-line help. In addition, providing descriptive text as a part of the icon is
always a good idea. That way, a visitor to your Web site has a combination of text and graphics to
identify the purpose of the icon.

Creating Tiled Backgrounds from Graphics Images
The background on a Web page is often a repeating pattern based on the image from a single graphics
file. Typically, you use a small, square image that the browser then repeats by putting the square (or tile)
next to itself over and over again to fill the background of the Web page. Thus, graphics files used in
Web page backgrounds create a repeating pattern similar to the ceramic tiles on a floor, with each tile
sitting next to another tile. On an HTML page, the width and height of the graphic file represents the size
of a tile. The background attribute in the start <body> tag instructs the Web browser to fill the browser’s
application window with the tiles.

C h a p t e r 6 : G r a p h i c s 3 0 1

Tip&Tec / HTML & Web Design Tips & Techniques / Anderson, King, Jamsa / 9394-8 / Chapter 6

Figure 6-25 The mailbox icon is a clickable link

P:\010Comp\Tip&Tec\394-8\ch06.vp
Friday, January 04, 2002 6:04:59 PM

Color profile: Generic CMYK printer profile
Composite Default screen

To create a Web page background, select the appropriate image file and assign the file’s
name to the background attribute within the start <body> tag as shown in the fifth line in

the following code:

<html>

<head>

<title>Example of a background</title>

</head>

<body background="fleur.gif">

<center>This is an example of a tiled background</center>

</body>

</html>

In this example, the Web browser will use the image in fleur.gif as the pattern (or tile) to repeat in
the background of the Web page.

When filling the background with a graphics image, the Web browser begins by placing a copy of
the image in the upper left-hand corner of the application window. Then, the browser makes copies
of the image and places each copy to the right of the previous one. When the Web browser encounters
the right-hand border of the Web page, the browser moves down to the next line and creates another
series of images. The browser repeats this process until it has filled the entire background with the pattern.
Because the browser loads the graphics file with the image only once, the background fills quickly.

Using background images is an excellent way to spice up an otherwise mundane Web page.
Unfortunately, the Web page background can become a distraction if used incorrectly. For example,
many Web sites use a company logo as the background image. However, if the background contains
bright, solid colors, the visitor will have a difficult time reading the text and viewing the other content
on the Web page. Therefore, if you want to use a logo as a Web page background, use an image-
editing program to soften the logo’s colors first. Figure 6-26 shows both the wrong way and the
correct way to use a logo as a background image.

Web page backgrounds are often rather plain. However, you can use simple graphics images
to generate some interesting and eye-catching backgrounds. For example, you can create a small
background graphic that visually separates the areas with different types of content on a Web page.
Figure 6-27 shows two Web pages that have unique background images.

The graphics shown as backgrounds in Figure 6-27 were created with an image-editing program.
Each background tile used in the image on the left is a 50-pixel-tall by 800-pixel-wide graphics image.
Web designers call these types of images spaghetti graphics, because they are long and thin. In this
example, the first 200 pixels of the image are gray and the remaining 600 pixels are white. When the
browser uses the image in the Web page background, the Web browser lays the tiles (that is, the copies
of the graphics image) one below the other, creating a seamless background that divides the Web page
into two areas.

� NOTE

Because the background graphic is 800 pixels wide, visitors viewing the Web page with a browser set
to a width greater than 800 pixels will see a second gray bar on the right side of the browser window.

3 0 2 H T M L & W e b D e s i g n T i p s & T e c h n i q u e s

Tip&Tec / HTML & Web Design Tips & Techniques / Anderson, King, Jamsa / 9394-8 / Chapter 6

P:\010Comp\Tip&Tec\394-8\ch06.vp
Friday, January 04, 2002 6:05:00 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Similarly, the image used to create the background for the other Web page in Figure 6-27 is 50 pixels
tall by 800 pixels wide. The left 200 pixels of the image are light gray and have a “drop shadow” effect.
The remaining 600 pixels are lighter gray. As a result, the background has a three-dimensional appearance.
In this example, both graphics files create two visible sections on the Web page. You could use the
left side of the Web page to hold hypertext links to other pages in your site while using the right side
of the page to display the content you want the visitor to read.

Graphics images used as backgrounds can draw attention and add life to an otherwise drab page.
Remember, however, that the background is just that, a background. Visitors to your Web site want
information, and strong-colored backgrounds can easily become a distraction. Make sure the graphics
you use for your backgrounds are eye-catching but not distracting.

C h a p t e r 6 : G r a p h i c s 3 0 3

Tip&Tec / HTML & Web Design Tips & Techniques / Anderson, King, Jamsa / 9394-8 / Chapter 6

Figure 6-26 The background logo on the left is too strong, making it hard to read the
information on the Web page

Background with strong colors

Background with soft colors

P:\010Comp\Tip&Tec\394-8\ch06.vp
Friday, January 04, 2002 6:05:00 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Creating Transparency in a GIF Image
When you create and save artwork, the image appears within a square or rectangular container (called
a bounding box). Unfortunately, you may sometimes want the image to appear in something other
than a bounding box.

The GIF file format supports transparency (or masking) in selected portions of a graphics image.
In effect, transparency lets what is “behind” the image (usually the Web page background) show through
the GIF itself. You can use the transparency effect to remove the “big ugly white box” that otherwise
surrounds a piece of artwork, as shown in Figure 6-28.

A GIF image can have a maximum of 256 different colors. However, one of the frustrating
things about generating transparency in a GIF image is that the GIF format only supports single color
transparency. That is, you can select only one of the eight bits used to describe the color of each pixel

3 0 4 H T M L & W e b D e s i g n T i p s & T e c h n i q u e s

Tip&Tec / HTML & Web Design Tips & Techniques / Anderson, King, Jamsa / 9394-8 / Chapter 6

Figure 6-27 Graphics files used in unique ways to create eye-catching backgrounds

P:\010Comp\Tip&Tec\394-8\ch06.vp
Friday, January 04, 2002 6:05:01 PM

Color profile: Generic CMYK printer profile
Composite Default screen

C h a p t e r 6 : G r a p h i c s 3 0 5

Tip&Tec / HTML & Web Design Tips & Techniques / Anderson, King, Jamsa / 9394-8 / Chapter 6

in a GIF file as being transparent. In contrast, image-editing programs such as Photoshop and newer
Web file formats such as PNG support 8-bit transparency, that is, the ability to make one or all of the
colors in the file transparent.

You use an image-editing program to create the transparency in a GIF image. Say, for example,
that you have a graphics image and you want to make the background of the image transparent (such
as the white background surrounding a graphics image as in Figure 6-28). You can open the graphic
in an image-editing program and make the artwork’s background (that is, the part you want to make
transparent) a single color that is not used elsewhere in the graphic. Then, when you save the GIF image,
you would instruct the image-editing program to set the transparency bit for the color you selected.
As a result, the portion(s) of the image with the color you selected as transparent will “disappear”
from view when a Web browser displays the graphic on a Web page.

An easier way to create transparency is to use Photoshop 5.5 or higher, performing the following steps:

1. Open the image.

2. Make sure that you can see the tablecloth pattern (indicating transparency) in the areas
you want to make transparent, and select File | Save For Web.

3. Select the GIF format and check the Transparency option, as shown in Figure 6-29.

Figure 6-28 Transparency lets the background on a Web page show through the GIF image

Image using GIF
transparency

Normal image

P:\010Comp\Tip&Tec\394-8\ch06.vp
Friday, January 04, 2002 6:05:01 PM

Color profile: Generic CMYK printer profile
Composite Default screen

3 0 6 H T M L & W e b D e s i g n T i p s & T e c h n i q u e s

Tip&Tec / HTML & Web Design Tips & Techniques / Anderson, King, Jamsa / 9394-8 / Chapter 6

You need to remember that when you define a color as transparent, all areas of the image that
contain that color become transparent as well. Therefore, the color you choose for the background
(the transparent color) should be unique to the background on the image. In addition, because the GIF
format lets you choose only one color for transparency, the edges of an image tend to have a sharp,
rather than soft appearance. Therefore, graphics images containing soft edges (like the soft edges of
an image containing a drop shadow) do not work well when saved in the GIF format.

When you create a transparent GIF, you need to understand that transparency is not a
function of HTML. You use an image-editing program to select the transparent color and

save the transparency effect within the image file. For example, to create a transparent GIF file in
Adobe ImageReady, open the image, and then select and erase the areas of the image you want to be
transparent when a Web browser displays the image. Although a transparent pixel does not (technically)
have a color when displayed onscreen, making one of the colors transparent in a GIF file limits the total
number of visible colors in your artwork to 255 (instead of 256). In Photoshop, after you erase all the
areas of the image you want to make transparent, select File | Save For Web to save the edit image to a
file. When a Web browser displays the image, the erased areas of the image become transparent.

Image-editing and Web-page-creation programs (such as FrontPage) provide different methods
for creating a transparency in a GIF. For example, FrontPage lets you select the transparent color by
clicking the color in the image with an eyedropper tool. Photoshop, on the other hand, lets you create

Figure 6-29 The Save For Web feature lets you create transparent areas within a GIF image

Select the
Transparency
option

P:\010Comp\Tip&Tec\394-8\ch06.vp
Friday, January 04, 2002 6:05:02 PM

Color profile: Generic CMYK printer profile
Composite Default screen

C h a p t e r 6 : G r a p h i c s 3 0 7

Tip&Tec / HTML & Web Design Tips & Techniques / Anderson, King, Jamsa / 9394-8 / Chapter 6

a transparent GIF using a channel mask. The important thing to understand is that you create the
transparency in a GIF by selecting a single color in an image-editing program, and the Web browser
will treat every pixel of that color as transparent when the browser displays the image on the Web page.

Retrieving Full-Size Images after Clicking on Thumbnails
The Tips in this chapter have centered on inserting graphics images on a Web page. Moreover, you
learned that images you place on a Web page should have small file sizes, so that the Web browser
can download and display the images quickly. To get the small image file size you need, you normally
save the image using a compression scheme such as the GIF, JPEG, or PNG file format. Although
these formats reduce the file size of graphics images, they do so by sacrificing some image quality.

For example, the JPEG format can compress a graphic file to 1/100th of the file’s original size.
Although the JPEG compressed image may look good in the browser’s application window, the
picture will often appear grainy when printed. Because the JPEG format reduces file size by removing
color from the original image, the JPEG-formatted image may not contain enough color information
to print correctly. Moreover, you often save Web graphics at resolution of 72 ppi to match the resolution
of a typical computer monitor. However, printers require higher resolutions (typically 300 dpi [dots
per inch] or higher). For these two reasons, concentrate on making images on a Web page look as
good as possible when displayed on the visitor’s screen, and provide visitors with a second image
(at a higher resolution) that they can print on paper.

Say, for example, that you want to provide visitors to your Web site the ability to download and
print a graphics image. You could insert the full-size image on the Web page, and instruct the visitors
to right-click the graphic and select Copy Image from the pop-up menu. However, inserting the full-
size, high-resolution image on a Web page means that the Web browser will have to download a picture
with a huge file size, which will take a long time—especially for those visitors that just want to view
the page without downloading and printing the picture.

A more practical method would be to create thumbnails (that is, small, low-resolution images), and
convert the images into links, an example of which is shown in Figure 6-30. After a visitor clicks a
thumbnail, the hyperlink’s href attribute tells the Web browser to download the graphics image file
to the visitor’s computer.

To create a thumbnail of a full-size image, open the image in an image-editing program
and create a low-resolution copy of the original image. Say, for example, that you have

a series of full-size pictures of landscapes, and you want to let visitors download and print these images.
One at a time, open the image files (named land1.tif and land2.tif, in this example) in an image-editing
program. Create and save a low-resolution copy of the image to another file (landlw1.jpg and landlw2.jpg,
in this example). Then, place the low-resolution images (that is, the thumbnails) on the Web page as
shown by the tags in the following HTML:

<html>

<head>

<title>Example of downloadable image</title>

</head>

<body>

P:\010Comp\Tip&Tec\394-8\ch06.vp
Friday, January 04, 2002 6:05:03 PM

Color profile: Generic CMYK printer profile
Composite Default screen

<center>

Click on a graphic image to

download a full-size version

<img src="landlw1.jpg"

border="0"

width="50" height="25">

<img src="landlw2.jpg"

border="0"

width="50" height="25">

</center>

</body>

</html>

In this example, the two href attributes point to full-size images (land1.tif and land2.tif) located in
a folder named Images at the Web site http://www.andy.com. The src attributes in the image tags instruct

3 0 8 H T M L & W e b D e s i g n T i p s & T e c h n i q u e s

Tip&Tec / HTML & Web Design Tips & Techniques / Anderson, King, Jamsa / 9394-8 / Chapter 6

Figure 6-30 The images on this Web page are clickable links

P:\010Comp\Tip&Tec\394-8\ch06.vp
Friday, January 04, 2002 6:05:03 PM

Color profile: Generic CMYK printer profile
Composite Default screen

TE
AM
FL
Y

Team-Fly®

the Web browser to download and display the thumbnails of the larger, high-resolution images, as
shown in Figure 6-30.

By placing each thumbnail’s tag between a set of start and end anchor tags (<a>), you
turn the thumbnails (landlw1.jpg and landlw2.jpg, in this example) into hyperlinks. When the visitor
clicks a thumbnail, the file: that precedes the URL in the href attribute in the hyperlink’s <a> tag
instructs the Web browser to download the picture rather than display the image onscreen.

Preloading and Caching Images Behind the Scenes
Although the W3C works hard to standardize the way you create a Web site, Web designers have
little tricks they use when creating Web pages. Specifically, designers spend a lot of time and effort
trying to make Web pages containing many graphics load quickly.

When a Web browser downloads the images on a Web page, the browser places a copy of the image
into an image cache on the visitor’s hard drive. When a Web browser needs to display an image, the
browser first checks for the image in the visitor’s image cache folder. If the image is not in the cache
folder, the Web browser attempts to download the image from the Web site (and stores a copy of the
image in the image cache). You want the browser to use an image from the image cache because
the browser can retrieve and display an image much faster from the local hard drive than from the
Web server. The question is how to get the image file into the cache folder before the browser loads
the Web page that calls for the image.

One way to reduce image download times is to preload images that appear on other Web
pages. Say, for example, that you have a multipage Web site on which visitors start at the

index, or home page, and you want the graphics on the site’s other pages to load quickly when the visitor
moves on to those pages. To accomplish this, insert tags for the graphics on the other pages
at the bottom of the home page HTML, as follows:

<html>

<head>

<title>Example of preloading images</title>

</head>

<body>

Insert the Web document here. . .

</body>

</html>

In this example, the tags instruct the Web browser to load the two images at the bottom of
the Web page. However, the width and height attributes set to a value of “1” prevent the visitor from
actually seeing the images onscreen. Although not visible onscreen, the Web browser still downloads

C h a p t e r 6 : G r a p h i c s 3 0 9

Tip&Tec / HTML & Web Design Tips & Techniques / Anderson, King, Jamsa / 9394-8 / Chapter 6

P:\010Comp\Tip&Tec\394-8\ch06.vp
Friday, January 04, 2002 6:05:04 PM

Color profile: Generic CMYK printer profile
Composite Default screen

3 1 0 H T M L & W e b D e s i g n T i p s & T e c h n i q u e s

Tip&Tec / HTML & Web Design Tips & Techniques / Anderson, King, Jamsa / 9394-8 / Chapter 6

the images from the Web server and stores a copy of the pictures in the image cache folder on the
visitor’s hard drive when the visitor retrieves the site’s home page.

When the visitor leaves the home page for another page on the Web site, the browser will be able
to retrieve the image(s) on that page from the image cache on the hard drive. As a result, the page will
load quickly because the browser does not have to download image files from the Web server. When
you create the tags for the page on which you want the pictures displayed, use the image’s actual
height and width for the values of the height and width attributes in each of the image tags, as shown
by the tags in the following HTML:

<html>

<head>

<title>Example of a normal Web document</title>

</head>

<body>

Insert the Web document here. . .

</body>

</html>

Note that the tags used to insert the pictures on the Web page on which the images are
actually visible in this example are standard HTML tags. The reason the Web page can load
the images quicker is that the browser loads the images from the cache folder and does not have to
download the pictures from the Web server. As such, the browser has almost instantaneous access
to the images displayed on the page.

Bear in mind that even though the visitor cannot see the images you hide on a Web page (by
setting the width and height attributes to one pixel each) the browser must still download the images
along with the page. Therefore, a Web page that preloads (hidden) images takes longer to download
than it takes to retrieve and display the visible content alone.

Using hidden images to preload graphics in the local cache works best on Web sites with a linear
arrangement of content (that is, on sites where visitors normally visit pages in sequence). Say, for example,
that the first page does not have any graphics and the next page in the series has four pictures. You
could halve the time it takes to display the second page with the graphics by preloading two of the images
and inserting tags that display the images as 1-pixel dots on the first page without graphics.

Another way to reduce download times is to use the same graphics images on more than one Web
page. Say, for example, that you create a graphics navigation bar, as shown here:

Instead of creating a different navigation bar for each page, use the same graphics image on all
the pages. That way, the Web browser has to download the graphics navigation bar only one time,

P:\010Comp\Tip&Tec\394-8\ch06.vp
Friday, January 04, 2002 6:05:05 PM

Color profile: Generic CMYK printer profile
Composite Default screen

because the next time the browser needs to display the same graphics image (that is, the navigation
bar), the browser can load the image from the image cache on the local hard drive. The same holds
true for background graphics and all other images used on your Web site. When you plan a complex
Web site, organize the site’s pages so that you can use the same graphics images more than once.
Moreover, when possible, preload images by hiding them as 1-pixel graphics at the bottom of pages
with text only. Careful planning, and a little trickery, can turn an average Web site into an often-visited
site with well-organized content and fast-loading Web pages.

Expanding the Web-Safe Color Palette
with Dithering Techniques
When you create artwork for display on a Web page, color fidelity is a major concern. Ideally, you
want the colors your visitors see in the image to be the same colors you used when you created the
artwork. Unfortunately, with hundreds of different computer monitors and video cards on the market,
it is doubtful that the colors you see on your monitor are exactly the same colors your visitors will see.

The Web-safe color palette reduces the amount of shifting that occurs when Web browsers display the
same image on different monitors and video cards. Understand, however, that an accurate reproduction is
often not an exact reproduction. Monitors and video cards not only display a multitude of colors, but they
also let the user control how the colors look. Most monitors have brightness and contrast controls and
many have options users can use to control the hue and saturation of those colors. As a result, a Web-safe
shade of red will most likely be a slightly different shade of red on one monitor versus another.

Therefore, using Web-safe colors does not guarantee that the colors you use in your artwork will
appear the same on all monitors; it just minimizes the chance that the colors you use will dither. Dithering
is a process of mixing colors. When you use a color outside the displayable range of the visitor’s video
card, the video card attempts to approximate the color by mixing colors the video card can display.

Although color mixing is used to create colors outside the displayable range of the monitor’s
video card, it can give a muddy look. If the GIF image contains words, reading the

color-dithered text can be especially hard.
As long as text is not involved, you can use dithering to your advantage by creating colors outside

the range of the browser-safe palette of 216 colors. Say, for example, that you want to create a Web
page background in a color that lies outside the range of the 216-color browser-safe color palette. To
create your custom background color, use an image-editing program such as Photoshop and create a
50-pixel-wide, by 50-pixel-tall RGB image.

For example, to create a background with a slightly lighter shade of blue than is available in the
Web-safe color palette, paint alternating pixels in the 50 by 50 pixel matrix of the background image
a darker shade of blue. Then, paint the remaining pixels a Web-safe, lighter shade of blue, as shown
in Figure 6-31.

Finally, save the image as a GIF-formatted file with a meaningful name (such as blue.gif for
this example).

C h a p t e r 6 : G r a p h i c s 3 1 1

Tip&Tec / HTML & Web Design Tips & Techniques / Anderson, King, Jamsa / 9394-8 / Chapter 6

P:\010Comp\Tip&Tec\394-8\ch06.vp
Friday, January 04, 2002 6:05:05 PM

Color profile: Generic CMYK printer profile
Composite Default screen

When you use the GIF in the Web page background (as shown by the <body> tag in the following
HTML), the Web browser “paints” the background the light blue you want—between the lighter and
darker shades of Web-safe blue:

<html>

<head>

<title>Example of a Web page using a dithered color</title>

</head>

<body background="blue.gif">

Web page body tags inserted here . . .

</body>

<html>

The trick to creating unique colors in a GIF image is to choose similar Web-safe colors. For example,
select slightly different shades of the same color. Selecting colors that represent a harsh contrast
(such as black and white) creates a visibly rough pattern within the image.

Using a controlled dither pattern to generate new colors, such as the light blue in this example,
creates an image file with an extremely small file size, which guarantees that browsers can download

3 1 2 H T M L & W e b D e s i g n T i p s & T e c h n i q u e s

Tip&Tec / HTML & Web Design Tips & Techniques / Anderson, King, Jamsa / 9394-8 / Chapter 6

Figure 6-31 A 50 by 50 pixel graphic file painted using alternate light and dark shades of
Web-safe blue

Enlarged to show
individual pixels

Pattern viewed at
100 percent

P:\010Comp\Tip&Tec\394-8\ch06.vp
Friday, January 04, 2002 6:05:06 PM

Color profile: Generic CMYK printer profile
Composite Default screen

the image quickly. Thus, you can use new colors created with small image files to make your Web
site unique without making the page take longer to load.

Smoothing the Edges of Text Converted
into a Graphic Through Anti-Aliasing
Web pages are a combination of many elements. Most likely, your pages will have text for visitors
to read and graphics that, hopefully, enhance and support the text. Although using Web page graphics
raises certain design issues (using only browser-safe colors, balancing image quality against file size,
and so on), generally speaking, Web browsers can display the images you insert on the Web page.

Unfortunately, displaying text presents its own set of challenges—namely, displaying the text in
the Web browser window using the typeface you want. For example, if you create text using the Arial
typeface and Arial is not available on the visitor’s computer, the browser will substitute the browser’s
default typeface for Arial—possibly Courier or Helvetica. (Visitors can use the browser’s preference
settings to select the default typeface to use when the Web page text calls for an unavailable typeface.)
Moreover, site visitors can select the default color and size of the text. One way to solve the text
appearance problem is to convert the text into a graphics image and then use an tag to display
the picture of the text onscreen.

Although converting an entire Web document into a graphics image would be impractical, sometimes
using pictures of text makes sense. Suppose, for example, that you want to use your company logo on your
Web page, and the logo is a combination of text and graphics. In addition, to further complicate matters,
the text curves around the logo. Typeface issues aside, displaying standard Web page text along a curve
(versus a square border) around an image is not possible.

To solve the problem, edit the logo in an image-editing program such as Photoshop and
make the text a part of the image. When you convert text to a “picture” of the text, you

must decide whether to use the anti-aliased option.
Most graphic artists automatically specify anti-aliasing because using the option helps to make

text you place in the image look smooth. The anti-aliased option tries to hide the fact that computer
monitors display images using pixels, which have shapes like bricks in a wall. When you convert a
vector image (text) into a graphics image, the image-editing program converts the mathematical form
of the text (that is, the vector) into the raster form (that is, into pixels) in a graphics image.

If you turn on the anti-aliased option when converting text to an image, the image-editing program
coats the edges of the text with colors. The added colors smooth the jagged appearance caused by the
pointed edges of the pixels along the sides of the letter, as shown in Figure 6-32.

Although smoothing jagged edges may seem like a good thing to do all the time, anti-aliasing does
not always work well on small text (under 14 points). By blurring the edges of each character in the
text, anti-aliasing can make small letters too blurry to read. If you turn off anti-aliasing, the text appears
in stark contrast to the background and may therefore appear slightly jagged to the viewer’s eyes.
However, the text will be easier to read, because the text is not blurry.

C h a p t e r 6 : G r a p h i c s 3 1 3

Tip&Tec / HTML & Web Design Tips & Techniques / Anderson, King, Jamsa / 9394-8 / Chapter 6

P:\010Comp\Tip&Tec\394-8\ch06.vp
Friday, January 04, 2002 6:05:06 PM

Color profile: Generic CMYK printer profile
Composite Default screen

The following HTML code creates a Web page with two GIF images. The first image uses anti-
aliasing when converting text into the GIF format, and the second image has anti-aliasing turned off,
as shown in Figure 6-33:

<html>

<head>

<title>Example of anti-aliasing applied to text</title>

</head>

<body>

<center>

</center>

</body>

<html>

As you can see in Figure 6-33, large text benefits from the anti-aliased option. Unfortunately, as
the text becomes smaller, it becomes harder to read. Typically, text falling below 14 points is easier
to read when converted to an image without the use of anti-aliasing. Using the anti-aliasing option
creates one side effect that you should note: Because anti-aliasing coats the edges of the text with
additional colors, the added colors will increase the final size of the saved file.

As with anything else on the Internet, always combine following the rules with visual confirmation.
When converting text into a graphics image (that is, into a “picture” of the text), experiment and then
choose the image that is the easiest to read.

3 1 4 H T M L & W e b D e s i g n T i p s & T e c h n i q u e s

Tip&Tec / HTML & Web Design Tips & Techniques / Anderson, King, Jamsa / 9394-8 / Chapter 6

Figure 6-32 The anti-aliased option applied to a vector image creates a visually smoother look
to the edges

Anti-aliased

Not anti-aliased

P:\010Comp\Tip&Tec\394-8\ch06.vp
Friday, January 04, 2002 6:05:07 PM

Color profile: Generic CMYK printer profile
Composite Default screen

C h a p t e r 6 : G r a p h i c s 3 1 5

Tip&Tec / HTML & Web Design Tips & Techniques / Anderson, King, Jamsa / 9394-8 / Chapter 6

Figure 6-33 Large text appears readable using anti-aliasing; however, smaller text becomes
harder to read

P:\010Comp\Tip&Tec\394-8\ch06.vp
Friday, January 04, 2002 6:05:08 PM

Color profile: Generic CMYK printer profile
Composite Default screen

CHAPTER 7

Animation, Sound, and Video

Tip&Tec / HTML & Web Design Tips & Techniques / Anderson, King, Jamsa / 9394-8 / Front Matter

TIPS IN THIS CHAPTER

� Creating a GIF Animation from Scratch 334

� Controlling GIF Animation Through Internal Settings 336

� Creating a Banner Ad Using GIF Animation 338

� Creating Smooth Transitions Between GIF Animation Frames Using Tweening 341

� Incorporating a Completed Flash Splash Screen into a Web Site 342

� Creating a Flash Movie from Scratch 345

� Building Text-Based Animations Using FlaX 348

� Broadcasting Streaming Audio and Video 348

� Creating Your Own Streaming Media 351

� Creating a Page that Features a Web Cam 352

� Integrating Video and Audio into a Web Site Using SMIL (Smile) 354

P:\010Comp\Tip&Tec\394-8\ch07.vp
Monday, January 07, 2002 1:41:35 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Copyright 2002 by The McGraw-Hill Companies, Inc. Click Here for Terms of Use.

Browsing the Internet today without encountering Web pages that contain some form of animation,
sound, video, or a combination of all three is almost impossible. From simple animated GIFs, to

Flash movies, and even full-screen interactive images with sound and motion, adding animations to Web
pages has the potential to enliven your designs. Unfortunately, the overuse of animation and sound
can be annoying and a distraction to your visitors. Two opposing goals drive advances on the Internet:

• Web authors trying to please visitors want to transmit increasingly elaborate types of content
(sound, animation, and video) over the Web.

• To reach Web site visitors, the file size for content must be small enough to load quickly, or
the visitors grow impatient and move on to other sites.

Visitors demand more information. However, although they say, “Entertain and inform us,” they
are often unwilling to wait one moment longer for the additional content. Fortunately, the two opposing
goals (design versus expectation) drive the development of new technologies that let you give visitors more
information faster than ever before.

When you work with animation on the Web, you incorporate one or more technologies (Flash,
Shockwave, GIF animation, or video and sound applications) with the ultimate goal of creating an
eye-catching Web page. Creating animation on a Web page relies on the human eye’s ability to retain
an image (called persistence of vision). Persistence of vision refers to the fact that the shape of an
image lingers on the eye after the image is removed from view or you look away. For example, go
into a room, turn out the lights, and then flick the lights quickly on and off. Each time you switch
the lights off, your eye retains a ghostly image of what you saw while the light was on. Persistence
of vision causes you to see the ghostly images.

An animation is actually a series of still images displayed quickly one after another. The illusion
of motion is created as your eye retains one image (persistence of vision) as the program “playing”
the animation displays the next image onscreen. To create a smooth motion effect, the program must
display each new image (or frame) within a fraction of a second of removing the last, so that the eye
sees the new image just as the previous image fades.

The same thing happens in a movie theater. As you watch the movie, the projector displays a series
of still images (typically 30 images [or frames] per second). Due to persistence of vision, your mind
stitches the images together to create the illusion of motion. Of course, in both the movies and on a
Web page, you are not limited to silent objects moving across the screen. Animation can also include
speech and music.

For example, a lightning strike displayed onscreen has a far greater impact when accompanied by
a clap of thunder. In addition, sound, in the form of a narration, background music, or special effects
like the “clicking” of an interactive button, helps to set the mood of the page and keep your visitors
entertained and focused.

Although adding animation and sound can bring life to what might otherwise be a dull or boring
Web page, whether that life is necessary to the Web site you are designing is a question you must ask
yourself before venturing into the world of animation.

317

Tip&Tec / HTML & Web Design Tips & Techniques / Anderson, King, Jamsa / 9394-8 /

P:\010Comp\Tip&Tec\394-8\ch07.vp
Thursday, January 03, 2002 4:00:10 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Understanding Animation’s Role in Web Design
The primary role of Web animation is to draw the attention of visitors to your Web site. However, Web
animation can also entertain and inform. Young children (especially those that are just beginning to
read) love movement and tend to focus on it. Therefore, you can use animation to grab and focus a
young child’s attention for an extended period on a concept you are trying to convey.

In addition, a Web page can use animation and sound to explain the steps in a complicated procedure
or process. For example, an animated sequence (or perhaps a video) displaying the steps necessary to
program a VCR to record a movie, accompanied by a narrator explaining the steps, is far more effective
than a plain text document explaining the same procedure. The specific intent of the Web page you design
will influence the type of animation and software required to create it. Animation is important to the design
of a Web site, and as a Web designer, you can choose from several methods to achieve your specific goals.

Understanding Plug-In Software
Throughout this chapter, you will examine different types of multimedia content, such as Flash
animations, streaming audio and video, QuickTime VR (virtual reality) tours, and more. Depending on
an animation’s file format, your Web browser may not provide built-in support you can use to display
the animation. Instead, before you can view the animation, you must install special software (called a
plug-in) that you normally download from the Web and install into your browser—sometimes as you
are viewing the page that contains the object. For example, before you can display your first Flash
animation, your browser must have a Flash plug-in. Years ago, users had to download the plug-in from
the Macromedia Web site. Today, most newer browsers ship with the Flash plug-in already installed.

Normally, the HTML statements that place the animated object within a page will also include
instructions the browser can use to locate and download the corresponding plug-in. Before it downloads
and installs the plug-in, however, your browser displays a dialog box informing you that the page
requires software not yet installed on your machine, and the location on the Web from which the
browser will download the needed plug-in. If you agree to download the plug-in, your browser will
retrieve the program and install it. If you do not let your browser perform the download, you will view
the Web page contents minus the animated object. In the Windows environment, most plug-ins are
ActiveX controls. Chapter 9 examines ActiveX objects in detail.

Understanding Dynamic HTML (DHTML)
In the beginning, Web content was static. After the browser finished loading a graphics image, the
picture stayed in the same place within the browser window. Web designers found this too limiting
on the creative process, and they looked for a way to add content that would change even after the
visitor downloads a page.

In a simplistic way, Dynamic HTML (DHTML) makes this possible. Within a Web page, designers
often produce DHTML content by using a scripting language, such as JavaScript, to access something
called the document object model (DOM, an underlying software object) within the Internet browser.
Basically, the DOM lets a script control the appearance of all the elements (that is, all objects) the
browser displays on a Web page. What you must remember with respect to DHTML is that all

3 1 8 H T M L & W e b D e s i g n T i p s & T e c h n i q u e s

Tip&Tec / HTML & Web Design Tips & Techniques / Anderson, King, Jamsa / 9394-8 / Chapter 7

P:\010Comp\Tip&Tec\394-8\ch07.vp
Thursday, January 03, 2002 4:00:11 PM

Color profile: Generic CMYK printer profile
Composite Default screen

TE
AM
FL
Y

Team-Fly®

processing occurs within the browser. DHTML uses client-side processing as opposed to a server-
side operation.

Today, almost all visitors use Web browsers that let client-side scripts take control of the DOM.
As such, designers can use scripts to alter and/or move the elements within a Web page. For example,
you can use DHTML to change the text color as the visitor moves the mouse pointer over a word within
a hypertext link. Although changing the color of text is not strictly animation, it does create a change
onscreen that helps focus the visitor’s attention. The following HTML file, DynamicDemo.html, uses
JavaScript to change the color of text in a hyperlink (to a site that examines DHTML) as the user moves
his or her mouse pointer onto or off of the link:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"

"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

<html xmlns="http://www.w3.org/1999/xhtml">

<head>

<title>DHTML Demo of a Text Color Change Mouseover Effect</title>

</head>

<body bgcolor="#ADD8E6">

<h1 align="center">HTML and Web Design Tips & Techniques</h1>

<hr />

<p>Move your mouse pointer over the following links to see a

DHTML Text Mouseover event.

Click on any of the links to visit sites the examine DHTML.

</p>

<a href="http://www.dhtmlshock.com/"

onmouseover="this.style.color='red'"

onmouseout="this.style.color='blue'">DHTML Shock

 - http://www.dhtmlshock.com/

<li style="list-style: none">

<a href="http://www.w3schools.com/dhtml/dhtml_examples.asp"

onmouseover="this.style.color='green'"

onmouseout="this.style.color='blue'">DHTML Examples

 - http://www.w3schools.com/dhtml/dhtml_examples.asp

<li style="list-style: none">

C h a p t e r 7 : A n i m a t i o n , S o u n d , a n d V i d e o 3 1 9

Tip&Tec / HTML & Web Design Tips & Techniques / Anderson, King, Jamsa / 9394-8 / Chapter 7

P:\010Comp\Tip&Tec\394-8\ch07.vp
Thursday, January 03, 2002 4:00:11 PM

Color profile: Generic CMYK printer profile
Composite Default screen

<a href="http://www.dynamicdrive.com/"

onmouseover="this.style.color='magenta'"

onmouseout="this.style.color='blue'">Dynamic Drive

 - http://www.dynamicdrive.com/

</body>

</html>

In this case, the HTML statements use the onmouseover and onmouseout events to specify the color
the browser assigns to the link when the user moves his or her mouse pointer over and off of the link’s
text. The key point to understand about DHTML is that the processing occurs within the browser—
meaning, DHTML requires client-side processing. Depending on the DHTML operations a Web page
contains, the DHTML processing the browser must perform may cause a brief delay before the browser
displays the page content.

DHTML was not created specifically with animation in mind, but it will let you alter HTML elements
in a way that adds movement (action) to a Web page. For example, a DHTML script can simply tell the
browser to keep changing the position of an image on the page, so that the picture travels around the
screen. If you do this using several different images, you can move a series of graphic elements around
each other. Most Web browsers support DHTML animation effects without requiring the visitor to
download additional components. (Not forcing your visitors to stop and download plug-ins before
displaying an animation effect on a Web page is a plus.) However, creating DHTML content that works
the same way on all browsers is fairly difficult, so this sort of animation is not nearly as simple to make as
a GIF animation, for example, which is discussed next. Actually coding the animation yourself is quite
tedious and time-consuming. Fortunately, user-friendly software applications, such as Macromedia’s
Dreamweaver, help produce DHTML script code for you.

DHTML is fairly limited as to the type of animation effects it can produce, because all it can really
do is move still images around the screen, and moving a still image around the screen is not really
animation—it’s simply movement. In order to add higher-quality, true animation to a Web page, use GIF
animation, Flash, or Shockwave to achieve your goal. To see DHMTL in use, visit the following sites:

• http://www.hfe.org/resource/demo2/

• http://www.dhtmlcentral.com/

• http://www.webcoder.com/

Working with GIF Animation
Graphic Interchange Format (GIF) animation is the most popular form of animation on the Internet
today. Several reasons account for its popularity:

• GIFs are easy to create You can create GIF animation from a score of image- and Web
design–applications, such as Macromedia Fireworks and Adobe ImageReady. In addition,

3 2 0 H T M L & W e b D e s i g n T i p s & T e c h n i q u e s

Tip&Tec / HTML & Web Design Tips & Techniques / Anderson, King, Jamsa / 9394-8 / Chapter 7

P:\010Comp\Tip&Tec\394-8\ch07.vp
Thursday, January 03, 2002 4:00:11 PM

Color profile: Generic CMYK printer profile
Composite Default screen

you can go to shareware sites, such as http://www.shareware.com and http://www.tucows.com,
to download shareware programs that create animated GIF files from existing images. Two
popular shareware programs are GIF Builder (Macintosh) and GIF Construction Set (Windows).

• GIFs require no special browser software Almost all Web browsers play GIF animations,
which means that the browser requires no special software or plug-ins.

• GIFs are a standard Web file format All browsers that support graphics images will display
GIF files. In rare cases where the browser does not support GIF animation, the browser will
still display a static version of the animation (typically the first frame in the animation sequence
within the GIF file).

• GIFs use streaming When a Web browser begins downloading the GIF animation, the browser
displays the frames as it receives them. The visitor is not forced to wait until the browser finishes
downloading the file before seeing the animation.

Animated GIF files work like traditional hand-painted, frame-by-frame animation created by
companies such as Disney. Each GIF file contains a number of cells, with each cell representing
one part of the animation. When you save the GIF file, the image-editing software stacks the images
(that is, the cells) one on top of another and saves all them within a single file. When the Web browser
opens the file, it displays the individual images one at a time, and creates a visual impression of
movement, as shown here:

As we discuss in detail later in this chapter, in the Tip “Controlling GIF Animation Through
Internal Settings,” when you save a GIF animation, you select from a series of options that let you
control the speed and duration of the animation. The program you use to create the GIF saves the
options you select within the GIF file, and the Web browser interprets the choices when it opens
the file to play the animation.

Because animation attracts attention, GIF animation is used extensively in marketing and
advertising. Everyone has seen the ubiquitous banner ads that appear at the top of virtually every
commercial Web page, advertising everything from Beanie Babies to magazine subscriptions.

Another reason for GIF animation’s widespread use is the ease of inserting it into an HTML
document. To place a GIF animation on a Web page, use the same tag you use to insert
graphics and artwork, as shown here:

C h a p t e r 7 : A n i m a t i o n , S o u n d , a n d V i d e o 3 2 1

Tip&Tec / HTML & Web Design Tips & Techniques / Anderson, King, Jamsa / 9394-8 / Chapter 7

Frame 1 Frame 2 Frame 3 Frame 4

P:\010Comp\Tip&Tec\394-8\ch07.vp
Thursday, January 03, 2002 4:00:12 PM

Color profile: Generic CMYK printer profile
Composite Default screen

3 2 2 H T M L & W e b D e s i g n T i p s & T e c h n i q u e s

Tip&Tec / HTML & Web Design Tips & Techniques / Anderson, King, Jamsa / 9394-8 / Chapter 7

The src attribute in this example instructs the Web browser to load a GIF file named neon.gif. The
information that instructs the Web browser how to animate the GIF file (speed, number of loops) is
embedded within the file itself and not written into the HTML code.

You can find numerous Web sites that offer free animated GIFs you can download and integrate
into your Web site:

Animation Factory http://www.animfactory.net/

All Free Original Clipart http://www.free-graphics.com/

Animation City http://www.animationcity.net/

imageif .net http://www.imagif.net/

Within the Tip “Creating a GIF Animation from Scratch” later in this chapter, you will create your
own GIF animations.

Working with Macromedia Flash
Flash is a multimedia development tool created by the Macromedia Corporation that lets you create
full-screen animations, incorporating sound and interactivity using very small file sizes. Flash keeps
the file sizes small through the use of vector images. Vector images are smaller than traditional bitmap
images because they use math to describe the graphics instead of pixels. When you save a traditional
bitmap image (GIF or JPEG), the file has to record and store information within the graphics file that
describes each and every pixel, which creates large files. In contrast, when you save a vector graphic,
the image uses mathematical formulas to save the image information. For example, assume that you
use a graphics program to draw a picture of a line. If you store the image within a raster (bitmap) format,
the file must store all the pixels that comprise the line, as well as those that make up the image
background. In contrast, as shown in Figure 7-1, if you store the image in a vector format, the file
will store an equation (such as the slope of the line) as well as the line’s start and end points.

Figure 7-1 Vector graphics reduce file sizes by representing images using equations

P:\010Comp\Tip&Tec\394-8\ch07.vp
Thursday, January 03, 2002 4:00:12 PM

Color profile: Generic CMYK printer profile
Composite Default screen

C h a p t e r 7 : A n i m a t i o n , S o u n d , a n d V i d e o 3 2 3

Tip&Tec / HTML & Web Design Tips & Techniques / Anderson, King, Jamsa / 9394-8 / Chapter 7

Because files saved as vectors are small, the images download to the browser faster than traditional
JPEG or GIF images. Vector images saved for use in Flash animation are defined as SVG image files,
or Scalable Vector Graphics. SVG images can be resized (made larger or smaller) while the animation
is playing, without loss of image quality. This means that you can create complicated Flash animation
files, which load and play quickly on a visitor’s computer.

Using Flash over traditional GIF animation offers several advantages:

• Flash uses small image file sizes Smaller file sizes for vector images translates into
fast-loading animations.

• Flash enjoys cross-platform browser support Whether you use Microsoft Explorer or
Netscape Navigator, or the Macintosh or Windows platform, does not matter. The plug-in
that runs Flash animation is free and is available for most Web browsers.

• Flash lets you resize images during animation Vector images resize with ease, creating
images that look great at any size you decide to use.

• Flash uses streaming technology When a visitor downloads a Flash animation, they do not
have to wait for the entire file to download. The animation will start as soon as the visitor’s
Web browser receives enough of the Flash data to begin the animation.

• Flash is interactive Flash lets you create interactive menus and navigation bars without
prior experience in programming languages.

• Flash incorporates JavaScript Flash is fully compatible with JavaScript. Because all
browsers universally accept the JavaScript language, you can create even more complicated
interaction between your page and its visitors.

• Flash incorporates sound Flash works seamlessly with sound files, letting you create
movement and audio in the same animation.

To design Flash animations, you use the Macromedia’s Flash application, as shown in Figure 7-2.
If you visit the Macromedia Web site, you can download a trial version of Flash, which you can use
for 30 days to create your own Flash animations.

Although Flash is a popular way to create animation, it is not without competition. In 1999, Adobe
released LiveMotion. Adobe LiveMotion creates full-screen animation with vector graphics similar to
those used in Macromedia Flash.

Several Web sites offer free Flash animations you can download and use within your Web pages:

Extreme Flash http://www.extremeflash.com/

Flash Kit http://www.flashkit.com

freelayouts.com http://www.freelayouts.com/

Macromedia http://www.macromedia.com

In “Creating a Flash Movie from Scratch” later in the chapter, you will create your own
Flash animation.

P:\010Comp\Tip&Tec\394-8\ch07.vp
Thursday, January 03, 2002 4:00:12 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Using Shockwave
Flash is not the only Web product produced by Macromedia. In the early ’90s, Macromedia developed the
Director application for use primarily in the creation of interactive media outside the Web environment.
Director lets multimedia designers incorporate graphics, animation, sound, QuickTime movies, and
interactive buttons into an application that users run on their computers. Director was, and still is,
the major development program for media such as interactive computer games and instructional CDs.

In 1996, Macromedia expanded Director’s capabilities by introducing Shockwave. Shockwave lets
Web designers convert Director movies into interactive documents that are displayable on the Internet.
Shockwave is a popular method for creating animation for the Internet (Shockwave files are called
movies). However, Shockwave files lack the compact size of Flash animations, and creating shockwave
movies requires extensive knowledge of a programming language called Lingo.

To create a Shockwave movie, you must first design the movie in Director, using the Lingo
programming language, and then convert the Director movie into a Shockwave movie. With the cost of
Director running approximately $1,000 and the steep learning curve of the Lingo language, Shockwave

3 2 4 H T M L & W e b D e s i g n T i p s & T e c h n i q u e s

Tip&Tec / HTML & Web Design Tips & Techniques / Anderson, King, Jamsa / 9394-8 / Chapter 7

Figure 7-2 The Flash application lets you design and save animated Flash Web pages

P:\010Comp\Tip&Tec\394-8\ch07.vp
Thursday, January 03, 2002 4:00:13 PM

Color profile: Generic CMYK printer profile
Composite Default screen

is a Web animation tool out of the reach of most Web designers, especially when Macromedia’s Flash
and Adobe’s LiveMotion can give you much of the same flexibility and interactivity at a much lower
cost, and without having to learn a programming language.

To place a Shockwave animation on a Web page, you can use either the <object> or <embed>
tag. The following HTML statement, for example, illustrates how to use the <embed> tag to place
a Shockwave movie within an HTML file:

<embed src="shock.dcr" height="400 width="400" name="shocking" />

In this example of an <embed> tag, the src attribute identifies the name of the shockwave movie
(shock.dcr) the Web browser is to play, and the width and height attributes define the dimensions of the
Shockwave movie “screen” within the Web browser application window. The name attribute specifies a
way for forms and other HTML objects to communicate with the movie, as explained later in this chapter.

Several Web sites offer Shockwave applications you can download to take Shockwave for a test
drive. Further, from the Macromedia Web site at http://www.macromedia.com/downloads, you can
download a 30-day trial of Director Shockwave Studio. Several sites offer the source code for the
Lingo programs the developers used to create the applications:

Shockwave.com http://www.shockwave.com/sw/home/

Shockwave-sound.com http://www.shockwave-sound.com/

Macromedia http://www.macromedia.com

Understanding When and When Not to Use Animation
As previously discussed, animation attracts attention, it entertains, and it informs. However, as wonderful
as animation is, there are concerns to using animation on a Web page:

• Use animation to attract attention, but don’t overdo it Animation is an attention grabber, but
too much animation can be a problem. If you create animation to attract your visitor’s attention,
refrain from using more than one, or possibly two animations on each page.

• Use animation to enhance the message of the Web page, but make sure that it adds value Attempt
to use animation that relates to the other static information on the page. For example, is that rotating
logo in the upper-left corner of the browser window contributing to the overall design and message
of the page, or did you place it there simply to prove you could do it?

• Do not use animation when it becomes distracting Avoid animation on Web pages that contain
large bodies of text. Animation impacts the visitor’s concentration and distracts from the reading
of the text. Animation attracts attention; too much animation keeps the visitor from focusing.

• Do not use animation for animation’s sake Because animation files have larger file sizes,
and consequently take longer for the Web browser to download and display, use animation
only when it contributes to the page.

C h a p t e r 7 : A n i m a t i o n , S o u n d , a n d V i d e o 3 2 5

Tip&Tec / HTML & Web Design Tips & Techniques / Anderson, King, Jamsa / 9394-8 / Chapter 7

P:\010Comp\Tip&Tec\394-8\ch07.vp
Thursday, January 03, 2002 4:00:14 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Remember, using animation is a two-edged sword. On the one hand, animation attracts attention
and keeps visitors on your Web site. However, too much animation can detract from your primary
message by distracting the site visitor. Create a balance between animation and the goal of the Web
page. Ask yourself if the animation contributes to what you are trying to say, or is it animation for
animation’s sake?

Working with Sound on the Internet
If you don’t believe that sound is part of a visual experience, watch a television show with the sound
turned off. Although this might be an acceptable practice during commercials, television without
sound creates only half the experience (many people would say the most important half). And it’s
not just the voices of the characters that keep the attention of a viewer riveted to the screen; the full
experience also includes background music. How would you ever know, for example, that something
bad was going to happen without the background music alerting you (the viewer) to the upcoming danger?

Just as the sound coming from a television helps set the mood for the audience, you can provide a
more engaging experience for your site’s visitors by adding sound to the text, graphics, and animations
you use. A properly designed soundtrack helps your visitors gain a total experience by setting a mood
that draws them into the content and thereby keeps them on the Web site. However, just as a well-
designed soundtrack keeps visitors riveted to the page, a poorly designed soundtrack will drive them
away. For example, constantly playing music in the background of a Web page is distracting, unless
the music directly relates to the content—such as a Web site devoted to Brittany Spears playing her
latest CD.

� NOTE

If you use music on your Web site, make sure you have permission from the artist, or from the
production company that created it. This holds true for speeches as well as music. Make sure you
have the right to use the material before you publish it on your Web site.

Although audio is now commonplace on the Internet, the World Wide Web used to be a silent
medium. In 1996, when commercial browsers such as Netscape Navigator became more readily
available to the public, a demand was generated for professional Web designers with high-quality
media production skills.

Originally, the only sound formats available produced sound files so large it could take minutes
or even hours to download a sixty-second music clip. Typically, visitors to a Web site expect results
within seconds.

In late 1996, RealNetworks created the first version of RealAudio. RealAudio used “streaming”
technology to allow Web browsers to download and play sound files directly on the visitor’s computer.
Streaming technology lets music or narration play while the Web browser is still downloading the
sound file. In a normal situation, the Web browser downloads the start of the audio file and begins
playing the portion of the file it has downloaded while, at the same time, continuing to retrieve the
remainder of the file. Thus, visitors can listen to long audio clips without waiting a long time for
a large audio file to download completely.

3 2 6 H T M L & W e b D e s i g n T i p s & T e c h n i q u e s

Tip&Tec / HTML & Web Design Tips & Techniques / Anderson, King, Jamsa / 9394-8 / Chapter 7

P:\010Comp\Tip&Tec\394-8\ch07.vp
Thursday, January 03, 2002 4:00:14 PM

Color profile: Generic CMYK printer profile
Composite Default screen

In competition with RealAudio is Apple’s QuickTime, which functions in a similar way to RealAudio.
Many Web sites exploit both the RealAudio and QuickTime formats and most users have previously
downloaded the corresponding plug-ins. Here are some guidelines for using sound on the Internet:

• Use sound to communicate ideas through the use of dialog and narration.

• Use sound to improve a Web site’s navigation. For example, use a clicking sound in
conjunction with a rollover button.

• Use background music (where appropriate) to set the mood for the Web page. For example,
to set the mood on a Web site dealing with life in the ocean, play the sound of surf gently
rolling against the shoreline.

• Use sound to generate online revenue by the sale of audio and music clips. For example,
let visitors play a portion of a new song, before purchasing.

The use of sound has changed the design and construction of Web sites. For example, some Web
sites now play radio broadcasts (called Webcasts). Webcasts are used for everything from music to
the live broadcast of important presidential speeches and major league baseball games. As time and
technology advance, Web authors are realizing the importance of sound along with the other content
of a Web page in generating a mood and keeping the attention of a Web visitor. Thousands of sites on
the Web broadcast live. Examples include National Public Radio (http://www.npr.com) and MSNBC
(http://www.msnbc.com).

� NOTE

If you decide to include music or sounds within your Web site, you should include a button on the site
that allows the user to easily turn off the music or sounds. Many users will find it quite annoying when
their coworker in the next cubicle cannot readily control the volume on his or her PC.

Just as graphic files are saved using specific formats such as JPEG and GIF, audio files have their
own formats. Common sound file formats that work well on the Macintosh platform are AIF, AIFF,
SND, AU, MP3, and MIDI (for music only). The Windows platform plays WAV, AU, SND, MP3,
and MIDI (for music only) file formats. As you can see, several of the formats (AU, SND, MP3, and
MIDI) can be used on both the Windows and Macintosh platforms. In addition to these formats, the
MOV format used by QuickTime can be used to format music for both the Windows and Macintosh
platforms. Also, using the Windows Media Player (which is available for the both the Mac and PC),
users can play back Windows Media Format (WMF) files.

To capture audio using the Windows platform, you can use the built-in Sound Recorder or install
and use an audio application such as Sound Forge. Both programs mentioned will capture audio using
the WAV format (native to Windows), and let you save the file to several formats. To capture audio
using the Macintosh platform, use the built-in recorder, or install and use an audio application such as
Sound Edit Pro. Both capture audio using the AIFF format (native to Macintosh) and let you save the
file to several formats.

C h a p t e r 7 : A n i m a t i o n , S o u n d , a n d V i d e o 3 2 7

Tip&Tec / HTML & Web Design Tips & Techniques / Anderson, King, Jamsa / 9394-8 / Chapter 7

P:\010Comp\Tip&Tec\394-8\ch07.vp
Thursday, January 03, 2002 4:00:14 PM

Color profile: Generic CMYK printer profile
Composite Default screen

3 2 8 H T M L & W e b D e s i g n T i p s & T e c h n i q u e s

Tip&Tec / HTML & Web Design Tips & Techniques / Anderson, King, Jamsa / 9394-8 / Chapter 7

� NOTE

To convert audio from one format to another, you can use a program such as Cool Edit, which you
can download from http://www.syntrillium.com.

Several Web sites let you download audio clips for free, which you can then integrate into your
Web site:

Midi-World http://www.midi-world.net/

A1 Free Sound Effects http://www.a1freesoundeffects.com/

TheFreeSite.com http://www.thefreesite.com/Free_Sounds/Free_WAVs/

Adding Sound to a Web Page
To add a simple background sound to a Web page, you can place the <bgsound> tag within the page’s
header section, or you can use the <embed> tag within the Web page body section as shown here:

<head>

<bgsound src="music.au" />

</head>

<body>

<embed src="music.au" autostart="true"></embed>

</body>

These tags represent the minimal way of inserting a sound file into an HTML-based Web page.
Because the <embed> tag will play in both Netscape Navigator and Internet Explorer, you may want
to use it to place the sound file within your Web page. In the previous examples, the file named music.au
would play once and not repeat. To instruct the sound to continually repeat, add the following attributes
to the <bgsound> and <embed> tags (hidden, loop, autostart) as shown here:

<head>

<bgsound src="music.au" hidden="true" loop="true" autostart="true"/>

</head>

<embed src="music.au" hidden="true" loop="true" autostart="true"></embed>

For anything more than a simple playback of a sound file, visitors to your site will need a plug-in–
based solution such as Flash, QuickTime, or RealAudio, as previously discussed.

The HTML specification states that the preferred way to embed sound in a Web page is through the
use of the <object> tag. However, until all major browsers support the <object> tag, you may simply
want to continue to use the <embed> tag, as previously shown.

Incorporating Video into a Web Page
Creating video for display on a Web page is one of the fastest growing areas of Web design. Moreover,
with the new technologies available, virtually anyone can create desktop video productions. If you are

P:\010Comp\Tip&Tec\394-8\ch07.vp
Thursday, January 03, 2002 4:00:14 PM

Color profile: Generic CMYK printer profile
Composite Default screen

TE
AM
FL
Y

Team-Fly®

C h a p t e r 7 : A n i m a t i o n , S o u n d , a n d V i d e o 3 2 9

Tip&Tec / HTML & Web Design Tips & Techniques / Anderson, King, Jamsa / 9394-8 / Chapter 7

planning to create you own video, you’ll want to consider several things before starting the project to
ensure quality results:

• Plan Always plan your video shots in advance. One way to do this is to sketch out the major
sections of the video shoot using a storyboard. A storyboard contains small sketches of the
frames: where the video shot takes place, who is in the video, what is needed (props, equipment)
and what you expect that portion of the video to convey to the viewer.

• Reduce camera movement When you shoot the video, keep movement down to a minimum.
Not only does aggressive movement and zooming in and out look bad, they do not translate well
when compressed into a format suitable for the Web. Many video compression programs save
file size by repeating information in one frame to the next. If you constantly move the camera,
the compression program has nothing to duplicate; therefore, not only is excessive movement
distracting to the viewer, it creates a final production with a larger file size.

• Watch the background Avoid high-contrast or excessively bright backgrounds. Excessively
bright backgrounds cause the image to generate halos around the objects in the foreground, making
them difficult to see. In addition, video cameras may compensate for the bright background,
making objects in the foreground overly dark.

• Keep the background simple Cluttered backgrounds cause images in the foreground to blend
with the background. In addition, simple backgrounds (like solid-color backdrops) actually help
the compression program to create a smaller file size for the finished production.

• Use good lighting Although many video cameras let you record in low light, a low-light video
looks dull and the finished production does not translate well to the Internet. Use good lighting
to make the elements of the video stand out.

• Stay focused Make sure the video stays well focused. When you compress the final production,
some of the original quality of the movie is sacrificed to create a smaller file size. If the original
image was slightly out of focus, the compressed Internet production will only be that much worse.

If you follow these simple steps when creating the video, you will be assured of the best quality for
the finished Internet version.

Assembling a Video Production
After shooting the video, you will need a video-editing program to assemble the separate video clips
into the finished production. VideoWave IV by MGI software is a reasonably priced application ($99)
that lets you take video clips from several files and combine them. You can even include special effects
such as subtitles, sound effects, and voice-over narration. Moving up the ladder, programs such as
Adobe Premiere and iMovie give you more features, and even include an audio editing plug-in, as shown
in Figure 7-3.

Although the use of video on the Internet is increasing, the ability of the Internet to download data,
such as video files, quickly (bandwidth) has not caught up with the technology. For the present, unless
your visitors are willing to suffer long download times, video clips must be short and use small

P:\010Comp\Tip&Tec\394-8\ch07.vp
Thursday, January 03, 2002 4:00:15 PM

Color profile: Generic CMYK printer profile
Composite Default screen

viewing areas, with low image and poor sound quality. With that said, video does have some excellent
uses on the Internet:

• Use video to promote television shows and movies: industries that traditionally use trailers
(short excerpts of the production).

• Use video to give visitors an impression of your personality. For example, a resume placed
on the Internet would be enhanced by a short video. In this way, prospective employers get
a chance to see what they might be buying.

• Product demos and walk-around video clips are better than a stationary photograph, and help
prospective buyers actually see the product. Marketing sites such as http://www.toyota.com let
car and truck shoppers actually walk around the vehicle with the use of virtual-reality programs
such as Apple’s VR modeling software (http://www.apple.com).

Of course, using any of these suggestions to create a video production assumes that visitors to your
Web site will have the software plug-ins installed that they need to download and view the video. To
get a look at Web sites that successfully integrate video, visit the following sites:

3 3 0 H T M L & W e b D e s i g n T i p s & T e c h n i q u e s

Tip&Tec / HTML & Web Design Tips & Techniques / Anderson, King, Jamsa / 9394-8 / Chapter 7

Figure 7-3 Programs such as Adobe Premier let you create a complete video production from
one or more video clips, and even add special effects, titles, and audio

P:\010Comp\Tip&Tec\394-8\ch07.vp
Thursday, January 03, 2002 4:00:16 PM

Color profile: Generic CMYK printer profile
Composite Default screen

MTV http://www.mtv.com/

EPSN http://www.espn.com

AMC Theatres http://www.amctheatres.com

Warner Brothers http://www.warnerbros.com

Understanding Video Compatibility Issues and the World Wide Web
If you plan to add a video clip to your Web site, bear in mind that not everyone will be able to view your
wonderful production. Viewing a video production requires that a Web browser has a plug-in that allows it
to view the video. Both RealAudio and QuickTime have plug-ins that enable Web browsers to play video
productions. However, downloading and installing a plug-in requires time and patience on the part of
the visitor. Most surveys indicate that if visitors must stop and download a plug-in before viewing a
video clip, most will simply leave the site.

Instead of forcing your visitors to download software, giving them a preview of the video might be
better, possibly in a series of small still shots, and give them the option of downloading the software
they need to view the movie. If the visitor knows what to expect, he or she might be willing to invest
the time for the privilege of viewing your video, as shown in Figure 7-4.

Streaming vs. Downloading a Video Production
When you insert a video production into a Web page, you have the option of streaming the content
or requiring the visitor to download the video completely prior to playback. Streaming video is played
through a browser plug-in such as RealAudio or QuickTime and begins playing before the entire video
file downloads. Typically, streaming video begins playing when it has downloaded enough of the file to
continue playing the video while, at the same time, downloading the remainder of the file. One problem
with streaming video is that the video file has to be compressed to a small size, so that it can load while
it plays. Because some forms of video compression employ lossy techniques (compression by removing
information), the video image suffers, and typically creates a poor quality playback. Further, as a
browser (more specifically a video plug-in within the browser) downloads the streaming video, delays
due to traffic on the Internet or a slow connection speed can delay the video’s arrival, which disrupts the
video playback, producing a choppy display or causing the images and audio to fall out of sync.

� NOTE

Streaming audio or video can place considerable processing demands on a server. If your site supports
streaming operations, you should monitor your site’s performance, as discussed in Chapter 12.

One alternative is to give the visitor the option of downloading a slightly larger (and better quality)
version of the video file. While the video file is downloading, the visitor cannot view the video until the
visitor’s computer receives the entire file. For example, downloading a one-minute video might take five
minutes. However, many visitors, after viewing the lower-quality streaming version, might be willing to
wait the required time to download the better-quality version. In this case, as in many cases in Web design,
putting in the extra work to give your visitors choices helps make a better, more user-friendly Web site.

C h a p t e r 7 : A n i m a t i o n , S o u n d , a n d V i d e o 3 3 1

Tip&Tec / HTML & Web Design Tips & Techniques / Anderson, King, Jamsa / 9394-8 / Chapter 7

P:\010Comp\Tip&Tec\394-8\ch07.vp
Thursday, January 03, 2002 4:00:16 PM

Color profile: Generic CMYK printer profile
Composite Default screen

One way to insert a video file into a Web page is to use an <a> tag that lets the visitor download the
video file, as shown here:

Click to view a video of our company

In this example, the Web browser will download the video in the file company.avi after the visitor
clicks on the anchor text “Click to view a video of our company.” In the Tip “Broadcasting Streaming
Audio and Video,” you will learn how to broadcast streaming media from your Web site.

Taking Advantage of Virtual Tours
Many Web sites offer virtual tours that let users walk through homes that are for sale, to view the playing
field from prospective seats for a sporting event (http://www.kcchiefs.com/fanfair/v_arrowhead.asp),
view cities such as Vancouver (http://www.virtuallyvancouver.com/), tour famous landmarks such as

3 3 2 H T M L & W e b D e s i g n T i p s & T e c h n i q u e s

Tip&Tec / HTML & Web Design Tips & Techniques / Anderson, King, Jamsa / 9394-8 / Chapter 7

Figure 7-4 Using still images to motivate users to download a video

P:\010Comp\Tip&Tec\394-8\ch07.vp
Thursday, January 03, 2002 4:00:17 PM

Color profile: Generic CMYK printer profile
Composite Default screen

the Pyramids (http://www.pbs.org/wgbh/nova/pyramid/explore/khufuall.html), and more. To take a
virtual tour, you will normally need a QuickTime VR plug-in for your browser, which you can get
from http://www.apple.com/quicktime. Figure 7-5, for example, shows a virtual tour of New York
City that lets you compare different locations in the city as they appeared in 1907 to how they had
changed by 1999 (http://www.pbs.org/wnet/newyork/hidden/contents.html).

To create a 360-degree virtual tour, developers use a tool such as Apple QuickTime VR Authoring
Studio to “stitch” together images in the shape of a sphere. In general, to create the 360-degree panorama,
you must have at least six photos (one facing forward, back, left, right, up, and down). The QuickTime
VR Authoring Studio provides a tool called the Panorama Stitcher that sews the images in the shape
of a sphere. Several Web sites present great virtual tours:

The Louvre Museum http://www.louvre.or.jp/louvre/QTVR/anglais/index.htm

Submarines http://www.pbs.org/wgbh/nova/subsecrets/

Virtual Earth http://www.virtualearth.com

Apple’s Cubic VR Gallery http://www.apple.com/quicktime/products/gallery/

C h a p t e r 7 : A n i m a t i o n , S o u n d , a n d V i d e o 3 3 3

Tip&Tec / HTML & Web Design Tips & Techniques / Anderson, King, Jamsa / 9394-8 / Chapter 7

Figure 7-5 Taking a virtual tour of New York City

P:\010Comp\Tip&Tec\394-8\ch07.vp
Thursday, January 03, 2002 4:00:17 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Depending on the product or topic your site presents, letting users view content via a virtual tour
can be a very effective way to present information.

In conclusion, content has, and always will be, the focus of the Web visitor’s attention, whether
that content is text, still graphics, animation, audio, video, or a combination. Content is the reason a
visitor goes online, and it will always be the first thing a visitor looks for in a Web page. Quality
content is the most important aspect of Web page design. Without quality content, visitors will move
to other sites to find what they need. Therefore, animation, video, and audio must support the content
of the Web site, not be used simply to prove you can do it.

Remember that Web users are goal-oriented and very impatient. Always design your Web pages
so that they quickly supply the answers visitors need. If you fail to do this one thing—supply quality
content—all the video, animation, and audio in the world will not keep the visitors on your Web site.

Creating a GIF Animation from Scratch
GIF animation is the most widely used form of animation on the Internet. A GIF animation is composed
of individual frames, or cells, each of which represents a single piece of the whole animation. Although
GIF animations can be comprised of any type of images, they are typically clip art, cartoons, or text.

For example, creating an animated walking character generally involves 8 to 10 individual cells,
(four to five cells per stride). Each one of the cells represents a part of the walking movement of the
character, as shown here:

Because walking involves placing one foot in front of the other (as your parents so dutifully taught
you when you were a child), to create a continuing animation of a person walking, you need to create
only one walking cycle. When the animation reaches the last cell, it automatically returns to the first
cell and repeats the animation all over again. Repeating a series of cells is called cycling.

To create the individual cells, such as those shown previously, you can sketch them
on paper and then scan them into your computer, or you can create the cells using

any one of a number of image-editing programs such as Photoshop or ImageReady. In this example,
the individual cells were created by sketching each one on paper and scanning them into individual
layers in Adobe Photoshop.

After you complete the cells in the animation, you must assemble them in a GIF animation program.
Check out http://www.shareware.com or http://www.tucows.com, for several Macintosh or Windows
shareware programs (and don’t forget, you are required to pay for shareware). GIF Construction Set,

3 3 4 H T M L & W e b D e s i g n T i p s & T e c h n i q u e s

Tip&Tec / HTML & Web Design Tips & Techniques / Anderson, King, Jamsa / 9394-8 / Chapter 7

1 2 3 4 5 6 7 8

P:\010Comp\Tip&Tec\394-8\ch07.vp
Thursday, January 03, 2002 4:00:18 PM

Color profile: Generic CMYK printer profile
Composite Default screen

for example, sells for a modest price of $20. Other programs, such as Adobe’s ImageReady, come
with more features, but at a higher price. ImageReady comes bundled with Adobe Photoshop, which
costs about $600. Figure 7-6 shows the individual walking cells opened in Adobe Photoshop.

After you have all the cells assembled in the animation program, you save the animation sequence
to a file with a .gif extension. In this example, the file was saved as walking.gif. Finally, use an
tag to insert the completed GIF animation (that is, the file with the .gif extension) into a Web page’s
HTML statements as shown here:

<html>

<head>

<title>This is a simple GIF animation</title>

</head>

<body>

<center>

</center>

</body>

</html>

C h a p t e r 7 : A n i m a t i o n , S o u n d , a n d V i d e o 3 3 5

Tip&Tec / HTML & Web Design Tips & Techniques / Anderson, King, Jamsa / 9394-8 / Chapter 7

Figure 7-6 ImageReady lets you use individual image layers for use in an animation sequence

P:\010Comp\Tip&Tec\394-8\ch07.vp
Thursday, January 03, 2002 4:00:19 PM

Color profile: Generic CMYK printer profile
Composite Default screen

In this example, the src attribute in the image tag instructs the Web browser to load the GIF animation
file named walking.gif.

Because GIF animations are supported by almost all Web browsers, creating a GIF animation file
and inserting it into an HTML source document is almost certain to result in an animation that plays on
the Web page. In a rare case where a visitor’s browser does not support GIF animation, the visitor will
see a still frame (typically the first cell in the animation).

Controlling GIF Animation Through Internal Settings
When you create and save GIF animation without modifying the animation settings, the application
saves the file using the program’s predefined settings. These settings typically instruct the Web browser
to display a new cell, or frame, every tenth of a second, and continuously cycle (that is, repeat) the
animation sequence. For example, if you create a GIF animation of a rotating logo, the logo will
continue to rotate, displaying a new animation frame every tenth of a second, for as long as the
Web page remains onscreen.

Although default settings may be fine for some animations, configuring the GIF animation’s
settings when you save the file is always best. Note that you save the settings that control the GIF
animation playback within the GIF file, and not as a tag or attribute within the Web page HTML:

In this example, the tag instructs the Web browser to load the GIF animation file neon.gif. The
options that control the animation’s playback are contained within the neon.gif file. After it loads the
animation file, the Web browser extracts and executes the playback instructions it finds within the file.

Suppose that you want to create a neon sign for your Web page. You would open a
graphic in an image-editing application such as Photoshop, and use the program to create

two GIF images. The first image represents the neon sign glowing, and the second shows the neon
sign off. For example, the image in Figure 7-7 was created in Photoshop and opened in ImageReady.

All Web animation programs (such as ImageReady) give you the option to change the number of
frames displayed per second (fps) and the number of times the image cycles (that is, the number of times
the animation repeats).

• Frames per second (fps) On the Internet, frame rates vary between 1 and 30 frames per
second. To prevent the animation from appearing jittery, use a minimum of 10 fps to create
the illusion of smooth movement in the animated GIF. However, in the case of a neon sign,
to create a “buzzing” neon-like effect, you might reduce the number of frames per second.

• Cycles The count that determines how many times the Web browser loops through the
cells in the animation. Cycle counts can be forever (never stop cycling), or any number
from 1 to 30,000.

The frames per second and number of times the animation cycles depend on the type of animation
effect you are trying to create. For example, because a neon sign does not move like a typical

3 3 6 H T M L & W e b D e s i g n T i p s & T e c h n i q u e s

Tip&Tec / HTML & Web Design Tips & Techniques / Anderson, King, Jamsa / 9394-8 / Chapter 7

P:\010Comp\Tip&Tec\394-8\ch07.vp
Thursday, January 03, 2002 4:00:19 PM

Color profile: Generic CMYK printer profile
Composite Default screen

animation (it just goes on and off), you set the frames per second to one second for the Neon sign “on”
image, and one-half second for the sign “off ” image. In addition, the sign’s objective is to attract
attention to the Web page, not continually annoy the visitor. Therefore, you might set the cycle count
to 5 cycles, as shown here, so that the sign stops flashing after a while.

Some Web animation programs have an fps rate defined as No Delay or Zero Seconds. You
should always select a specific period for the fps rate of the GIF animation as a number of seconds or
fractions of a second. When you choose the No Delay or Zero Seconds option, you instruct the Web
browser to flip through the animation frames as fast as possible. Therefore, you let the Web browser
and the processor speed of the visitor’s computer system determine your animation’s appearance.

C h a p t e r 7 : A n i m a t i o n , S o u n d , a n d V i d e o 3 3 7

Tip&Tec / HTML & Web Design Tips & Techniques / Anderson, King, Jamsa / 9394-8 / Chapter 7

Figure 7-7 The two cells for the neon animation opened in ImageReady

P:\010Comp\Tip&Tec\394-8\ch07.vp
Thursday, January 03, 2002 4:00:20 PM

Color profile: Generic CMYK printer profile
Composite Default screen

As a result, your animation will look great to some visitors and will look like an indistinguishable blur
of motion to others.

When you save the animation to a disk file, the GIF animation program saves the cycle and frames
per second settings within the file along with the graphics images that make up the animation sequence.
When the Web browser opens the image, the browser adjusts the playback of the animation according
to the settings you specified when you saved the file.

When the Web browser opens the neon.gif file, for example, the sign blinks on for one second and
off for a half-second. After repeating this on/off sequence five times, the browser stops the animation
on the last frame in the sequence. Notice that the last frame in the sequence shows the neon sign glowing,
or “on.” Therefore, when the animation stops, it will stop with the neon “on.”

Creating a Banner Ad Using GIF Animation
One of the quickest ways to attract the attention of visitors to your Web site is with movement. Advertisers
know this, so they create text and/or graphic images known as banner ads. Commercial Web sites typically
place banner ads at the top of Web pages, because that is the first place your eyes go when the browser
displays a page. Banner ads incorporate moving text and graphic images designed to attract your attention.

To insert a banner ad into a Web page, you could create the banner using Flash. However, doing
so requires that the user’s browser have plug-in software to run the animation. A simpler way would
be to create and save the banner ad animation in the GIF format.

Begin by creating a new file in an image-editing program such as Photoshop. Base
the width of the banner ad on the width of the Web page. Suppose, for example, that the

width of the Web page is 800 pixels. You might then create the individual frames in the banner ad
750 pixels wide by 75 pixels tall.

� NOTE

The standard banner ad size on the Web is 468×60 pixels.

Because the width of the Web page is 800 pixels in this example, a 750-pixel banner ad will not
crowd the left and right borders of the browser window. In this example, the individual frames of the
animation create the illusion of lights blinking on and off around the border of the banner ad.

3 3 8 H T M L & W e b D e s i g n T i p s & T e c h n i q u e s

Tip&Tec / HTML & Web Design Tips & Techniques / Anderson, King, Jamsa / 9394-8 / Chapter 7

Note the different colors

P:\010Comp\Tip&Tec\394-8\ch07.vp
Thursday, January 03, 2002 4:00:21 PM

Color profile: Generic CMYK printer profile
Composite Default screen

TE
AM
FL
Y

Team-Fly®

To complete the animation, open the individual frames in a GIF animation program (such as
ImageReady or GIF Construction Set) and set the frames per second and cycle count of the animation.
In this example, you open the GIF image using GIF Construction Set, and set the frames per second
(fps) rate to 0.5 seconds and the cycle to loop indefinitely, as shown in Figure 7-8.

To place the animated GIF onto a Web site, use HTML statements similar to the following:

<html>

<head>

<title>Example of Banner Ad</title>

</head>

<body>

<center>

</center>

<!-- **** Remainder of Web page **** -->

</body>

</html>

In this example, the tag’s src attribute instructs the Web browser to load the GIF animation
file (banner.gif), and the enclosing start and end center tags (<center></center>) tell the Web browser
to center the image at the top of the page. When the Web browser loads the page, the animation creates
the illusion of blinking lights (every half-second) around the border of the banner ad graphic, and
loops continuously.

C h a p t e r 7 : A n i m a t i o n , S o u n d , a n d V i d e o 3 3 9

Tip&Tec / HTML & Web Design Tips & Techniques / Anderson, King, Jamsa / 9394-8 / Chapter 7

Figure 7-8 Using the GIF Construction Set to assign the frame rate and cycle count to a
GIF graphic

P:\010Comp\Tip&Tec\394-8\ch07.vp
Thursday, January 03, 2002 4:00:21 PM

Color profile: Generic CMYK printer profile
Composite Default screen

3 4 0 H T M L & W e b D e s i g n T i p s & T e c h n i q u e s

Tip&Tec / HTML & Web Design Tips & Techniques / Anderson, King, Jamsa / 9394-8 / Chapter 7

You can add functionality to the banner ad by converting it into a hypertext, or clickable, link. For
example, when visitors to your Web site click on the banner ad, it sends them to a Web site that has
the product or service advertised for sale. To convert the banner ad in the previous example into a
clickable link, enclose the tag in the code within the start and end anchor tags (<a>) as
shown here:

In this example, when visitors to your Web site click on the banner ad, the <a> tag’s href attribute
instructs the Web browser to go to the Web site http://www.buyit.com and load the Web page index.html.

Because hyperlinks are identified by an underline (text), or a graphic surrounded by a border (designers
refer to this as a stroke), the border attribute with a zero value is added to keep the Web browser from
enclosing the banner ad with a stroke (by default, the stroke enclosing the graphic file is blue).

In addition to blinking lights, banner ads can include moving text, rotating logos, and even still
images combined to create the illusion of a slide show. Figure 7-9 illustrates the use of moving text
by making the words Follow me to great bargains move from left to right across the width of the
banner ad. Because moving text is difficult to read onscreen, use a large font to make the words
easier for the visitor to make out.

Figure 7-9 The GIF animation creates the illusion of words moving from left to right across the
width of the banner ad

P:\010Comp\Tip&Tec\394-8\ch07.vp
Thursday, January 03, 2002 4:00:22 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Creating Smooth Transitions Between
GIF Animation Frames Using Tweening
In GIF animation, flipping through a series of still images creates the illusion of movement. Each image
is a single part of the total animation sequence. For example, to create a GIF animation of a dog wagging
its tail, you create several GIF images of a dog. In each image, the dog’s tail is slightly up or down
from its position in the image that precedes it in the sequence. When the browser plays the animation—
that is, when the browser displays the images one after another in rapid succession—the visitor sees
the illusion of movement (the tail wagging).

In most animation sequences, the abrupt change of one animation frame to the next is how you
achieve the illusion of movement. However, at times you may want the transition of one animation
frame to the next to be smooth, not abrupt.

Suppose, for example, that you create a neon sign using two GIF images. One image displays the
neon sign glowing and the other displays the neon sign switched off. By displaying one image after
the other rapidly, you can create the illusion of a neon sign flickering on and off.

To make the neon sign pulse instead of flicker on and off, you use an animation technique
called tweening. The Tween command lets you add or modify a series of new frames

between two frames you created. Say, for example, that you have two graphic images of a neon sign.
However, instead of the sign going on and off (flickering), you want to create the illusion of the neon
sign pulsing (slowly going on and off). To accomplish this you need to create a series of intermediate
frames where the neon sign slowly fades.

1. Open the two images in a Web-editing application such as Adobe ImageReady. In this example,
assume that the frame with the neon sign turned on is frame 1, and frame 2 contains the layer
with the neon turned off.

2. Click the Tween icon. ImageReady opens the Tween dialog box, shown in Figure 7-10.

The following list briefly describes the settings you can use to control the tweening operation:

• All Layers Select All Layers to perform the Tweening option using all of the layers in
the image.

• Selected Layer Select Selected Layer to use the layers selected for the animation. Because
the neon animation contains two layers, and you want to use both in the animation, you will
likely use the All Layers option instead.

• Position Select this option to vary the animation from the first to last cell. Because you
want to create the illusion of pulsing on and off, select this option.

• Opacity When you select the Opacity option, the animation slowly fades to zero opacity.

• Effects Select this option to vary any layer effects applied to this image. Because you did
not use any layer effects, you do not need to select this option.

• Tween With Click the Tween With option and select Next Frame to create the animation.

C h a p t e r 7 : A n i m a t i o n , S o u n d , a n d V i d e o 3 4 1

Tip&Tec / HTML & Web Design Tips & Techniques / Anderson, King, Jamsa / 9394-8 / Chapter 7

P:\010Comp\Tip&Tec\394-8\ch07.vp
Thursday, January 03, 2002 4:00:22 PM

Color profile: Generic CMYK printer profile
Composite Default screen

• Frames To Add Click in the Frames To Add input box and enter how many frames you
want to create between the first and last frames. In this example, enter a value of 8.

3. Click OK to apply the Tween command to the image. ImageReady generates eight new frames,
for a total of 10 animation frames, as shown here:

In essence, the Tween command creates a series of frames that slowly changed the image in frame
1 into the image in frame 2. When the browser plays the animation, the visitor will see the neon sign
slowly pulsing rather than quickly flickering on and off. However, by adding the additional frames,
you significantly increase the GIF’s size, which will also increase the download time.

Incorporating a Completed Flash Splash
Screen into a Web Site
Today, many Web designers use Flash to create animated splash screens that act as a short introduction
to the site. Consider a splash screen as a ten- or fifteen-second commercial about who you are, what you
have to offer, and why visitors should come into your site.

A splash screen is the first page the browser loads and is the first impression you make when visitors
access your Web site. Flash is ideal for creating a splash screen because it creates small, fast-loading
animation files and can incorporate eye-catching animation and sound.

3 4 2 H T M L & W e b D e s i g n T i p s & T e c h n i q u e s

Tip&Tec / HTML & Web Design Tips & Techniques / Anderson, King, Jamsa / 9394-8 / Chapter 7

Figure 7-10 The Tween dialog box controls the characteristics of the Tween option

P:\010Comp\Tip&Tec\394-8\ch07.vp
Friday, January 04, 2002 12:32:19 PM

Color profile: Generic CMYK printer profile
Composite Default screen

When you use Flash to create a splash screen, your first consideration is how to display the finished
Flash movie on the Web page. Remember, when you work with Flash, you are actually working with
two elements: the HTML Web page and the Flash movie. You can choose to display the movie as a
percentage of the available browser window size, or you can specify a size, such as 600×800 pixels.
Flash movies, because they use vector graphics, are resolution-independent. As such, you can scale
them to fit the current browser dimensions—without affecting the quality of the movie output.

A Flash document consists of several elements. There is a timeline, which holds text, images, clip
art, and video; a stage, which displays your Flash movie; and a work area, that extends beyond the stage
and holds elements that remain outside the visible frame of the final movie, as shown in Figure 7-11.

When you create the Flash document, the stage and timeline instruct the completed Flash movie
exactly where and when things appear. Because Flash supports animation paths, not only will the
movie elements appear on the Stage; in addition, the path animates the elements and lets you guide
and scale them from one point to another. For example, you could place a logo in the upper-left
corner of the stage, and use a path to move the logo to the middle of the stage and, at the same time,
double the logo’s size. Then, five seconds later return the logo to the upper-left corner of the stage

C h a p t e r 7 : A n i m a t i o n , S o u n d , a n d V i d e o 3 4 3

Tip&Tec / HTML & Web Design Tips & Techniques / Anderson, King, Jamsa / 9394-8 / Chapter 7

Figure 7-11 A Flash document is comprised of a timeline, stage, and work area

Stage

Timeline

Work area

P:\010Comp\Tip&Tec\394-8\ch07.vp
Thursday, January 03, 2002 4:00:24 PM

Color profile: Generic CMYK printer profile
Composite Default screen

and shrink it back to its original size. Proper use of animation can attract visitors to what you want
them to see, and help tell the story of your company in an entertaining and eye-catching way. However,
don’t forget that animation can also distract from your site’s message. Use animation when it supports
the message.

Technically, you don’t need to use HTML to display a Flash movie—meaning, most
browsers will simply open and display a Flash movie if you type the address of the movie

file itself within your browser’s address field. However, if you do not add HTML to control its size,
the Flash movie will automatically scale to fit the width and height of the browser window. In most
cases, it is better if you and not the visitor control the dimensions of the movie. To insert a Flash
movie into an HTML document, you must consider the differences between Netscape Navigator
and Internet Explorer. The main difference is that you use the <object> tag to insert a Flash movie
you want Internet Explorer (and Netscape Navigator 6) to play and the <embed> tag to insert a
Flash movie for Netscape Navigator version 4. When you open the following HTML statements
within Internet Explorer, the browser will ignore the <embed> tag, which exists for Netscape Navigator.
Likewise, if you open the following HTML within Netscape Navigator, the browser will ignore the
<object> tag, which exists for Internet Explorer:

<object classid="clsid:D27CDB6E-AE6D-11cf-96B8-444553540000"

codebase="http://download.macromedia.com/pub/shockwave/cabs/flash/

swflash.cab#version=5,0,0,0"

width="800"

height="600"

<param name="movie" value="splash.swf">

<param name="quality" value="high">

<param name="bgcolor" value="#ffffff>

<embed src="splash.swf"

quality="high"

bgcolor="#ffffff"

width="800"

height="600"

type="application/x-shockwave-flash"

pluginspage="http://www.marcomedia.com/shockwave/download/

index.cgi? P1_Prod_Version=ShockwaveFlash">

</embed>

</object>

Before a browser can play a Flash movie, the browser must have special software called a Flash
plug-in. Rather than simply not playing the Flash movie if a user’s browser does not have the plug-in,
the previous HTML specifies the location from which the browser can download the plug-in. If a user
does not have the Flash plug-in, the browser will display a dialog box that gives the user the option
of downloading and installing the plug-in. After the visitors install the plug-in, they can use it to view
all other Flash animations in the future. In the previous HTML statements, the codebase attribute and
the pluginspage attribute tell the browser the location from which the visitor can download the plug-in
for Internet Explorer and Netscape Navigator, respectively. When you place a Flash animation on
your Web site, you should structure your HTML as shown here to give the user the opportunity to
install the plug-in.

3 4 4 H T M L & W e b D e s i g n T i p s & T e c h n i q u e s

Tip&Tec / HTML & Web Design Tips & Techniques / Anderson, King, Jamsa / 9394-8 / Chapter 7

P:\010Comp\Tip&Tec\394-8\ch07.vp
Thursday, January 03, 2002 4:00:24 PM

Color profile: Generic CMYK printer profile
Composite Default screen

C h a p t e r 7 : A n i m a t i o n , S o u n d , a n d V i d e o 3 4 5

Tip&Tec / HTML & Web Design Tips & Techniques / Anderson, King, Jamsa / 9394-8 / Chapter 7

Within the HTML file, the attributes serve the following purposes:

• width and height The width and height of a Flash movie can be expressed in a percentage
of the browser window or in pixels (the same for the <object> and <embed> tags).

• movie The location of the Flash movie you are playing (<object> tag).

• data The location of the Flash movie you are playing (<object> tag).

• classid Identifies the ActiveX control that plays Flash movies (<object> tag).

• codebase The location of the Flash ActiveX controls. This option allows the browser to
download the player if it is not available (<object> tag).

• src Identifies the location of the Flash movie (<embed> tag).

• pluginspage The location of the Flash Player plug-in. This option allows the browser to
download the player if it is not available (<embed> tag).

• quality Sets the quality of the Flash movie; the options are High, Medium, Low (<object>
and <embed> tags).

• bgcolor Sets the background color of the Flash movie, not the HTML page (<object> and
<embed> tags).

• type This instructs the browser which plug-in to use to play the Flash movie.

You can use additional settings that will influence when the movie plays and how many times it
plays. The preceding code instructs the Web browser to display and play the Flash movie splash.swf
in a defined area of 800 by 600 pixels.

Creating a Flash Movie from Scratch
When you work with Flash, you are, in a sense, a movie director. Say, for example, that Hollywood
decides to create a new movie. One of the first things they will do is hire a director. The director, in
turn, works with actors, sound production crews, set designers, and camera operators to create the
movie. In Flash, you are the director, and the actors are the elements within the Flash movie. Actors
(or elements) can be text, clip art, photographic images, as well as sound and video.

If you do not have Flash, you can download a 30-day trial version of the software from the Macromedia
Web site at http://www.macromedia.com/downloads. When you open Flash for the first time, you see
a stage, surrounded by a work area. The stage and work area are where you place the separate pieces
(elements) of the animation. In fact, think of the stage as the screen that projects your movie. When
elements are on stage, they are visible within the movie; when they are in the work area, they are
off-stage and therefore not visible, as shown previously in Figure 7-11.

Directly above the stage is the Flash timeline. Each element in a Flash movie has a timeline that
tells the program when the element appears on the stage and when it disappears, or leaves the stage.
You can add key frames to the timeline to move the element from one position on the stage to another.

P:\010Comp\Tip&Tec\394-8\ch07.vp
Thursday, January 03, 2002 4:00:25 PM

Color profile: Generic CMYK printer profile
Composite Default screen

For example, you might have a clip art image enter the Stage on the left, move across, and exit on the
right, as shown here:

To illustrate how Flash incorporates the stage and timeline to generate movement, you
will create a simple, three-frame bouncing ball animation:

1. Start by opening up a new document in Flash (File | New), and name it bounce.

2. Select Frame 1 in the Timeline (refer to the previous illustration).

3. Select the Oval drawing tool from the toolbox and draw a circle in the upper-right corner of the
stage. You can draw a perfect circle by holding down the SHIFT key while you draw the circle
(the color of the circle is not important).

4. Select Frame 2 in the timeline, and add a keyframe (Insert | Keyframe). A small black dot will
appear in Frame 2 indicating that it is a keyframe.

5. Select the Move tool (black arrow) from the toolbox and drag the circle to the bottom-center of
the stage. Because you are moving the keyframe in Frame 2, you are actually moving a copy of
the ball. You now have one ball in the upper-right corner, and one ball located at
bottom-center.

6. Select Frame 3 in the Timeline, and add a keyframe (Insert | Keyframe). A small black dot will
appear in Frame 3 indicating another keyframe.

7. Drag the bottom circle to the top-right of the stage. Because you are moving the keyframe in
Frame 3, you are moving a copy of the ball. You now have three balls, top-left (Frame 1),
bottom-center (Frame 2), and top-right (Frame 3).

To view the individual balls in each frame, click on the black dots associated with Frames 1, 2, and 3.
As you select a specific frame, the balls appear (one at a time) on the stage, as shown in Figure 7-12.

To preview this simple animation, select Window | Toolbars | Controller (within Windows), or
Window | Controller (on a Macintosh). The Controller window opens and displays some VCR type
controls. Click the Play button in the Controller window (right-facing arrow) to preview the animation.
If you want to see the movie displayed using the Flash Player, select Control | Test Movie. Flash will
export the movie into a Flash (.swf) file and open it in the Flash Player.

To save the movie for use on the Internet, select File | Export Movie. Choose Flash Player as the
movie format and name the file using the .swf extension. For example, you might name your bouncing
ball movie bounce.swf.

3 4 6 H T M L & W e b D e s i g n T i p s & T e c h n i q u e s

Tip&Tec / HTML & Web Design Tips & Techniques / Anderson, King, Jamsa / 9394-8 / Chapter 7

P:\010Comp\Tip&Tec\394-8\ch07.vp
Thursday, January 03, 2002 4:00:26 PM

Color profile: Generic CMYK printer profile
Composite Default screen

This example represents only the smallest fraction of the capabilities of the Flash application.
Not only can you create simple keyframe shapes and move them across the Stage, you can also use
tweening options to draw all the frames between the keyframes and generate a smoother animation.
In addition, you can add more layers to the Timeline palette, and add other objects such as text and
images, to enhance the presentation. Flash is truly a high-end, multimedia design tool for the Internet.

To help you get started with Flash, several sites on the Web offer Flash tutorials:

Flash Kit http://www.flashkit.com

Flash Planet http://www.flashplanet.com

Flaap.com http://www.flaap.com/

Macromedia http://macromedia-flash-5-infocenter.com/

C h a p t e r 7 : A n i m a t i o n , S o u n d , a n d V i d e o 3 4 7

Tip&Tec / HTML & Web Design Tips & Techniques / Anderson, King, Jamsa / 9394-8 / Chapter 7

Figure 7-12 The completed document contains three frames with a ball in each frame

P:\010Comp\Tip&Tec\394-8\ch07.vp
Thursday, January 03, 2002 4:00:26 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Building Text-Based Animations Using FlaX
Macromedia Flash is one of the most powerful tools designers use for creating animations for use
on the Web. Unfortunately, because Flash is such a powerful tool, learning to use Flash to create
professional-quality animations can take developers a fair amount of time.

As you are learning how to create Flash animations, you can take advantage of a powerful
shareware program named FlaX that lets you create a large number of high-quality Flash

animations in a matter of minutes. To use FlaX, you simply type in the text message you want to animate,
such as your company name or corporate slogan, and then choose the animation effect that you desire
(see Figure 7-13 below).

After you create the effect that you desire, you can direct FlaX to export the animation to a Flash
movie. Using Flax provides a fast and powerful way to create professional quality animations. To
download FlaX, visit the GoldShell Web site at http://www.goldshell.com/flax.

Broadcasting Streaming Audio and Video
Across the AM, FM, and XM radio airways, radio stations broadcast signals to anyone who is willing
to “tune in” their radios. Likewise, TV stations send their broadcasts across the airwaves (and across
cables) at differing frequencies to their television audience. In a similar way, Internet-based radio and
TV stations broadcast on the Internet—you can “tune in” by visiting the corresponding Web site using
your browser. The Web hosts thousands of Internet-based radio stations that feature sports, news,
music, and even talk shows. As shown in Figure 7-14, to “tune in” an Internet-based radio station,
you simply visit the site’s Web page using your browser.

3 4 8 H T M L & W e b D e s i g n T i p s & T e c h n i q u e s

Tip&Tec / HTML & Web Design Tips & Techniques / Anderson, King, Jamsa / 9394-8 / Chapter 7

Figure 7-13 Using FlaX to create text-based animations

P:\010Comp\Tip&Tec\394-8\ch07.vp
Thursday, January 03, 2002 4:00:27 PM

Color profile: Generic CMYK printer profile
Composite Default screen

TE
AM
FL
Y

Team-Fly®

C h a p t e r 7 : A n i m a t i o n , S o u n d , a n d V i d e o 3 4 9

Tip&Tec / HTML & Web Design Tips & Techniques / Anderson, King, Jamsa / 9394-8 / Chapter 7

For a larger listing of radio stations, visit the brs radio directory Web site at http://www.web-radio.fm/.
Within the Web site, you can view listings of the stations by state, country, or by format (such as jazz,
easy listening, oldies, sports, and talk).

Not to be outdone, several sites offer streaming video which you can view within a window
on your screen, as shown in Figure 7-15. For a listing of sites that broadcast TV on the Web,
visit http://www.tvradioworld.com, http://www.etown.edu/vl/radio.html, or http://dmoz.org/
Arts/Television/News/.

If you have a requirement to broadcast streaming video and audio from your Web site, you
essentially have two options with respect to how you make your content available on the Web. First,
you can use a third-party company to house and broadcast your data. Normally, such companies will
charge you a monthly fee based on the amount of data they must house and a per MB fee for the data
their site broadcasts on your behalf. Several companies on the Web offer streaming audio and video
housing and broadcasting services:

Bit Streaming Video http://www.bitstreamingvideo.com/index.html

Host Express.com http://www.hostexpress.com/real.html

Figure 7-14 Using a browser to tune into an Internet-based radio station

P:\010Comp\Tip&Tec\394-8\ch07.vp
Thursday, January 03, 2002 4:00:27 PM

Color profile: Generic CMYK printer profile
Composite Default screen

3 5 0 H T M L & W e b D e s i g n T i p s & T e c h n i q u e s

Tip&Tec / HTML & Web Design Tips & Techniques / Anderson, King, Jamsa / 9394-8 / Chapter 7

Prime Internet Network http://www.primenetwork.net/hosting.html

Stream Audio http://www.streamaudio.com

Your second option, and the more exciting option (although maybe not the more practical solution, if
you must provide quality service 24/7) is to host your own streaming audio and video using your own
broadcast server. For years, RealNetworks has been a leader in the field of streaming media. RealNetworks
offers a trial server you can download and use on your system (the trial server will run for one year, but
will only support 25 simultaneous connections). You can also purchase a full-featured streaming-media
server from RealNetworks.

To download and test drive the RealNetworks server, visit the RealNetworks Web site
at http://www.real.com and follow the links to Products And Services and then search for

free products. After the download completes, you will run the program to install the streaming-media
server on your system. As soon as you have the server up and running, you will likely want to take it
for a streaming-media test drive. To help you get started, the server installation provides some audio
clips and video clips to which you (or other users) can connect from your site. To access the streaming
media, you will normally include a port number, such as 8080, within the URL, as shown here:

http://www.yoursite.com:8080/ramgen/AudioClipName.rm

Behind the scenes, network applications refer to one another using numbers, which programmers refer
to as port numbers. The HTTP browser and server, for example, refer to each other as “the application

Figure 7-15 Viewing streaming video on the Web

P:\010Comp\Tip&Tec\394-8\ch07.vp
Thursday, January 03, 2002 4:00:28 PM

Color profile: Generic CMYK printer profile
Composite Default screen

C h a p t e r 7 : A n i m a t i o n , S o u n d , a n d V i d e o 3 5 1

Tip&Tec / HTML & Web Design Tips & Techniques / Anderson, King, Jamsa / 9394-8 / Chapter 7

running at port 80.” A port number is simply a value that corresponds to a specific application.
The port number 8080 corresponds to the Real Media streaming server. When you include the
port number 8080 in a URL, the remote server does not send the requests to the Web server
(which is at port 80), but instead, sends the requests, in this case, to the streaming media server.

� NOTE

If your server sits behind a firewall, you may need to enable messages to pass through the firewall
to port 8080, before your site can send streaming media (or receive requests for streaming media).

Creating Your Own Streaming Media
After you install a streaming-media server, you will likely want to create your own streaming video
or audio files. To create a streaming audio file suitable for use by RealNetworks, you can use a
program such as Cool Edit that you can download from http://www.syntrillium.com, as shown
in Figure 7-16.

Figure 7-16 Using the Cool Edit software program to convert audio-file types

P:\010Comp\Tip&Tec\394-8\ch07.vp
Thursday, January 03, 2002 4:00:29 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Using Cool Edit, you simply open an audio file, and then select File | Save A Copy As to
store the file using the .rm (Real Media) format. Then, to place the file on your site for

broadcasting, you can create a link to the audio clip within an HTML file, as shown here:

Launch audio clip

On the Web, you can find several programs that will convert video files from one format to another,
such as from AVI to QuickTime. The RealNetworks streaming media server supports MPEG and
QuickTime video formats as well as Real video format (with the .rm extension). To place a streaming
video within a Web page, you use a link similar to that shown here:

Launch Streaming Video

Creating a Page that Features a Web Cam
The use of Web cams to provide real-time video has exploded. In the past, Web cams pointed at
parks, national monuments, cityscapes, and so on. Today, news agencies point Web cams at city
streets to provide users with up-to-the-minute traffic information, as shown in Figure 7-17.

Many companies have also found ways to integrate Web cams into their Web sites to provide
valuable tools to customers. For example, many childcare facilities now offer a page that lets parents
“look in” throughout the day. In another example, the Maricopa County Jail (in Arizona) uses a Web
cam (at http://www.crime.com/info/jailcam.html) to let users view inmate life in the county jail. For
a long list of Web cams, visit http://www.ispy.nl.

Creating a Web cam is actually quite straightforward. To begin, you can choose among
many different video cameras to connect to your PC; you also have a variety of ways

to connect the camera. Depending on the camera’s type, you may connect the camera to a universal
serial bus (USB), a TV adapter card, or even a serial port. To eliminate the need to run cabling from
your PC to a camera, companies such as X10, whose site you can visit at http://www.x10.com, offer
wireless cameras, similar to that shown in Figure 7-18, that can broadcast up to 100 feet to a receiver
attached to your PC.

After you connect your camera to your PC, you must install software on your server (or a home
PC) that can broadcast the video to users that connect to your site. Several Web sites offer software
you can download for free that provides Web cam support:

Surveyor Corp. http://www.webcamresource.com/

Dual View http://www.dualview.com/

UK Software http://www.msagentsoftware.com/easyfreewebcam/

3 5 2 H T M L & W e b D e s i g n T i p s & T e c h n i q u e s

Tip&Tec / HTML & Web Design Tips & Techniques / Anderson, King, Jamsa / 9394-8 / Chapter 7

P:\010Comp\Tip&Tec\394-8\ch07.vp
Thursday, January 03, 2002 4:00:29 PM

Color profile: Generic CMYK printer profile
Composite Default screen

C h a p t e r 7 : A n i m a t i o n , S o u n d , a n d V i d e o 3 5 3

Tip&Tec / HTML & Web Design Tips & Techniques / Anderson, King, Jamsa / 9394-8 / Chapter 7

Figure 7-17 Using a Web cam to monitor street traffic

Figure 7-18 Using a wireless camera to create a Web cam page

P:\010Comp\Tip&Tec\394-8\ch07.vp
Thursday, January 03, 2002 4:00:33 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Depending on the Web cam software you are using, the steps you must perform to integrate the
Web cam into an HTML page will differ. Some software, for example, uses a Java applet, others an
ActiveX object, and so on.

Integrating Video and Audio
into a Web Site Using SMIL (Smile)
As they surf the Web, many users make extensive use of RealPlayer to play back streaming audio
and video files. In the Tip “Broadcasting Streaming Audio and Video,” you learned how to install a
RealNetworks server to provide streaming media from your site. Many sites on the Web provide links
to Real audio and Real video files. When the user clicks on a link that corresponds to a Real media
object, the browser will normally launch the RealPlayer to play the object, as shown in Figure 7-19.

The following HTML statements, for example, illustrate how a site might integrate a streaming
video clip into a Web page:

<html>

<body>

<h1>Test</h1>

<hr>

Launch video

</body>

</html>

The RealPlayer and server exchange streaming media through port 8080. When you link directly
to a real media object (either audio or video), you must specify the port number 8080 within the URL.

� NOTE

In addition to using HTTP to send requests to port 8080, which normally corresponds to a streaming
media server, some URLs refer to the Real Time Streaming Protocol (RTSP) and port 554 to access
a streaming media server (rstp://www.somesite.com:554/folder/filename). For more information on
RSTP, you can view the specification at http://www.rstp.org.

Today, most designers consider a Web site’s animation to be state-of-the-art if the Web site integrates
Flash, animated GIFs, and streaming media—that’s right, if the site uses the animation techniques
this chapter presents. The state of animation on the Web, however, is changing. In the future, many
sites will build complex animations using a special markup language called SMIL (pronounced “smile”).
SMIL is an acronym for Synchronized Multimedia Integration Language. Like HTML (although SMIL
more closely resembles XML), SMIL is based on start and end tags. Developers place the SMIL tags
in a file with the .smi or .sml extension. Just as a browser uses a plug-in (player) to play a Real video

3 5 4 H T M L & W e b D e s i g n T i p s & T e c h n i q u e s

Tip&Tec / HTML & Web Design Tips & Techniques / Anderson, King, Jamsa / 9394-8 / Chapter 7

P:\010Comp\Tip&Tec\394-8\ch07.vp
Friday, January 04, 2002 12:33:06 PM

Color profile: Generic CMYK printer profile
Composite Default screen

or audio, the browser also uses a player to process the SMIL content you may embed within a Web page.
Again, like HTML, SMIL sports myriad tags. To view the complete SMIL specification, visit the
W3C Web site at http://www.w3.org/AudioVideo/.

SMIL exists to give you finer control over multimedia applications. This Tip gives you a brief
overview of simple SMIL files. You can find a wide range of SMIL files on the Web, which you can
examine to learn more about each SMIL tag and attribute.

Assume, for example, that you have a video file that does not have an audio track. Your video,
which contains several different sports clips, resides in the file Sports.rm. Also assume that you want
to play the audio file Music.rm as background music behind the video. The following SMIL file,
Demo1.smi, uses the SMIL <par> tag to direct the player that supports SMIL operations to play the
video and audio in parallel:

<smil>

<body>

<par>

<video src="Sports.rm" />

<audio src="Music.rm" />

</par>

</body>

</smil>

Just as an HTML file begins and ends with the <html> and </html> tags, a SMIL file begins
and ends with <smil> and ends with </smil>. Assuming that you had media files named Sports.rm
and Music.rm, you can test this SMIL file on your PC in one of several ways. (If you download a

C h a p t e r 7 : A n i m a t i o n , S o u n d , a n d V i d e o 3 5 5

Tip&Tec / HTML & Web Design Tips & Techniques / Anderson, King, Jamsa / 9394-8 / Chapter 7

Figure 7-19 Using RealPlayer to play back a music video

P:\010Comp\Tip&Tec\394-8\ch07.vp
Thursday, January 03, 2002 4:00:33 PM

Color profile: Generic CMYK printer profile
Composite Default screen

RealAudio file and RealVideo file from the Web, you can rename the files to match the examples so
you can test the SMIL application.)

To start, place the SMIL file and the two media files within the same folder. Then, using your
browser, within the Windows environment, you can open the file by typing a URL in the form
file://c:/foldername/Demo1.smi. Second, you can open the SMIL file directly within the RealPlayer.
Third, if you are using a streaming media server, you can place the files on your server and then use
your browser to open the file from the server.

In addition to the <par> tag that directs the player to play back objects in parallel, SMIL also provides a
<seq> tag that directs the browser to play the items sequentially. The following SMIL statements, for
example, would play the three audio files, beginning with One.rm, then Two.rm, and Finally.rm:

<smil>

<body>

<seq>

<audio src="One.rm" />

<audio src="Two.rm" />

<audio src="Three.rm" />

</seq>

</body>

</smil>

SMIL, like HTML, provides attributes you can use within tags to fine-turn operations. For example,
assume that you want to change the previous SMIL file, Demo1.smi, so that the music starts to play
five seconds before the video. You can do so by using the begin attribute, as shown here, which directs
the browser to wait five seconds after the file begins to start the video:

<smil>

<body>

<par>

<video src="Sports.rm" begin="5s" />

<audio src="Music.rm" />

</par>

</body>

</smil>

Just as your multimedia applications synchronize audio and video, you may also frequently want
to synchronize the display of images and text. For example, assume that you are designing a high-end
Karaoke Web site using SMIL. Within your Web site, you might place links to a variety of songs that
you implement using SMIL. Within the SMIL files, you launch an audio file. As the audio file plays,
your animation displays text on the screen in sync with the music.

To display text within a SMIL file, you must place the text in a specific format, called RealText
(just as you store audio and video using Real audio and Real video). Second, to place images within
a SMIL animation, you must store the images in the RealPix format. Using RealPix images and SMIL,
you can fade images in and out as well as blur and merge images. The RealMedia Web site provides
a toolkit for authors that you download for free and then use to create RealText and RealPix files.

3 5 6 H T M L & W e b D e s i g n T i p s & T e c h n i q u e s

Tip&Tec / HTML & Web Design Tips & Techniques / Anderson, King, Jamsa / 9394-8 / Chapter 7

P:\010Comp\Tip&Tec\394-8\ch07.vp
Thursday, January 03, 2002 4:00:34 PM

Color profile: Generic CMYK printer profile
Composite Default screen

When you download and install the RealNetworks server, the installation will place several SMIL
files on your system whose contents you can examine using an editor such as Windows Notepad.
Figure 7-20 shows the RealPlayer running the Africa.smi file, which at the time of this book’s
writing, was included with the RealNetworks streaming server.

C h a p t e r 7 : A n i m a t i o n , S o u n d , a n d V i d e o 3 5 7

Tip&Tec / HTML & Web Design Tips & Techniques / Anderson, King, Jamsa / 9394-8 / Chapter 7

Figure 7-20 Playing the Africa.smi file within the RealPlayer

P:\010Comp\Tip&Tec\394-8\ch07.vp
Thursday, January 03, 2002 4:00:34 PM

Color profile: Generic CMYK printer profile
Composite Default screen

CHAPTER 8

JavaScript

Tip&Tec / HTML & Web Design Tips & Techniques / Anderson, King, Jamsa / 9394-8 / Front Matter

TIPS IN THIS CHAPTER

� Handling Older Browsers that Do Not Support Scripts 370

� Storing Multiple Values in One Variable by Using JavaScript Arrays 371

� Letting a Script Make Decisions and Process Accordingly 372

� Making Decisions Based on Two or More Conditions 374

� Executing Code When a Condition Is Not True 375

� Repeating Statements a Specific Number of Times 376

� Repeating Statements While a Condition Is True 377

� Responding to JavaScript Events 378

� Executing JavaScript Statements Within the Body of a Web Page 380

� Calling a User-Defined JavaScript Function 382

� Calling JavaScript Functions Within an Event Handler 384

� Looking Closer at JavaScript Event Handlers 385

� Creating an Interactive Navigation Bar with a Mouseover Effect 388

� Taking Advantage of the Scripting Object Model Arrays 390

� Referring to Web Page Objects by Name Instead of Position Number 392

� Leveraging the Contents of the Document Object 393

P:\010Comp\Tip&Tec\394-8\ch08.vp
Thursday, January 03, 2002 4:51:36 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Copyright 2002 by The McGraw-Hill Companies, Inc. Click Here for Terms of Use.

TE
AM
FL
Y

Team-Fly®

JavaScript is a scripting language Web designers can use to automate tasks within a Web page.
Before JavaScript, Web pages contained only graphics or audio files the Web browser was to

display onscreen or play back through the computer’s speaker(s). HTML tags can describe the way
text should look; define things like hyperlinks, tables, and forms; and tell the Web browser to display
the contents of files with pictures, movies, or sounds. However, HTML provides no way to tell the
browser to carry out a sequence of instructions. As a result, without a scripting language like JavaScript,
Web pages have no processing capabilities or any way to interact with the site visitor. For example,
although visitors can enter information into forms, HTML only lets the browser send the data to the
Web server, because HTML has no way of validating or doing anything else with the information the
visitor types or the selections the visitor makes on a form.

Because Web designers need a way to tell Web browsers to do things in addition to displaying
text and pictures and sending form data back to the Web server, Netscape (in collaboration with Sun
Microsystems) developed JavaScript. Although JavaScript is a scripting language in that it lets you
specify a set of commands you want the Web browser to execute, you cannot use JavaScript to create

Tip&Tec / HTML & Web Design Tips & Techniques / Anderson, King, Jamsa / 9394-8 /

359

� Taking Advantage of the JavaScript Images Array 396

� Exploiting the JavaScript Links Array 398

� Changing Web Page Colors Using JavaScript 401

� Storing a Cookie on the Visitor’s Hard Drive 402

� Formatting Cookie Data Using JavaScript 404

� Retrieving a Cookie Value from the Cookie File 406

� Removing a Cookie from the Cookie File 407

� Saving Time and Programming by Using Prewritten (External) Scripts 409

� Creating an Animation Using the onLoad Event 410

� Displaying Self-Changing Banners Using JavaScript 411

� Pointing Hyperlinks to New Files On-the-Fly 413

� Pre-caching Pictures to Reduce Image Display Time 415

� Creating a Scrolling Marquee Using JavaScript 416

P:\010Comp\Tip&Tec\394-8\ch08.vp
Thursday, January 03, 2002 4:51:36 PM

Color profile: Generic CMYK printer profile
Composite Default screen

an external program that runs independent of the browser. As such, JavaScript is called a scripting
language, because it lets you write a script (that is, a set of instructions) you want the Web browser to
follow. Moreover, you embed the JavaScript statements that make up a script in the Web page HTML.

To write JavaScript, you do not need any special tools; you can use the same text editor you use to
create a Web page. Moreover, most popular Web browsers (such as Netscape Navigator and Internet
Explorer) have built-in JavaScript support. As such, site visitors don’t need to install additional
software on their computers; the browser can execute the JavaScript-based scripts you insert in the
Web page HTML. All you have to do is enclose your JavaScript statements between a set of start and
end script tags (<script></script>), which tell the Web browser to execute the statements instead of
displaying them onscreen. For example, the JavaScript statements between the start and end script
tags (<script></script>) in the following HTML write a line of text on the Web page and display a
“Hello World!” message box, as shown in Figure 8-1:

<html>

<body>

<h1>HTML and Web Design Tips & Techniques</h1>

<p>This is text typed directly on the Web page.</p>

<script language="JavaScript">

<!--

document.write("<p>This is a line of text inserted " +

"by a JavaScript statement.</p>");

alert ("My first JavaScript script says: \"Hello World\"!");

// -->

</script>

<p>Notice the Web browser displays the JavaScript popup

and waits before displaying the text that follows

the script embedded in the body of the page.</p>

</body>

</html>

Inserting JavaScript Statements in the Web Page HTML
To have the Web browser execute JavaScript statements as it initially displays the Web page, insert the
statements between start and end script tags (<script></script>) placed where you want the browser to
execute the script. When processing the HTML in the preceding example, the Web browser will display
a heading and a single-line paragraph on the Web page. Next, the <script> tag tells the browser it is
about to encounter the statements in a script. As a result, the browser does not display the text it finds
onscreen. Instead, the browser treats the text on each line as an instruction to perform. In the preceding
example, the browser reads document.write to mean that it is to execute the WRITE method (function)
associated with the document object (that is, the current Web page). As such, the browser writes the
quoted text within the parentheses on the current Web page (“This is a line of text inserted by a JavaScript
statement.”, in the preceding example).

3 6 0 H T M L & W e b D e s i g n T i p s & T e c h n i q u e s

Tip&Tec / HTML & Web Design Tips & Techniques / Anderson, King, Jamsa / 9394-8 / Chapter 8

P:\010Comp\Tip&Tec\394-8\ch08.vp
Thursday, January 03, 2002 4:51:36 PM

Color profile: Generic CMYK printer profile
Composite Default screen

The text the JavaScript statement writes appears on the page between the first and second paragraphs
of text, because the browser encounters the document.write() function call at that point in the Web
page HTML. When the Web browser continues on to the next JavaScript statement, the browser sees
the alert() function call and displays an (alert) message box with the text: “My first JavaScript script
says: “Hello World”!” in response. Because the message box tells the browser to wait, the browser
will not read and display the paragraph following the script until the visitor clicks OK at the bottom
center of the message box.

The </script> tag after the last line of the script tells the Web browser it is no longer to interpret
text it finds as JavaScript statements. Therefore, the Web browser will display the remaining three
lines (in the last paragraph) onscreen. As is always the case, the Web browser works its way through
the HTML for a Web page from top to bottom, left to right. Therefore, if you want the Web browser
to execute another set of statements after it writes the last paragraph of text in the current example,
you would enclose the additional statements you want the browser to execute in another set of start
and end script tags (<script></script>) inserted just prior to the </body> tag.

Hiding Scripts from Browsers without JavaScript Support
Unfortunately, not all browsers support JavaScript. Moreover, browsers without JavaScript support
do not recognize the start and end script tags (<script></script>) and will, therefore, ignore the tags.

C h a p t e r 8 : J a v a S c r i p t 3 6 1

Tip&Tec / HTML & Web Design Tips & Techniques / Anderson, King, Jamsa / 9394-8 / Chapter 8

Figure 8-1 A message box displayed by a JavaScript alert statement

P:\010Comp\Tip&Tec\394-8\ch08.vp
Thursday, January 03, 2002 4:51:36 PM

Color profile: Generic CMYK printer profile
Composite Default screen

As a result, such browsers will display the text document.bgColor=“lightyellow”; document.fgColor=
“magenta” on the Web page rather than set the background color to light yellow and the foreground
(that is, the default text color) to magenta when presented with the JavaScript in the following HTML:

<html>

<body>

<h1>HTML and Web Design Tips & Techniques</h1>

<script language="JavaScript">

document.bgColor="lightyellow";

document.fgColor="magenta";

</script>

</body>

</html>

To keep browsers without JavaScript support from displaying the statements in a script onscreen,
enclose the script’s statements with HTML start and end comment tags (<!-- … -->). For example,
you would “comment out” the script in the example HTML as follows:

<script language="JavaScript">

<!--

document.bgColor="lightyellow";

document.fgColor="magenta";

// -->

</script>

Browsers that do not support JavaScript will ignore the start and end script tags (<script></script>)
and everything between the HTML start and end comment tags. Conversely, JavaScript-aware browsers
ignore the HTML comment tags when the tags occur within a set of start and end script tags. (The
double slash [//] on the line above the </script> tag is a JavaScript comment indicator used to prevent
JavaScript-aware browsers from mistaking the double dash [--] that begins the HTML end comment
tag for a JavaScript code.)

Understanding JavaScript Functions
When programmers write programs, they normally group related instructions (statements) within a
function. Each function has a unique name and should perform a single task. If you were to write a
word-processing program, for example, you might create one function that you name SpellCheck that
checks your document for spelling errors, a second function called PrintDocument that prints one or
more copies of your document, and a third called FileOperations that opens or stores your file.

When you place JavaScript statements within a Web document, you will group your statements
within functions. You might create one function that you name validateForm, which makes sure the
visitor has entered the correct type of data (numeric or text) into all required fields on a form. You
might create a second function that you name calculateSalesTax, which adds the total cost of items
selected on a form and multiplies the sum by the local sales tax rate. The following statements, for

3 6 2 H T M L & W e b D e s i g n T i p s & T e c h n i q u e s

Tip&Tec / HTML & Web Design Tips & Techniques / Anderson, King, Jamsa / 9394-8 / Chapter 8

P:\010Comp\Tip&Tec\394-8\ch08.vp
Thursday, January 03, 2002 4:51:37 PM

Color profile: Generic CMYK printer profile
Composite Default screen

example, create a function named greetVisitor that displays the message “Welcome to My Site”
within a message box, as shown in Figure 8-2:

function greetVisitor()

{

alert("Welcome to My Site");

return;

}

Within a Web page, each JavaScript function must have a unique name. The function definition
starts with the keyword function, followed by the function’s name and then an optional list of parameters
enclosed in parentheses. (You will learn how to use parameters to pass values into the function in
“Passing Values to and from a JavaScript Function,” later in this chapter.) After the function name
and optional parameter list, you enclose the JavaScript statements that perform the function’s task
within left and right braces ({}).

Most JavaScript statements you write should end with a semicolon (;). Because some Web browsers
ignore carriage returns and line feed characters, omitting the optional semicolon at the end of your
JavaScript statements can produce unpredictable results. To ensure proper execution, place a semicolon (;)
at the end of each statement, whether you write statements one per line or write several statements on
the same line within the script.

C h a p t e r 8 : J a v a S c r i p t 3 6 3

Tip&Tec / HTML & Web Design Tips & Techniques / Anderson, King, Jamsa / 9394-8 / Chapter 8

Figure 8-2 Message box displayed in front of a Web page by a statement in a function

P:\010Comp\Tip&Tec\394-8\ch08.vp
Thursday, January 03, 2002 4:51:37 PM

Color profile: Generic CMYK printer profile
Composite Default screen

At the end of each function (just before the closing right brace [}]), insert the keyword return.
The return statement, as its name implies, returns control of the Web browser to the statement that
called the function. To call a JavaScript function, write the function’s name in an expression or as an
independent statement within a function or script. For example, you might write the following HTML
to have the Web browser call (that is, execute) the greetVisitor() function as the browser begins to
load a Web page:

<body>

<h1>HTML and Web Design Tips & Techniques</h1>

<script language="JavaScript">

<!--

greetVisitor();

// -->

</script>

<p>Notice the Web browser displays the JavaScript popup

and waits before displaying the text that follows

the script embedded in the body of the page.</p>

</body>

If you call a function from the body of a Web page (as shown by the greetVisitor(); statement
between the start and end script tags [<script></script>] in the preceding HTML), the browser stops
reading the Web page HTML and executes the statements in the function. The browser does not return
to the point in the page at which it called the function until the browser executes a return statement or
reaches the closing brace (}) at the end of the function. As you will learn in “Responding to JavaScript
Events” later in this chapter, you can also use event handlers to call JavaScript functions. If you use
an event handler to call a function, the browser will continue to load and display the Web page
while the event handler calls the function and then waits for the system to execute the statements
in the function.

Passing Values to and from a JavaScript Function
When you call a JavaScript function, you can pass values into the function in variables called
parameters. The function’s list of parameters appears between the parentheses that follow the name
in the function declaration. For example, the following code declares a function with two parameters:
Age and ShoeSize:

function computeIQ(Age, ShoeSize)

{

Age = Age * 2;

alert("2 x Age = " + Age + "; Shoe Size = " + ShoeSize);

return (Age * ShoeSize) / 2;

}

To pass values to the computeIQ() function, you include the parameters in the function call as follows:

3 6 4 H T M L & W e b D e s i g n T i p s & T e c h n i q u e s

Tip&Tec / HTML & Web Design Tips & Techniques / Anderson, King, Jamsa / 9394-8 / Chapter 8

P:\010Comp\Tip&Tec\394-8\ch08.vp
Thursday, January 03, 2002 4:51:37 PM

Color profile: Generic CMYK printer profile
Composite Default screen

IQ = computeIQ(YearsOld, 10);

When the browser calls computeIQ(), the browser will pass the value of the variable YearsOld to
computeIQ() in the Age parameter and will pass the number 10 to the function through the ShoeSize
parameter. In short, the browser assigns values to function parameters by position. That is, the browser
assigns the first value in the function call to the first parameter in the declaration, the second value to
the second parameter, and so on. Therefore, if you set YearsOld to 20 and then call computeIQ(), the
function will display a message box that reads “2×Age = 40; Shoe Size = 10”. Unlike the functions in
previous examples, computeIQ() returns a value to the caller. To return a value from a function, insert
the value you want to send back immediately after the keyword return, as shown on the last line before the
closing brace (}) in this example.

Understanding JavaScript Reserved Words
When you name a function or create variables to store information as the Web browser executes
statements in a function or script, you must choose function and variable names that do not conflict with
the JavaScript reserved words, which are listed in Table 8-1. Reserved words are words that have special
meaning within JavaScript. The word function, for example, identifies the start of a function declaration,
just as the word return tells the browser to return to the point at which the browser called the function. If
you try to use reserved words for function or variable names, the Web browser will abort execution of the
script or function when it encounters the improper usage of the reserved word.

Using Comments to Explain Your Script’s Processing
As you create scripts and functions, you can place notes among the JavaScript statements that explain
the processing you want the browser to do. Programmers refer to such notes as comments. Placing
comments throughout your code not only helps other developers understand your script, but may also
help you to remember why your script uses specific statements—especially after you have not looked

C h a p t e r 8 : J a v a S c r i p t 3 6 5

Tip&Tec / HTML & Web Design Tips & Techniques / Anderson, King, Jamsa / 9394-8 / Chapter 8

abstract continue finally instanceof protected throws

boolean default float int public transient

break delete for interface return true

byte do function long short try

case double goto native static typeof

catch else if new super switch var

char extends implements null synchronized void

class false import package this while

const final in private throw with

Table 8-1 JavaScript Reserved Words

P:\010Comp\Tip&Tec\394-8\ch08.vp
Thursday, January 03, 2002 4:51:37 PM

Color profile: Generic CMYK printer profile
Composite Default screen

at the script for several months. To place a comment within your JavaScript code, insert two forward
slashes (//) and type your note, as shown here:

// This is a comment

When the Web browser encounters the double slashes, it ignores all text remaining on that line.
In addition to single-line comments that start with a double slash (//), JavaScript also supports block
comments that begin with a slash and an asterisk (/*) and which end with an asterisk and a slash (*/),
as shown here:

/*

The browser will ignore all the text it encounters

after the slash-asterisk that starts the comment

block until it reads the asterisk-slash that

ends the multiline block comment.

*/

When the application encounters a block comment, the browser will ignore all the text that
appears between the /* and */. Developers often “comment out” sections of code to determine the
source of errors in script processing. Suppose, for example, that you had a Web page in which you
defined the following JavaScript function:

function visitorSignIn(Form)

{

if (Form.fname.value == "") return false;

if (Form.lname.value == "") return false;

if (Form.email.value == "") return false;

//load another Web page

self.location = "htdocs/LoggedIn.htm"

return;

}

If visitorSignIn() failed to display the new Web page (LoggedIn.htm) for some reason, you might
comment out the first three statements in the function as follows:

function visitorSignIn(Form)

{

/*

if (Form.fname.value == "") return false;

if (Form.lname.value == "") return false;

if (Form.email.value == "") return false;

*/

//load another Web page

self.location = "htdocs/LoggedIn.htm"

3 6 6 H T M L & W e b D e s i g n T i p s & T e c h n i q u e s

Tip&Tec / HTML & Web Design Tips & Techniques / Anderson, King, Jamsa / 9394-8 / Chapter 8

P:\010Comp\Tip&Tec\394-8\ch08.vp
Thursday, January 03, 2002 4:51:38 PM

Color profile: Generic CMYK printer profile
Composite Default screen

return;

}

Then, if the browser displays the page LoggedIn.htm after calling the function, you would know
the “problem” must have something to do with the first three statements in the function, because
without them, the function loads the new page. Similarly, if the browser still fails to load the new
Web page, the error must involve the statement that is supposed to load the page (that is, self.location).
After you correct the source of an error, be sure to remove the /* and */ or the // you used to turn one
or more statements in a script or function into a comment during the test/debug process.

Declaring Variables Within a Script or Function
Within JavaScript statements, the script stores information by using variables. Unlike most programming
languages, you do not specify the type of information you plan to store in a variable when you declare the
variable. Instead, JavaScript assigns a data type to each variable based on the type of the data you store in
the variable. Moreover, a variable’s data type can change depending on the operation in which you use the
variable. The following statements define several different variables:

var BookTitle, ChapterNumber;

var Publisher;

var StringValue = "10", var IntValue = 20;

var ConcatenatedValue = StringValue + IntValue;//Result: "1020"

var AdditionValue = IntValue + StringValue; //Result: 30

Therefore, to declare variables within a script, you specify the variable name(s) after the keyword
var (as shown in the first two lines). If you want to give a variable an initial value, you can follow the
variable name with the assignment operator (=) and an initial value (as shown in the last three lines of
the script). JavaScript imposes the following restrictions on variable declarations:

• A variable name cannot conflict with (that is, be the same as) a JavaScript keyword.

• Variable names must start with a letter or underscore character (_) and may contain
numbers or letters after the first character.

• Variable names cannot contain any blanks or punctuation characters.

JavaScript names and keywords (like var) are case-sensitive, which means that var is a keyword,
whereas Var is not. Similarly, stringvalue is a different variable name from StringValue.

Understanding JavaScript Operators
Operators let you combine variables and/or literal values into expressions that produce values, which
you can then display, store in variables, or use as a part of other expressions. You can group JavaScript
operators into several classes based on the operator’s purpose. Table 8-2 shows JavaScript arithmetic
operators that require two variables, values, or expressions (one on either side of the operator).

C h a p t e r 8 : J a v a S c r i p t 3 6 7

Tip&Tec / HTML & Web Design Tips & Techniques / Anderson, King, Jamsa / 9394-8 / Chapter 8

P:\010Comp\Tip&Tec\394-8\ch08.vp
Thursday, January 03, 2002 4:51:38 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Although you could classify the first three operators in Table 8-3 as arithmetic, they are called
unary operators, because they require only one expression on which to operate.

When you place a double-plus (++) or double-minus (−−) in front of a variable (that is, you prefix
the operator), the operation takes place before the assignment of value. Conversely, if you place the
increment or decrement operator after a variable (that is, you postfix the operator), the operation takes
place after the assignment of value. For example:

i = 10;

j = i++; //j=10, i=11

j = --i; //i=9, j=9

The complement operator—that is, the exclamation point (!)—returns the reverse of the Boolean (true
or false) value in a variable while leaving the value in the variable unchanged after. For example:

TestResult = true;

document.write(TestResult); //true

document.write(!TestResult); //false

Comparison operators, as their group name implies, let you compare one expression, variable,
or literal value to another. Typically, you use comparison operators (shown in Table 8-4) within
conditional statements (such as if and if-else), and control loops (such as while and for).

3 6 8 H T M L & W e b D e s i g n T i p s & T e c h n i q u e s

Tip&Tec / HTML & Web Design Tips & Techniques / Anderson, King, Jamsa / 9394-8 / Chapter 8

Operator Purpose Example

+ Addition expression + expression

− Subtraction expression – expression

* Multiplication expression * expression

/ Division expression / expression

% Modulus (return the remainder of a division) expression % expression

Table 8-2 JavaScript (Binary) Arithmetic Operators

Operator Purpose Example

++ Increment by 1 variable++ or ++variable

−− Decrement by 1 variable−− or −−variable

− Negation −expression

! Complement (the Not operator) !expression

Table 8-3 JavaScript Unary Operators

P:\010Comp\Tip&Tec\394-8\ch08.vp
Thursday, January 03, 2002 4:51:38 PM

Color profile: Generic CMYK printer profile
Composite Default screen

TE
AM
FL
Y

Team-Fly®

The conditional operator (?:) is a special comparison operator used only in an assignment statement
in which the operator functions as an if-else statement used to decide which of two values to assign.
For example, in the following statement, if the expression in parentheses evaluates to True, the statement
assigns the first value following the question mark (?) to the variable. Conversely, if the expression
evaluates to False, the statement assigns the value that follows the colon (:), as shown here:

PassingThisClass = (GPA >= 2.0) ? "yes" : "no";

Logical operators let you compare two Boolean values. Typically, you will use the logical operators
shown in Table 8-5 to compare the results of two comparison expressions in a conditional statement
or control loop.

Conditional and Repetitive Processing
A script is a list of instructions the Web browser executes to accomplish a specific task. All the
simple scripts you reviewed up to this point in the chapter have the Web browser start with the first
statement and execute each statement, in order, to the end of the script or function. As your scripts
become more complex, you will sometimes want the browser to execute one set of statements if one
condition is true and, possibly, another set if the condition is false. In other words, you will want your
browser to make decisions and respond accordingly. Scripts that make decisions perform conditional

C h a p t e r 8 : J a v a S c r i p t 3 6 9

Tip&Tec / HTML & Web Design Tips & Techniques / Anderson, King, Jamsa / 9394-8 / Chapter 8

Operator Purpose Example

< Less than expression < expression

> Greater than expression > expression

<= Less than or equal to expression <= expression

>= Greater than or equal to expression >= expression

== Equal to expression == expression

!= Not equal to expression != expression

?: Conditional (if-else) (Boolean expression) ?
TRUE expression : FALSE expression

Table 8-4 JavaScript Comparison Operators

Operator Purpose Example

&& And expression && expression

|| Or expression || expression

Table 8-5 JavaScript Logical Operators

P:\010Comp\Tip&Tec\394-8\ch08.vp
Thursday, January 03, 2002 4:51:39 PM

Color profile: Generic CMYK printer profile
Composite Default screen

processing. In other words, based on the outcome of one or more conditions, the browser will execute
specific statements.

To make decisions, your scripts must first perform some type of test. For example, one script
might test if the password a visitor enters is correct and a second script might test if the phone
number a visitor enters has the correct number of digits. To perform such tests, your scripts will use
the JavaScript comparison operators listed previously in Table 8-4. Comparison operators let your
scripts test how one value “compares” to another. In other words, using comparison operators, your
scripts can test if one value is equal to, greater than, or less than a second value. When your scripts
use relational operators to compare two values, the result of the comparison is either true or false—
meaning, the two values either satisfy the comparison (true) or they do not (false). The Tip titled
“Letting a Script Make Decisions and Process Accordingly” will show you how to use three different
forms of if-then-else statements that let the Web browser decide which of the script’s statements to
execute based on the results of comparisons.

Closely related to decision making within your scripts is the ability to repeat one or more statements a
specific number of times or until a known condition occurs. Two of the Tips that follow this introduction
will show you how to use for statements and while loops to repeat operations in your scripts and
functions. The while statement lets you create a loop in which the browser executes a set of JavaScript
statements repeatedly as long as the specified condition remains true. Meanwhile, the for statement
lets you create a loop in which the browser executes a set of statements a fixed number of times or
until a predetermined event or condition occurs.

Inserting JavaScript Functions Within the Web Page HTML
Although you can define them elsewhere in the Web page HTML, embed your JavaScript functions
at the end of the header section of the Web page (that is, just before the </head> tag at the beginning
of the page). Placing your JavaScript functions in the Web page header guarantees that the Web browser
will load the functions before the visitor can trigger an event that tells the browser to execute any one
of them. Placing all the functions in a single location near the top of the Web page HTML also makes
the functions easier for you to find when you need to modify them. (The Web browser will have no
trouble in finding the functions it needs to execute, as long as you embed them somewhere in the
HTML file.)

Handling Older Browsers that Do Not Support Scripts
As you learned at the beginning of this chapter, you embed JavaScript statements in your Web page
HTML between start and end script tags (<script></script>). The browser executes the script when
the browser loads the Web page or when you tell it to do so with a call to a user-defined function that
contains the script’s statements. Unfortunately, HTML’s support for scripts is independent of the
actual scripting language. When you include a script within an HTML document, you have no
guarantee that the visitor’s Web browser supports the execution of scripts. To alert a visitor when the
browser does not support the execution of scripts, insert start and end no script support section tags
(<noscript></noscript>) into the HTML document containing the script. The tags must appear

3 7 0 H T M L & W e b D e s i g n T i p s & T e c h n i q u e s

Tip&Tec / HTML & Web Design Tips & Techniques / Anderson, King, Jamsa / 9394-8 / Chapter 8

P:\010Comp\Tip&Tec\394-8\ch08.vp
Thursday, January 03, 2002 4:51:39 PM

Color profile: Generic CMYK printer profile
Composite Default screen

somewhere within the Web page body (that is, somewhere between the page start and end body tags
[<body></body>]). The best place to insert the <noscript> tag is immediately after a </script> tag.

Between the start and end no script support section tags (<noscript></noscript>), enter
the text you want the browser to display when the Web browser does not support scripts.

The following HTML code demonstrates the use of the start and end noscript support section
tags(<noscript></noscript>):

<html>

<head>

<title>A JavaScript example </title>

</head>

<body>

<script language="JavaScript">

<!--

document.write("This is a JavaScript example!")

// -->

</script>

<noscript> No JavaScript support… SORRY!</noscript>

</body>

</html>

Although the script in this example simply tells the visitor that his or her browser does not have
JavaScript support, you should provide additional content. For example, you might explain how to
turn on JavaScript within the browser or provide a hyperlink a visitor can use to download a browser
with JavaScript support (such as Netscape Navigator or Internet Explorer).

The interesting thing about the start and end no script support section tags (<noscript></noscript>)
is that they are nonfunctional tags. If a browser supports scripts, it recognizes the tags and ignores
the information between the tags. Browsers that do not recognize the <script> tag (that is, browsers
without script support) also do not recognize the start and end no script support section tags
(<noscript></noscript>). As a result, such browsers ignore the tags and simply display anything you
place between the tags as ordinary Web page text.

Storing Multiple Values in One Variable
by Using JavaScript Arrays
An array is a variable that contains a set of values of the same data type. Suppose, for example, that
you have five items for sale and you need to track the count and price of each item you have on hand.
You could create five variables to hold each of the five item counts and five other variables to hold
the prices as follows:

var ItemCount1, ItemCount2, ItemCount3, ItemCount4, ItemCount5

var ItemPrice1, ItemPrice2, ItemPrice3, ItemPrice4, ItemPrice5

C h a p t e r 8 : J a v a S c r i p t 3 7 1

Tip&Tec / HTML & Web Design Tips & Techniques / Anderson, King, Jamsa / 9394-8 / Chapter 8

P:\010Comp\Tip&Tec\394-8\ch08.vp
Thursday, January 03, 2002 4:51:39 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Now, imagine that you have an inventory of 100 different items. You will spend a lot of time
declaring and typing variable names in function statements where you need to deal with the items
all at once (such as to compute a total inventory value).

Fortunately JavaScript gives you a way to create a single variable that can hold any
number of values you want—an array. For example, to create arrays that can hold the

count and price for each item in an inventory of 100 items, you would use the following statements:

var ItemCount = new Array(100);

var ItemPrice = new Array(100);

Each of the two arrays, ItemCount and ItemPrice, has 100 storage areas called elements, and each
element works like a variable, in that each element can hold one value. You reference each element in
an array with an index by using the following syntax: ArrayName[Index]. Because JavaScript arrays
are zero-based, the first item in an array has an index of zero (0). Therefore, to store the price and
count of item 1, you would write something like this:

ItemCount[0] = 5;

ItemPrice[0] = 125.50;

Similarly, you would store the count and price of item 100 in array index 99 with statements like this:

ItemCount[99] = 10;

ItemPrice[99] = 89.95;

Letting a Script Make Decisions and Process Accordingly
The if statement lets your scripts perform a test and then execute statements based on the result of the
test. The if statement normally performs a test using a JavaScript comparison operator. If the test result
is true, the script executes the statement that follows the if. On the other hand, if the test result is false,
the script ignores (skips) the statement that follows. The format of the if statement is as follows:

if (condition_is_true)

statement;

Notice that you do not place a semicolon (;) after the if (condition) that starts the if
statement because the if statement continues to the next line. The following script defines a

check18() function that uses the if statement to compare the value stored in the variable Age to value 18.
If the age is greater than or equal to 18, the script displays a message to the visitor. Otherwise, if the
value is less than 18, the script simply returns control to the application that called the function:

function check18()

{

var Age = 25;

3 7 2 H T M L & W e b D e s i g n T i p s & T e c h n i q u e s

Tip&Tec / HTML & Web Design Tips & Techniques / Anderson, King, Jamsa / 9394-8 / Chapter 8

P:\010Comp\Tip&Tec\394-8\ch08.vp
Thursday, January 03, 2002 4:51:40 PM

Color profile: Generic CMYK printer profile
Composite Default screen

if (Age >= 18)

alert("Register to vote at www.VoterRegistration.com");

return;

}

When your scripts use the if statement for conditional processing, there will be times when your
scripts must perform only one statement if the condition is true and other times when your script
must perform several statements. When your script performs only one statement following an if, the
statement is a simple statement:

if (Age >= 18)

alert("Register to vote at www.VoterRegistration.com");

For your script to perform several statements when a condition evaluates as true, you must group
the statements within left and right braces ({}). The statements that appear within the braces make up
a compound statement, as shown here:

if (Password != "Secret")

{

alert("Invalid Password");

window.location = "htdocs/InvalidPassword.htm"

}

� NOTE

It is not important that you remember the terms simple and compound statements, but rather that you
know that you must group related statements within the left and right braces ({ }).

At the beginning of this Tip, you used an if statement to determine whether a visitor’s age was
greater than or equal to 18. If the condition was true, the script displayed a message to the visitor.
If the condition was false, meaning the age was less than 18, the script did not display a message,
it simply ended. In most cases, your scripts will want to specify one set of statements that executes
when the condition is true and a second set that executes if the condition is false. To provide the
statements that execute when the condition is false, your scripts must use the else statement. The
format of the else statement is as follows:

if (condition_is_true)

statement;
else

statement;

The following script changes the check18() function to use an if-else statement to test whether the
value of the Age variable is greater than or equal to 18. If the condition is true, the script will display

C h a p t e r 8 : J a v a S c r i p t 3 7 3

Tip&Tec / HTML & Web Design Tips & Techniques / Anderson, King, Jamsa / 9394-8 / Chapter 8

P:\010Comp\Tip&Tec\394-8\ch08.vp
Thursday, January 03, 2002 4:51:40 PM

Color profile: Generic CMYK printer profile
Composite Default screen

a message reminding the visitor to vote. If the condition is false, the script will display a message
telling the visitor to “Study hard and get good grades!”:

function Check18()

{

var Age = 15;

if (Age >= 18)

alert("Don't forget to vote!");

else

alert("Study hard and get good grades!");

return;

}

Previously in this Tip, you used an if-else statement to execute one set of statements when a
condition is true and another set of statements if the condition is false. There may be times, however,
when your scripts must test several different related conditions. For example, assume that your script
must determine a visitor’s area code. To do so, your script must test for the many different cities. The
following statement uses a series of if-else statements to illustrate a simplified example of the processing
your script might perform:

if (City == "New York")

AreaCode = 212;

else if (City == "Houston")

AreaCode = 281;

else if (City == "Phoenix")

AreaCode = 602;

else if (City == "Seattle")

AreaCode = 206;

else

AreaCode = 0; // Program does not know city's area code

When the script performs the first if statement, it first tests whether the city is New York. If so, the
script assigns the AreaCode variable the value 212. If the city is not New York, the script performs
the else if to test if the city is Houston. The script will perform this processing for each city until it
finds a matching city or it reaches the final else statement. If the script does not find a matching city,
it assigns the variable AreaCode the value 0.

Making Decisions Based on Two or More Conditions
As your scripts become more complex, you sometimes must test more than one condition
at a time. For example, your script might test if a visitor’s age is greater than 20, and less

than 50. Likewise, you might test whether a visitor owns a dog or a cat. To perform such operations,

3 7 4 H T M L & W e b D e s i g n T i p s & T e c h n i q u e s

Tip&Tec / HTML & Web Design Tips & Techniques / Anderson, King, Jamsa / 9394-8 / Chapter 8

P:\010Comp\Tip&Tec\394-8\ch08.vp
Thursday, January 03, 2002 4:51:41 PM

Color profile: Generic CMYK printer profile
Composite Default screen

you will use the JavaScript logical AND operator (&&) and the logical OR operator (||). When your
scripts use the logical AND or the logical OR operator to test more than one condition, you will place
each condition within parentheses, as in the following if statement, which uses the logical OR operator
to test whether the visitor owns a dog or a cat:

if ((VisitorOwnsaDog) || (VisitorOwnsaCat))

// Statement

In a similar way, the following statement uses a logical AND operator to determine if a visitor’s
age is in the range 20 to 50:

if ((Age >= 20) && (Age <= 50))

// Statement

When your scripts use the logical AND operator (&&), all the conditions within the statement
must be true for the entire condition to evaluate as true. If any condition is false, the entire condition
becomes false. For example, if the visitor’s age is not greater than or equal to 20, the previous
condition is false. Likewise, if the visitor’s age is greater than 50, the condition is false. In order for
the condition to be true, the visitor must be 20 or older and 50 or younger.

For a condition that uses the logical OR operator to evaluate as true, only one condition must be
true. For example, if the visitor owns a dog, the previous condition is true. If the visitor owns a cat,
the condition is true. Also, if the visitor owns both a dog and a cat, the condition is true. The only
time the condition would be false is if the visitor owns neither a dog nor a cat, in which case both
conditions are false and the overall condition evaluates as false.

Executing Code When a Condition Is Not True
When your scripts test for specific conditions, you may sometimes want the scripts to perform
specific statements when a condition is true. In a similar way, you may sometimes want your

scripts to perform a set of statements when a condition is not true. The JavaScript Not operator—the
exclamation point [!]—lets your scripts test whether a condition is not true. For example, the following
statement tests whether the visitor does not own a car:

if (!Owns_a_Car)

// Statement

The Not operator converts a false condition to true and a true condition to false. For example,
assume that the visitor does not own a car. The variable Owns_a_Car would contain the value false.
When the JavaScript performs the condition using the Not operator, JavaScript uses the variable’s
current value (false), and applies the Not operator. The Not operator makes the false value true. The

C h a p t e r 8 : J a v a S c r i p t 3 7 5

Tip&Tec / HTML & Web Design Tips & Techniques / Anderson, King, Jamsa / 9394-8 / Chapter 8

P:\010Comp\Tip&Tec\394-8\ch08.vp
Thursday, January 03, 2002 4:51:41 PM

Color profile: Generic CMYK printer profile
Composite Default screen

entire condition then evaluates as true, and the script performs the corresponding statement. The
following statement uses the Not operator to test if a visitor’s password is not equal to “Secret”:

if (Password != "Secret")

// Statement

Repeating Statements a Specific Number of Times
One of the most common operations your scripts will perform is to repeat one or more statements a
specific number of times, in which case you will use the for statement. When your script uses a for
statement, the script must specify a variable, called a control variable, that keeps track of the number
of times the loop executes. For example, the following for loop uses the variable Count to keep track of
the number of times the script has executed the loop, so processing will stop with the fifth iteration:

for (Count = 1; Count <= 5; Count++)

// Statement;

The for statement consists of four parts: an initialization, a test condition, the statements
that are to repeat, and an increment. To begin, the statement Count = 1; assigns the control

variable’s starting value. The for loop performs this initialization one time, when the loop first starts.
Next, the loop tests the condition Count <= 5;. If the condition is true, the for loop will execute the
statement that follows. If the condition is false, the loop will end, and the script will continue its
execution with the first statement that follows the loop. If the condition is true and the for loop
executes the statement, the loop will then increment the variable Count using the statement Count++.
Finally, the script tests the condition Count <= 5;. If the condition is still true, the script will execute
the statements, and the process of incrementing and then testing the variable Count will repeat. The
following script creates the oneToFive() function that uses the for loop to display the values 1 through 5:

function oneToFive()

{

var Count;

for (Count = 1; Count <= 5; Count++)

alert("Count = " + Count);

}

Within a for loop, you are not restricted to incrementing the value by 1. The following for loop,
for example, displays every fifth number from 0 through 25:

for (Count = 0; Count <= 25; Count += 5)

alert("Count = " + Count);

Note the statement the for loop uses to increment the variable Count:

Count += 5;

3 7 6 H T M L & W e b D e s i g n T i p s & T e c h n i q u e s

Tip&Tec / HTML & Web Design Tips & Techniques / Anderson, King, Jamsa / 9394-8 / Chapter 8

P:\010Comp\Tip&Tec\394-8\ch08.vp
Thursday, January 03, 2002 4:51:42 PM

Color profile: Generic CMYK printer profile
Composite Default screen

When you want to add a value to a variable’s current value and then assign the result to the same
variable, JavaScript lets your scripts do so in one of two ways. First, assuming that your script must
add the value 5 to the variable Count, your script can do as shown here:

Count = Count + 5;

Second, JavaScript lets you use the shorthand notation shown here to add the value 5 to the
variable Count:

Count += 5;

Because it is easier to write, programmers commonly use this shorthand notation within loops.
When you use a for loop, JavaScript does not limit your loops to counting up. The following for
loop, for example, counts down from 10 to 1:

for (Count = 10; Count >= 1; Count--)

// Statement

Finally, JavaScript also does not restrict a for loop to using integer values for the control variable.
The following statement, for example, uses a floating-point value, which the loop initializes to 0.0
and then increments by 0.10:

for (Value = 0.0; Value <= 1.0; Value += 0.10)

// Statement

Repeating Statements While a Condition Is True
In the preceding Tip, you learned that the JavaScript for loop lets your scripts repeat one or more
statements a specific number of times. For situations in which your scripts must loop as long as a
specific condition is true, but not necessarily a specific number of times, your scripts can use the
JavaScript while loop. The general format of the while loop is as follows:

while (Condition_Is_True)

statement;

When your script encounters a while loop, your script first tests the specified condition.
If the condition is true, the script will execute the while loop’s statements. After the last

statement in the loop executes, the while loop again tests the condition. If the condition is still true,
the loop’s statements will repeat, and this process will continue. When the condition finally becomes
false, the loop will end, and your script will continue its execution at the first statement that follows
the loop. The following script uses a while loop to prompt the visitor to enter a password repeatedly,
until the visitor enters the password “Secret”:

function getPassword()

{

C h a p t e r 8 : J a v a S c r i p t 3 7 7

Tip&Tec / HTML & Web Design Tips & Techniques / Anderson, King, Jamsa / 9394-8 / Chapter 8

P:\010Comp\Tip&Tec\394-8\ch08.vp
Thursday, January 03, 2002 4:51:42 PM

Color profile: Generic CMYK printer profile
Composite Default screen

var Password = ""; // Assign an initial value != "Secret"

while (Password != "Secret")

Password = prompt("Password", "");

alert("You're in!");

}

Responding to JavaScript Events
Near the beginning of this chapter, you learned how to call (that is, how to execute) a JavaScript
function by typing the function’s name as a statement in a script or as part of an expression. Sometimes,
however, you want the browser to call a function in response to an event that occurs some time after the
browser loads the Web page. For example, you might have an “exit” function you want the browser to
execute when the visitor clicks a hyperlink to move on to another Web page. Similarly, you might want
the browser to call a form validation function when the visitor clicks a form’s Submit button.

Fortunately, JavaScript provides a number of event handlers you can insert in your HTML tags
to watch for specific events. When an event occurs, the event handler monitoring it will tell the Web
browser to execute the statement or function you associated with the event. Table 8-6 summarizes
JavaScript events and what triggers them to occur.

3 7 8 H T M L & W e b D e s i g n T i p s & T e c h n i q u e s

Tip&Tec / HTML & Web Design Tips & Techniques / Anderson, King, Jamsa / 9394-8 / Chapter 8

Event Applies to Occurs When Event Handler

abort Images Visitor aborts the loading of an image (for
example, by clicking a link or clicking the
Web browser’s Stop button)

onAbort

blur Frames, windows, and
all form elements

Visitor removes input focus from a frame, form
element, frame, or window

onBlur

click Checkboxes, hyperlinks,
image map hotspots,
pushbuttons, radio
buttons, Submit buttons,
Reset buttons

Visitor clicks a form element or hyperlink onClick

change Select lists, text fields,
textarea fields

Visitor changes the value in a form element onChange

error Images, windows Web browser encounters an error in loading
a document or an image

onError

focus Frames, windows, and
all form elements

Visitor gives input focus to a frame, form
element, or window

onFocus

load Document body Web browser loads the Web page onLoad

Table 8-6 JavaScript Events that Trigger the Execution of a Statement or Function

P:\010Comp\Tip&Tec\394-8\ch08.vp
Thursday, January 03, 2002 4:51:42 PM

Color profile: Generic CMYK printer profile
Composite Default screen

TE
AM
FL
Y

Team-Fly®

If you want a JavaScript event handler to tell the Web browser to execute a function you declared
on the page, you must associate the function with a specific event handler that watches for the event
to occur. For example, if you want to greet the user with a message in a dialog box as the browser
loads the page, you would assign a JavaScript function to the onLoad event handler. Likewise, if you
want to highlight a hyperlink (text or graphics image) as the visitor moves the mouse pointer across
it, you would assign JavaScript functions to the onMouseover and onMouseout event handlers.

To assign a JavaScript function to an event, select the event’s event handler and then
decide which of the Web page objects you want the event handler to monitor. Next, add

the event handler to the HTML tag used to insert the object on the Web page. Suppose, for example,
that you use the following code to place a button labeled “Click Me!” on the Web page:

<form>

<input type="button" value="Click Me!"

onClick="youClickedIt()">

</form>

By inserting the onClick event handler in the button’s <input> tag you tell the onClick event
handler to monitor the button for a mouse click. When the visitor clicks the button, the event handler
tells the Web browser to execute the youClickedIt() function. Similarly, if you want the browser to
call a function when the visitor moves the mouse pointer over a hyperlink, insert the onMouseover
event handler in the hyperlink’s <a> tag as follows:

NVBizNet.com

Placing the onMouseover event handler in the hyperlink’s <a> tag instructs the onMouseover event
handler to tell the Web browser to execute the youAreOnIt() function whenever the visitor moves the
mouse pointer across or onto the hyperlink’s anchor text. In short, you associate an event with a particular

C h a p t e r 8 : J a v a S c r i p t 3 7 9

Tip&Tec / HTML & Web Design Tips & Techniques / Anderson, King, Jamsa / 9394-8 / Chapter 8

Event Applies to Occurs When Event Handler

mouseout Areas, hyperlinks Visitor moves mouse pointer out of an image
map hotspot or off of a hyperlink

onMouseout

mouseover Areas, hyperlinks User moves mouse pointer over a hyperlink or
into an area with an image map hotspot

onMouseover

reset Forms Visitor clicks a form’s Reset button onReset

select Text fields, textarea
fields

Visitor selects an input field on a form onSelect

submit Forms Visitor clicks a form’s Submit button onSubmit

unload Document body Visitor exits the Web page onUnload

Table 8-6 JavaScript Events that Trigger the Execution of a Statement or Function (continued)

P:\010Comp\Tip&Tec\394-8\ch08.vp
Thursday, January 03, 2002 4:51:43 PM

Color profile: Generic CMYK printer profile
Composite Default screen

object on a Web page by placing the event handler in the object’s tag as: eventHandler=“functionCall()”.
Or, if you want to execute one or more statements instead of calling a function, insert in the object’s
HTML tag an event handler reference in the form of eventHandler=“statements”.

Executing JavaScript Statements
Within the Body of a Web Page
As you have learned, a JavaScript function is a set of statements that perform a specific task. There
are two types of functions: those that you create, and those JavaScript provides. Whereas functions
you create are called user-defined functions, those that come standard with JavaScript are called
built-in functions. As you read about JavaScript, you will find that programmers (especially those
who work with object-oriented programming languages) also refer to functions as methods.

Within an object-oriented language (such as JavaScript), functions (methods) often correspond to
a specific object (such as a document, that is, a Web page, or something on the Web page such as a
form, a pushbutton, or a hyperlink). As you will learn, JavaScript defines several objects that you can
use in the scripts you create. For example, JavaScript associates a document object with your Web
page. Using the document object, you can use JavaScript to manipulate the text and other elements
(objects) the Web page contains.

Each JavaScript object will have one or more functions you can call to perform a specific
task. To call an object’s function (that is, to call one of the methods associated with an

object), you specify the object’s name, followed by a dot (.) and then the method (function) name.
For example, to use the document object’s write method to place text on the current Web page, you
would write a JavaScript statement similar to the following in your script:

document.write("Message");

To JavaScript, the current Web page is the document object, and its write method (as the function’s
name implies) writes the text you pass to it on the Web page. Therefore, to have the Web browser execute
a function (that is, a method) associated with an object, you write the function call as objectName.method()
in your JavaScript. The following HTML code, for example, calls the document.write() method (that
is, the document object’s write method) twice to display the text “Welcome to the Web page with my
first JavaScript script.”, as shown in Figure 8-3.

<html>

<body>

<h1>HTML & Web Design Tips & Techniques</h1>

<p>The following Script will insert text on a Web page.</p>

<script>

<!--

3 8 0 H T M L & W e b D e s i g n T i p s & T e c h n i q u e s

Tip&Tec / HTML & Web Design Tips & Techniques / Anderson, King, Jamsa / 9394-8 / Chapter 8

P:\010Comp\Tip&Tec\394-8\ch08.vp
Thursday, January 03, 2002 4:51:43 PM

Color profile: Generic CMYK printer profile
Composite Default screen

//write a line of text on the Web page

document.write("<p>Welcome to the Web page ");

document.write("with my first JavaScript script.</p>");

// -->

</script>

<p>If your Web browser supports JavaScript you will see

a "Welcome" message just before this text.

</body>

</html>

Note the script in this example calls the document.write() method twice due to the publisher’s
restriction that lines of code in this book must wrap at column 64. When you call the same method to
write text onto a Web page, you can pass a string of whatever length you like. As such, you could
(and would) display the second paragraph in this example using a single document.write() method call.

When you use the document.write() method to insert text on a Web page, be sure to include any
HTML formatting tags along with the text you want displayed. Notice that the text in the second
document.write() function call in the current example did not start with the <p> tag. As a result, when
the Web browser read the HTML generated by the function, it displayed the second text string (on the
same line) right after the text from the first function call.

You can also use JavaScript string manipulation operators (you learned about earlier in this
chapter) to create the text string you pass to the document.write() method. For example, the preceding
code used two document.write() function calls to write a single line of text. If you wanted to break up
a long text string in your code for formatting purposes, while still having the browser display it as a
single line of text, you could use multiple document.write() function calls (as shown in the example).
Or, you could use the plus (+) string concatenation operator and a single function call as follows:

document.write("<p>Welcome to the Web page " +

"with my first JavaScript script.</p>");

C h a p t e r 8 : J a v a S c r i p t 3 8 1

Tip&Tec / HTML & Web Design Tips & Techniques / Anderson, King, Jamsa / 9394-8 / Chapter 8

Figure 8-3 A Web page with a JavaScript-generated “Welcome” message

P:\010Comp\Tip&Tec\394-8\ch08.vp
Thursday, January 03, 2002 4:51:44 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Calling a User-Defined JavaScript Function
In the preceding Tip, you learned that functions you write are called user-defined functions while
those that come standard with JavaScript itself are called built-in functions (or methods). You also
learned how to call built-in functions (such as the document.write() method) by writing the function
call as: objectName.method() in a JavaScript statement. Writing document.write(“message”) in a
JavaScript statement, for example, tells the Web browser to call the document object’s write method
(function) and pass to it the text string “message.”

The JavaScript built-in functions are associated with an object (such as the document
object, or Web page); the user-defined functions you write are not. As such, instead of

calling a user-defined function by referring to an object and a function as objectName.functionName()
in a JavaScript statement, you call a function you create by simply including its name in a statement
or expression. For example, the following HTML tells the Web browser to call a user-defined function
named helloWorld after it calls the document.write() method to insert a line of text on the Web current
Web page:

<script>

<!--

//write a line of text on the Web page

document.write("<p>Click the mouse on the OK button to continue.</p>")

//call the user-defined JavaScript function "helloWorld"

helloWorld();

// -->

</script>

As you may have guessed, before you can call a user-defined function, you have to “define” or
declare the function. Programmers refer to statements that define the function’s name and list its
statements as the function’s declaration. The following HTML statements first show the helloWorld()
function declaration, which occurs between the first set of start and end script tags (<script></script>)
within the Web page header. Then the HTML shows the statement that actually “calls” the function just
before the </script> tag in the body of the Web page. (When you “call” a function, you tell the Web
browser to execute statements you listed when you declared the function.)

<html>

<head>

<script language="JavaScript">

<!--

function helloWorld()

{

alert("Hello from my first JavaScript function!")

return;

}

// -->

</script>

3 8 2 H T M L & W e b D e s i g n T i p s & T e c h n i q u e s

Tip&Tec / HTML & Web Design Tips & Techniques / Anderson, King, Jamsa / 9394-8 / Chapter 8

P:\010Comp\Tip&Tec\394-8\ch08.vp
Thursday, January 03, 2002 4:51:44 PM

Color profile: Generic CMYK printer profile
Composite Default screen

</head>

<body>

<h1>Web Page with a JavaScript Function</h1>

<p>The following Script will display the message box.</p>

<script>

<!--

//write a line of text on the Web page

document.write("<p>Click OK to continue.</p>")

//call the JavaScript function "helloWorld()"

helloWorld();

// -->

</script>

<p>Now that you have cleared the message box,

how do you get it to display again?</p>

<p>After all, there is no HTML "looping" tag to tell the

browser to read through the Web page HTML and execute

the function again. </p>

</body>

</html>

As is always the case, the <script> tag in the Web page header tells the Web browser it is to treat
everything until the subsequent </script> tag as JavaScript statements. However, when the Web browser
reads the JavaScript in the header section of the HTML in the current example, it loads the user-defined
JavaScript function helloWorld() into memory, but does not execute the function’s statements. This
behavior (of not executing statements when reading a function declaration) has nothing to do with the
fact that you declared the function in the Web page header. Whenever the Web browser encounters
the keyword function in a script, the browser knows that it is about to read a function declaration
and not a statement it is supposed to execute immediately. As a result, the browser simply reads
into memory the function name, its parameters (between parentheses following the name), and the
function’s statements (everything between the left and right brackets [{}] that follow the function’s
parameter list).

By convention, the browser does not execute the statements in a JavaScript function (such as the
helloWorld() function in the current example) until you tell it to do so. As mentioned previously, you can
call a function (that is, tell the Web browser to execute the statements in a function) by writing the
function’s name in a statement of a script you insert between start and end script tags (<script></script>) in
the body section of a Web page. Moreover, as you will learn in the next Tip, you can use an event handler
to tell the Web browser to call a function based on an event (such as clicking a hyperlink on the Web page)
or an element (such as an input field or push button) on a form. As a general rule, you should put all of
your JavaScript function declarations between a single set of start and end script tags (<script></script>)
in the header section of the Web page HTML (as shown in the current example).

Because the browser loads the contents of the header section first, putting all of your function
declarations in the header ensures that the browser has read them into memory by the time it reaches

C h a p t e r 8 : J a v a S c r i p t 3 8 3

Tip&Tec / HTML & Web Design Tips & Techniques / Anderson, King, Jamsa / 9394-8 / Chapter 8

P:\010Comp\Tip&Tec\394-8\ch08.vp
Thursday, January 03, 2002 4:51:44 PM

Color profile: Generic CMYK printer profile
Composite Default screen

the point in the Web page HTML where you make your first function call. Loading user-defined
functions before displaying any portion of the Web page also ensures the functions you have associated
with event handlers will be available (and not undefined) when the visitor starts interacting with the
objects on the Web page and thereby triggering events that cause event handlers to call your functions.

Calling JavaScript Functions Within an Event Handler
In the preceding Tip you learned how to call (that is, how to execute the statements in) a JavaScript
function by writing a statement that includes the function’s name. You can also have the Web browser
execute a JavaScript function automatically in response to an event. The events to which you can
have the Web browser react include when the browser loads or unloads a Web page and when a user
clicks or moves the mouse pointer over a pushbutton, hyperlink, or field on a form. An event handler
is an item you add to an HTML tag that tells the Web browser to execute a JavaScript statement or to
call a function in response to something the browser or user has done.

For example, if you want the Web browser to “do something” before it unloads a Web page,
add the onUnload event handler to the Web page <body> tag. The onUnload event handler in

the <body> tag of the Web page defined by the following HTML statements will display a message box
similar to that shown in Figure 8-4, whenever the Web browser leaves the current Web page.

<html>

<body onUnload="alert('Thanks for stopping by!')">

<h1>HTML & Web Design Tips & Techniques</h1>

<p>Go to NVBizNet.com.

</p>

</body>

</html>

The Web browser performs the same action whether it is replacing the Web page in response to
a click on a hyperlink or a click on the browser’s Back, Forward, or Refresh button. Whenever the
visitor tells the browser to unload the current Web page and replace it with another page (or even
the same Web page), the onUnload event handler in this example tells the Web browser to display
a message box. The visitor must then click OK at the bottom of the message box before the Web
browser will unload the Web page in favor of another. In addition to executing one or more
JavaScript statements, you can also have an event handler call a user-defined or built-in function.

3 8 4 H T M L & W e b D e s i g n T i p s & T e c h n i q u e s

Tip&Tec / HTML & Web Design Tips & Techniques / Anderson, King, Jamsa / 9394-8 / Chapter 8

Figure 8-4 Message box displayed each time the Web browser unloads the Web page

P:\010Comp\Tip&Tec\394-8\ch08.vp
Thursday, January 03, 2002 4:51:45 PM

Color profile: Generic CMYK printer profile
Composite Default screen

For example, the onClick event handler in the <a> tag of the following HTML statements tells the
Web browser to call the user- defined function youWannaLeave() when the visitor clicks the <a>
tag’s hyperlinked text:

<html>

<head>

<script>

<!--

function youWannaLeave()

{

alert("Leaving so soon?");

}

// -->

</script>

</head>

<body>

<h1>HTML & Web Design Tips & Techniques</h1>

<p>Go to <a href="http://www.NVBizNet.com"

onClick="youWannaLeave()">NVBizNet.com.</p>

</body>

</html>

Thus, using an event handler to execute a statement or to call a function is a two-step process.
First, identify the Web page object with which you wish to associate the event. Second, insert the
event handler you want to use into the object’s HTML tag as eventHandler=“statement”’ or
eventHandler=“functionName()”. In the first example of the current Tip, in which the event relates
to unloading the body (that is, the content) of the Web page itself, you inserted the onUnload event
handler in the <body> tag. Similarly, in the second example, in which the event relates to the visitor’s
click of a hyperlink, you inserted the onClick event handler in the hyperlink’s <a> tag. The following
Tip contains a table that shows you a list of all of the JavaScript event handlers and the action of the
visitor or Web browser for which the event handler is waiting. For now, the important things to
understand are that you place event handlers in the HTML tags, and you can use event handlers to
execute one or more statements or to call a function.

Looking Closer at JavaScript Event Handlers
Event handlers are special items you use within HTML tags to have the Web browser execute a
JavaScript statement or call a function when the visitor clicks or moves the mouse over items on
the Web page. In fact, JavaScript provides an event handler for just about anything a user can do to
interact with a Web page. In addition, JavaScript even provides event handlers such as onLoad and
onUnload that deal with actions the browser takes on the Web page itself. Moreover, you can use
onResize and onMove to watch for the visitor moving or changing the size of the Web browser
application window.

C h a p t e r 8 : J a v a S c r i p t 3 8 5

Tip&Tec / HTML & Web Design Tips & Techniques / Anderson, King, Jamsa / 9394-8 / Chapter 8

P:\010Comp\Tip&Tec\394-8\ch08.vp
Thursday, January 03, 2002 4:51:45 PM

Color profile: Generic CMYK printer profile
Composite Default screen

3 8 6 H T M L & W e b D e s i g n T i p s & T e c h n i q u e s

Tip&Tec / HTML & Web Design Tips & Techniques / Anderson, King, Jamsa / 9394-8 / Chapter 8

The first column in Table 8-7 lists the names of the available event handlers. The table’s second
column (on the right) explains the visitor or Web browser action that triggers each event along with
the HTML tags in which you can insert the event handler. To use an event handler to execute a JavaScript
function or statement(s), select the object on the Web page you want the Web browser to monitor.
Then, insert the name of the event handler along with the statement(s) the Web browser is to execute or
function it is to call in the tag you used to put the object on the page as eventHandler=“Statement(s)”
or eventHandler=“functionName()”.

Event Handler Occurs When

onAbort Visitor aborts the loading of an image (for example, by clicking a hyperlink
or the browser’s Stop button).
Tag:

onBlur Visitor removes the input focus from a window, frame, or form element.
Tags: <body>, <frame>, <frameset>, <ilayer>, <input>, <layer>, <select>

onChange Visitor changes the value in a form element such as a text area or text field,
or makes a new selection on a selection list.
Tags: <input>, <select>

onClick Visitor clicks a hyperlink or a form element such as a checkbox, pushbutton,
radio button, Reset button, or Submit button.
Tags: <a>, <area>, <body>, <input>

onDoubleClick Visitor double-clicks a hyperlink or a form element such as a checkbox,
pushbutton, radio button, Reset button, or Submit button.
Tags: <a>, <area>, <body>, <input>

onDragDrop Visitor drags and drops an object onto the Web browser window.
Tags: <body>, <frame>, <frameset>

onError Browser encounters an error when loading an image or Web page.
Tags: <body>, <frame>, <frameset>,

onFocus Visitor moves the input focus to a window or form element.
Tags: <body>, <frame>, <frameset>, <ilayer>, <input>, <layer>, <select>

onKeyDown Visitor depresses a key on the keyboard.
Tags: <a>, <body>, <frame>, <frameset>, , <input>

onKeyPress Visitor presses or holds down a key in a text area form element.
Tags: <a>, <body>, <frame>, <frameset>, , <input>

onKeyUp Visitor releases a key in a text area form element.
Tags: <a>, <body>, <frame>, <frameset>, , <input>

Table 8-7 JavaScript Event Handlers, Descriptions of Events They Handle, and the Tags in
Which You Can Insert Them

P:\010Comp\Tip&Tec\394-8\ch08.vp
Thursday, January 03, 2002 4:51:45 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Suppose, for example, that you want the Web browser to call a user-defined function
named calculateTotals() when the visitor clicks a particular pushbutton on a form. Insert

the onClick event handler in the pushbutton’s definition as shown by the last item in the following
<input> tag:

<form>

<input type="button" name="CalcTotals" value="Calc"

onClick="calculateTotals()">

</form>

Then, as a result of the onClick event handler in the <input> tag in the current example, the Web
browser will execute the statements in the calculateTotals() function whenever the visitor clicks the
button named CalcTotals.

C h a p t e r 8 : J a v a S c r i p t 3 8 7

Tip&Tec / HTML & Web Design Tips & Techniques / Anderson, King, Jamsa / 9394-8 / Chapter 8

Event Handler Occurs When

onLoad After the browser loads a Web page or image.
Tags: <body>, <frame>, <frameset>, , <layer>

onMouseDown Visitor depresses a mouse button.
Tags: <a>, <body>, <input>

onMouseOut Visitor moves the mouse pointer out of an image map area or off of a hyperlink.
Tags: <a>, <ilayer>, <layer>

onMouseOver Visitor moves the mouse pointer into an image map area or onto a hyperlink.
Tags: <a>, <ilayer>, <layer>

onMouseUp Visitor releases a mouse button.
Tags: <a>, <body>, <input>

onMove Visitor or script moves the application window.
Tags: <body>, <frame>, <frameset>

onReset Visitor clicks the Reset button on a form.
Tag: <form>

onResize Visitor or script changes the size of the application window.
Tags: <body>, <frame>, <frameset>

onSelect Visitor selects text in a form text area or text field.
Tag: <input>

onSubmit Visitor clicks the Submit button on a form.
Tag: <form>

onUnload Before the browser replaces the Web page with another Web page.
Tags: <body>, <frame>, <frameset>

Table 8-7 JavaScript Event Handlers, Descriptions of Events They Handle, and the Tags in
Which You Can Insert Them (continued)

P:\010Comp\Tip&Tec\394-8\ch08.vp
Thursday, January 03, 2002 4:51:46 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Creating an Interactive Navigation Bar
with a Mouseover Effect
During your travels among sites on the Web, you have no doubt come across navigation bars (or menus)
whose buttons change appearance as you move the mouse pointer over them. JavaScript lets you create
navigation bars that exhibit similar mouseover effects. All you need are two different graphics images
for each button on the navigation bar and onMouseOver() and onMouseOut() event handlers in the <a>
tag that defines the hyperlink anchored to each button on the menu bar. For example, you can use
HTML statements similar to the following to display a navigation menu such as the one shown in
Figure 8-5.

<html>

<body>

<table>

<tr>

<td width="87" height="34">

<img border="0" src="images/YellowChoice1.jpg"

width="87" height="34"></td>

<td width="87" height="34">

<img border="0" src="images/YellowChoice2.jpg"

width="87" height="34"></td>

<td width="87" height="34">

<img border="0" src="images/YellowChoice3.jpg"

width="87" height="34"></td>

</tr>

</table>

</body>

</html>

By inserting a picture between a set of start and end hyperlink anchor tags(<a>), you can use
the graphics image as you would hyperlinked text. When the visitor clicks anywhere on a graphics
image (button) in the navigation bar, the browser retrieves the Web page named by the href attribute
in the <a> tag that precedes each picture.

To add a mouseover (also called a rollover) effect to the navigation bar, you need the
Web browser to change the graphics image displayed when the site visitor moves the

mouse pointer over any one of the buttons on the menu. Therefore, you need two graphics images,
one for when the mouse pointer is over the menu button and one for when it is not. (For best results,
make sure the two images are approximately the same size.) Next, you need to declare a JavaScript
function similar to the following that will swap images by changing the image src property in the
document’s images array. (When you replace one image with another in the images array, the Web

3 8 8 H T M L & W e b D e s i g n T i p s & T e c h n i q u e s

Tip&Tec / HTML & Web Design Tips & Techniques / Anderson, King, Jamsa / 9394-8 / Chapter 8

P:\010Comp\Tip&Tec\394-8\ch08.vp
Thursday, January 03, 2002 4:51:46 PM

Color profile: Generic CMYK printer profile
Composite Default screen

TE
AM
FL
Y

Team-Fly®

browser automatically displays the new image onscreen in place of the original image in the browser’s
application window.)

<script language="JavaScript">

<!--

function newImage(ImageIndex, NewButton)

{

//generate the pathname to the new image file

NewButton = "images/"+NewButton+".jpg"

//substitute the new image for the existing image

document.images[ImageIndex].src = NewButton

return;

}

// -->

</script>

The first statement in the newImage() function uses the string passed in the NewButton parameter
to generate the pathname of the image the Web browser is to display onscreen. The function’s second
executable statement then replaces the pathname of the current image in the src property of the document’s
images array with the pathname of the new image the browser is to display. (The value of the ImageIndex
parameter tells the function which src property in the array to replace.) After you declare—preferably in
the header section of the Web page—a function (such as newImage()) that swaps image pathnames, you
need only to add the onMouseOver and onMouseOut events to each <a> tag as follows:

<table>

<tr>

<td width="87" height="34">

<a href="Figure8-3.htm"

onMouseOver="newImage(0,'CyanChoice1')"

onMouseOut="newImage(0,'YellowChoice1')">

<img border="0" src="images/YellowChoice1.jpg"

width="87" height="34"></td>

<td width="87" height="34">

<a href="Figure8-3.htm"

onMouseOver="newImage(1,'CyanChoice2')"

onMouseOut="newImage(1,'YellowChoice2')">

<img border="0" src="images/YellowChoice2.jpg"

C h a p t e r 8 : J a v a S c r i p t 3 8 9

Tip&Tec / HTML & Web Design Tips & Techniques / Anderson, King, Jamsa / 9394-8 / Chapter 8

Figure 8-5 Graphics “buttons” on a static navigation bar

P:\010Comp\Tip&Tec\394-8\ch08.vp
Thursday, January 03, 2002 4:51:47 PM

Color profile: Generic CMYK printer profile
Composite Default screen

width="87" height="34"></td>

<td width="87" height="34">

<a href="Figure8-3.htm"

onMouseOver="newImage(2,'CyanChoice3')"

onMouseOut="newImage(2,'YellowChoice3')">

<img border="0" src="images/YellowChoice3.jpg"

width="87" height="34"></td>

</tr>

</table>

The onMouseOver event handler tells the Web browser to call the newImage() function each time
the visitor places the mouse pointer over the hyperlink, that is, over the graphics image “button” on
the navigation bar. Similarly, the onMouseOut event tells the Web browser to call the newImage()
function when the visitor moves the mouse pointer off the hyperlink (that is, of the graphics image)
on the navigation bar. When you review the code, you will see that the onMouseOver event handler
passes a new (cyan versus yellow) image to the newImage() function while the onMouseOut event
handler passes the original (yellow) image specified by the src attribute within the tag to the
newImage() function. As a result, the navigation bars “buttons” appear as shown in Figure 8-5, except
for the one button over which the site visitor has placed the mouse pointer, which appears as shown
in Figure 8-6.

Taking Advantage of the Scripting Object Model Arrays
JavaScript “sees” a Web page as a set of properties and objects stored in an array named document. The
properties that the Web browser stores in the document array include the Web page foreground (that is,
text), background, and hypertext colors, cookies, form elements, images, and so on. By modifying the
values stored in the document array, you can change not only the appearance of a Web page but also the
objects on the page. For example, you might read the contents of the document.cookies property to
determine settings the visitor previously selected for Web page background and text colors. You could
then set the values of document.bgColor and document.fgColor to change the colors of the background
and Web page text (respectively) to the selections the visitor made. After changing the Web page colors,
you would likely also set the values of document.linkColor and document.vlinkColor to change the colors
of unvisited and visited hyperlink text so that neither is the same color as the Web page background or its
nonhyperlinked text. In short, the elements in the document array let you change the Web page content and
appearance based on cookie values or visitor input at the Web browser.

3 9 0 H T M L & W e b D e s i g n T i p s & T e c h n i q u e s

Tip&Tec / HTML & Web Design Tips & Techniques / Anderson, King, Jamsa / 9394-8 / Chapter 8

Figure 8-6 A navigation bar with a middle button exhibiting a mouseover effect

P:\010Comp\Tip&Tec\394-8\ch08.vp
Thursday, January 03, 2002 4:51:47 PM

Color profile: Generic CMYK printer profile
Composite Default screen

To set or view a Web page property, start with the word document, add a dot(.), and then
the name of the property. For example, the following JavaScript—when inserted after the

start <body> tag in the Web page HTML—will display the Web page title, URL, and date last modified
as part of the Web page:

<script>

<!--

document.write ("Web Page Title: " +

document.title + "
");

document.write ("URL/Web Address: " +

document.URL + "
");

document.write ("Last modified on: " +

document.lastModified + "
");

//-->

</script>

In addition to the properties that describe the Web page and the way it looks, the document array also
includes arrays that in turn hold the properties of the objects inserted on the page. Web page objects
described by their own arrays within the document array include anchors, applets, embeds, forms, frames,
images, links, and plug-ins. The Web browser puts information about each of the objects on a Web page
into the array that bears the object’s name. For example, the browser puts the properties of plug-ins into the
document.plugins array, the properties of hyperlinks into the document.links array, the properties of images
into the document.images array, and so on.

You can reference the properties of objects on the Web page through the document array in the
same manner that you referenced the properties of the Web page itself as: document.objectType
[ObjectTypeIndex].property. For example, you access the value of the src attribute (or URL) of the
third image on the Web page as document.images[2].src. (Remember, the first element in a JavaScript
arrays has an index of zero (0), so the third element has an index of two (2) and not three (3).)

The form element in the document array is a special case. Not only is the form element an array
(like the images, links, and plugins objects) to let you address each of perhaps several forms on a
Web page, but the document.forms element is itself an array. Therefore, whereas you can address the
properties of a form (such as its name, method, action, and so on) as document.forms[FormIndex].
property, you address the properties of each of the elements on a form as documents.forms[FormIndex].
elements[ElementIndex].property. The Web page shown in Figure 8-7 has five objects: three graphics
images, one form, and three hyperlinks. Note that the two graphics buttons (Submit and Clear) near
the bottom of the page in this example are actually hyperlinked images, thus count as both image and
hyperlink objects.

As the Web browser displays the objects on the Web page shown in Figure 8-7, the browser puts
the properties of the graphics image inserted with the first tag in the Web page HTML into the
first element of the document images array: document.images[0]. Similarly, the browser stores the
properties of the second graphic it finds in the Web page HTML (the Submit button graphic) into the
second element of the document images array: document.images[1]. Moreover, the browser stores
the properties of the third image on the page (the Reset button graphic) into the third element of the
document images array: document.images[2]. (As is the case with all other objects on the Web page,

C h a p t e r 8 : J a v a S c r i p t 3 9 1

Tip&Tec / HTML & Web Design Tips & Techniques / Anderson, King, Jamsa / 9394-8 / Chapter 8

P:\010Comp\Tip&Tec\394-8\ch08.vp
Thursday, January 03, 2002 4:51:48 PM

Color profile: Generic CMYK printer profile
Composite Default screen

the browser stores the properties of each image in its object type (in this case, images) array in the
order in which it finds the tags in the Web page HTML.)

The browser stores the properties (name, length, action method, and so on) of the first (and only)
form on the current Web page into the first element of the document forms array: document.forms[0].
Like a Web page itself, a form normally has more than one element. (The form in the current example
has three elements: the three text input fields.) To store the properties of a form’s elements, the Web
browser must create the document forms array as an array of elements arrays. After doing so, the Web
browser can store the properties of the elements of the form in the current example in document.forms[0].
elements[0], document.forms[0].elements[1], and document.forms[0].elements[2]. (The browser
stores the form element properties in the document.forms elements array in the order in which they
are defined on the form.) Finally, the browser stores the properties of the three hyperlinks on the page
in the current example in the document links array elements: document.links[0], document.links[1],
and document.links[2] in the order in which it finds the hyperlink <a> in the Web page HTML. (The
Web has three hyperlinks—one anchored to each of the buttons at the bottom of the form and the
third anchored to the text “NVBizNet.Com” at bottom of the page.)

Referring to Web Page Objects by
Name Instead of Position Number
In the preceding Tip, you learned how to use the document array to access the properties of the
objects on a Web page. However, to work with an object’s properties you must first determine the
object’s position (or index) in the document array. To determine the index, count the HTML tags
used to insert objects of the same type, until you reach the tag for the object you want. After you
know the object’s index, you can reference any of the object’s properties as document.objectType

3 9 2 H T M L & W e b D e s i g n T i p s & T e c h n i q u e s

Tip&Tec / HTML & Web Design Tips & Techniques / Anderson, King, Jamsa / 9394-8 / Chapter 8

Figure 8-7 A Web page with five JavaScript addressable objects

P:\010Comp\Tip&Tec\394-8\ch08.vp
Thursday, January 03, 2002 4:51:48 PM

Color profile: Generic CMYK printer profile
Composite Default screen

[ObjectTypeIndex].property. For example, to set the src attribute (or property) of the third image on
a Web page, you might tell the Web browser to execute the JavaScript statement:

document.images[2].src = "images/NVBizNet.JPG";

JavaScript arrays use zero-based indexing, which means that the third array element resides at
document.images[2]. Therefore, the preceding statement will change the source (or pathname) of the
image inserted on the Web page by the third tag. (After you change the src property of an image
in the document images array, the Web browser will change the image displayed on the Web page.)

Referring to Web page objects by number becomes tedious if there are many of the same type on
the page. Suppose, for example, that you want to replace an image near the end of a Web page with
another picture. You must first determine the image’s index in the document array by counting the
 tags that precede the tag whose src property you want to change. If you have twenty
or thirty thumbnail images on the page, you will be doing a lot of counting, which will increase your
likelihood of making an error.

Conversely, if you name a Web page object, you can then work with the object’s
properties by name as document.ObjectName.property. For example, if the Web page

HTML includes the following tag:

<img name="logo" width="78" height="61"

src="images/picture.GIF">.

Without counting the number of tags that precede the tag whose src attribute you
want to change, you can replace the image on the Web page with another picture by telling the Web
browser to execute a JavaScript statement such as this:

document.logo.src = "images/NVBizNet.JPG";

Although the current example only shows you how to use an object’s name in place of an array
name and index value, the same holds true for the other types of objects as well. In other words, if an
object on a Web page includes the name attribute in the tag that inserts the object on the page, you
can replace objectType[ObjectTypeIndex] with the name of the object and write the JavaScript
reference to one of the object’s properties as document.ObjectName.property.

Leveraging the Contents of the Document Object
Before the Web browser draws a Web page onscreen, the browser creates a document object. As it
reads the Web page HTML, the browser stores Web page attribute values (such as background color,
foreground color, title, and so on) in the document object. The browser also adds to the document
object arrays in which the browser stores the properties of forms, hyperlinks, images, and Java
applets inserted on the page.

One way in which to take advantage of the document object is to fill in form elements for your
visitor. Suppose, for example, that you have a Web page with an order form. Rather than have a

C h a p t e r 8 : J a v a S c r i p t 3 9 3

Tip&Tec / HTML & Web Design Tips & Techniques / Anderson, King, Jamsa / 9394-8 / Chapter 8

P:\010Comp\Tip&Tec\394-8\ch08.vp
Thursday, January 03, 2002 4:51:48 PM

Color profile: Generic CMYK printer profile
Composite Default screen

3 9 4 H T M L & W e b D e s i g n T i p s & T e c h n i q u e s

Tip&Tec / HTML & Web Design Tips & Techniques / Anderson, King, Jamsa / 9394-8 / Chapter 8

customer fill in the name, shipping address, and billing information each time he or she places an order,
store these values in a cookie on the visitor’s hard drive. You can than retrieve the cookie values
previously stored from the document object’s document.cookie property and use them to fill in the
form elements within the document object’s document.forms array.

Another way to use the document object is to prevent visitors from linking directly to
a Web page within the members-only section of a Web site. The document.referrer

property gives the URL of the Web page with the hyperlink used to get to the current page. If the
character string stored in document.referrer is blank or does not include your site’s domain name,
your script can have the browser load the login screen by executing a statement similar to this:

self.location = "http://www.NVBizNet.com/login.htm"

(Document.referrer is blank when the visitor types the URL into the browser Address field or
clicks a bookmark or favorite.) In this example, the Web browser displays the login page (login.htm)
rather than the Web page the visitor requested.

The following sections discuss Web page properties and object arrays you can access in the
browser-created document object. At the end of each description, you will find the format for or an
example of a JavaScript statement you can include in a script to view and (in some cases) change the
value of a Web page property. (Properties of the document object’s images and links object arrays are
discussed in the next two Tips.)

alinkColor alinkColor is the color of the “active” hyperlink on the Web page. A hyperlink is “active”
during the brief moment after the visitor clicks it and before the Web browser follows the hyperlink
to another Web page. To set the color you want the Web browser to use when displaying an “active”
hyperlink, execute a JavaScript statement in the form document.alinkColor = ActiveLinkColor (where
ActiveLinkColor is a hexadecimal triplet that gives the RGB color values in the form “#RRGGBB”).

anchors This is a read-only array of “named” hyperlinks (that is, anchor objects) whose <a> tags
include a name attribute. You can only use the anchors property to retrieve the number of “named”
hyperlinks on the Web page with a JavaScript statement such as AnchorCount = document.
anchors.length.

applets This is an array of methods and properties from all Java applets defined between start and
end applet tags (<applet></applet>) on the Web page. You can access any public properties and
execute any public methods defined in a Java applet on a Web page by referring to a public applet
property as document.applets[AppletIndex].property and a public applet method with: document.
applets[AppletIndex].method(). If the <applet> tag has a name attribute, you can use document.
AppletName.property and document.AppletName.method(). To retrieve the number of Java applets
on a Web page, execute a JavaScript statement such as AppletCount = document.applets.length.
(You will learn more about Java applets in the Java chapter later in this book.)

bgColor This is the current color of the Web page background. You can change the color of the
Web page background with a statement such as document.bgColor = BackgroundColor (where
BackgroundColor is a hexadecimal triplet that gives the RGB color values in the form “#RRGGBB”).

P:\010Comp\Tip&Tec\394-8\ch08.vp
Thursday, January 03, 2002 4:51:49 PM

Color profile: Generic CMYK printer profile
Composite Default screen

cookie A cookie is a string of up to 4,096 (4K) characters that you can store on the site visitor’s hard
drive. (You will learn how to create and save a cookie in a Tip later in this chapter.) To retrieve a
cookie’s name and value pairs into a string you can parse, tell the Web browser to execute a statement
such as CookieValue = document.cookie.

domain This is the domain name of the Web server that sent the Web page to the browser. You can
retrieve the Web server’s domain name with a statement such as DomainName = document.domain.
(The Web browser uses the information in the domain property as the filename of the document’s
cookie file.)

embeds An array of fields and methods from all objects inserted on the Web page using the start
and end embedded object tags (<embed></embed>). (Typically, you embed files, for which the Web
browser must use a plug-in to display—such as QuickTime (.mov) files.) If the embedded object is
Java-enabled, you can access one of its fields as document.embeds[EmbeddedObjectIndex].field (or
by name as document.EmbeddedObjectName.field, if the <embed> tag has a name attribute). You can
execute a method in a Java-enabled embedded object as document.embeds[EmbeddedObjectIndex].
method() (or by name as document.EmbeddedObjectName.method(), if the <embed> tag includes a
name attribute). To retrieve the number of embedded objects on a Web page, execute a JavaScript
statement such as EmbeddedObjectCount = document.embeds.length.

fgColor This is the color of the Web page text content not modified by a color attribute in a
tag. To change the color of the text, execute a statement such as document.fgColor = TextColor
(where TextColor is a hexadecimal triplet that gives the RGB color values in the form “#RRGGBB”).

forms This is an array of properties and methods for all form objects on the Web page. The chapter
on HTML forms (earlier in this book) discusses the methods and properties available for each form
object and for each of the elements within the form objects. In general, you can access a form property
with document.forms[FormIndex].property (or document.FormName.property) and a form method
with a JavaScript statement in the form document.forms[FormIndex].method() (or document.
FormName.method()). To work the property of an element on the form, in turn, use a JavaScript
statement in the form document.forms[FormIndex].elements[ElementIndex].property (or document.
FormName.ElementName.property). Similarly, to execute a form element’s method, refer to the
method you want to use in a JavaScript statement as document.forms[FormIndex].elements
[ElementIndex].method() (or document.FormName.ElementName.method()).

images This is an array of properties for images inserted on the Web page with tags. The
read-only image properties you can retrieve are name, border, complete, height, width, vspace, and
hspace. You can also use JavaScript to retrieve and modify an image’s lowsrc and src properties. To
access an image property use document.images[ImageIndex].property or document.ImageName. property.

lastModified This is a read-only character string that contains the local date and time at which the
Web page was last modified. To retrieve the lastModified property, use a JavaScript statement such
as LastModified = document.lastModified.

Tip&Tec / HTML & Web Design Tips & Techniques / Anderson, King, Jamsa / 9394-8 / Chapter 8

C h a p t e r 8 : J a v a S c r i p t 3 9 5

P:\010Comp\Tip&Tec\394-8\ch08.vp
Thursday, January 03, 2002 4:51:49 PM

Color profile: Generic CMYK printer profile
Composite Default screen

3 9 6 H T M L & W e b D e s i g n T i p s & T e c h n i q u e s

Tip&Tec / HTML & Web Design Tips & Techniques / Anderson, King, Jamsa / 9394-8 / Chapter 8

linkColor The color of unvisited hyperlinks on the Web page. To set the color you want the Web
browser to use when displaying unvisited hyperlinks, execute a JavaScript statement such as document.
linkColor = LinkColor (where LinkColor is a hexadecimal triplet that gives the RGB color values in
the form “#RRGGBB”).

links This is an array with the properties of the hyperlinks on the Web page. The hyperlink properties
you can access and modify through the links array are hash, hostname, host, href, pathname, port, protocol,
search, and frame. To work with a property of a particular hyperlink, use document.links[LinkIndex].
property or document.LinkName.property.

referrer This is a read-only string with the Web address of the Web page that contains the hyperlink
the visitor used to get to the current page. For example, if the site visitor clicked a hyperlink on the
Web page index.htm at NVBizNet.com to get to the current Web page, you can retrieve the full URL
of the index.htm Web page on the NVBizNet.com Web site with a statement such as CameFromURL
= document.referrer. (The value of document.referrer will be blank if the visitor retrieved the current
Web page by entering a URL into the browser’s Address field or if the visitor selected the current
page from the browser’s list of favorites.)

title This is a read-only string with the title of the current Web page as defined by the text between
start and end title tags (<title></title>). You can retrieve the value of the Web page title with a statement
such as PageTitle = document.title.

url This is a read-only string with the full URL (that is, the Web address) of the current Web page.
You can retrieve the value of the URL with a statement such as CurrentURL = document.url.

vlinkColor This is a the color of previously visited hyperlinks on the Web page. To set the color you
want the Web browser to use when displaying previously visited hyperlinks, execute a JavaScript
statement such as document.vlinkColor = LinkColor (where LinkColor is a hexadecimal triplet that
gives the RGB color values in the form “#RRGGBB”).

Taking Advantage of the JavaScript Images Array
The Web browser stores the properties of each image inserted on the Web page in the images array. As
you learned in the preceding Tip, the images array is a part of the document object in which the Web
browser stores all the objects on and properties of the current Web page. Each time the browser finds an
 tag in the Web page HTML, it adds another element to the images array in the document object.

Using the document.images array, you can change the graphics images displayed on a Web page.
In a previous Tip (“Creating an Interactive Navigation Bar with a Mouseover Effect”), you learned
how to create a mouseover effect by using the document.images array to swap one graphic for another
whenever a visitor moved the mouse pointer over an image on the page. You might also use the
document.images array to enhance the experience of visitors with dial-up Internet connections by

P:\010Comp\Tip&Tec\394-8\ch08.vp
Thursday, January 03, 2002 4:51:49 PM

Color profile: Generic CMYK printer profile
Composite Default screen

C h a p t e r 8 : J a v a S c r i p t 3 9 7

Tip&Tec / HTML & Web Design Tips & Techniques / Anderson, King, Jamsa / 9394-8 / Chapter 8

letting the visitor decide whether to display high resolution (slower-loading) images or lower
resolution alternates.

Say for example that you have a page with a large number of images. High resolution color images
tend to have large file sizes, which means that the the Web browser may take an unacceptably long
time to load such images over a low-bandwidth (dial-up) Internet connection. Therefore, prior to
displaying a Web page with a gallery of images, use a form element on a prior page to ask the visitor
which version of the images he or she wants to see. (Visitors with high speed connections will most
likely choose the higher resolution images.) Then, when you display the Web page with the images,
set the src property of each image (document.images[ImageIndex].src) to the URL of the high resolution
(larger file size) image or to the lower resolution version of the picture based on the visitor’s form input.

Using a script at the Web browser to change the images displayed on a Web page is faster than the
traditional method that would require a server-side script to retrieve and process the visitor’s form
input and then use a processor such as ASP or PHP to generate a new Web page. Swapping images
in a script at the Web browser eliminates the transfer overhead of sending additional requests to the
Web server and the time it would take the Web server to rebuild the Web page. The browser-based
script works with the page the browser already received from the Web server—simply changing the
URLs of the images and leaving the remainder of the Web page HTML intact.

The following sections discuss properties the browser stores in each of the images array’s elements.
At the end of each description, you will find the format for a JavaScript statement you can use in a
script to view (and in the case of the lowsrc and src properties, change) the value of an image property.
Although the majority of the properties are read-only, you can use the (updateable) “src” property to
change images on the Web page on-the-fly. For example, by creating two versions of a graphic, one
plain and one highlighted, you can create a mouseover effect by having the Web browser swap the
highlighted graphic for the plain one when the visitor moves the mouse pointer over the image.

border This is a read-only value that specifies the width in pixels of the border around an image.
You can retrieve the value of the border attribute specified in the picture’s tag with a JavaScript
statement in the form BorderWidth = document.images[ImageIndex].border or BorderWidth =
document.ImageName.border.

complete This is a read-only Boolean value that remains false until the Web browser has finished
retrieving the image file from the Web server. For example, you can use the following while loop to wait
for an image to download from the Web server before swapping it for another image on the Web page:

while (!document.ImageName.complete)
{

}

height This is a read-only value that gives the height of the image in pixels. You can retrieve
the picture’s height with a JavaScript statement of the form ImageHeight = document.images
[ImageIndex].height or ImageHeight = document.ImageName.height.

P:\010Comp\Tip&Tec\394-8\ch08.vp
Thursday, January 03, 2002 4:51:50 PM

Color profile: Generic CMYK printer profile
Composite Default screen

hspace This is a read-only value that gives the number of pixels of blank space the Web browser is
to leave between the picture and adjacent content (or the Web page margin) to the left and right of
the graphics image. You can retrieve the value of hspace with a JavaScript statement of the form
HorizontalSpace = document.images[ImageIndex].hspace or HorizontalSpace = document.
ImageName.hspace.

lowsrc This is the pathname of the low-resolution image the Web browser is to load to give the
visitor something at which to look while the browser downloads the normal, high-resolution picture
specified by the tag’s src attribute. You can set the value of lowsrc with a JavaScript statement
in the form document.images[ImageIndex].lowsrc = LowResImagePathname or document.ImageName.
lowsrc = LowResImagePathname.

name This is a read-only string with the name assigned to the graphics image by the name attribute
in the tag. You can retrieve the value of the image name with a JavaScript statement of the
form ImageName = document.images[ImageIndex].name.

src This is the pathname of the graphics image you want the Web browser to display on the Web
page. You can change the graphics image displayed by setting the value of the src property with a
JavaScript statement of the form document.images[ImageIndex].src = NewImagePathname or
document.ImageName.src = NewImagePathname.

vspace This is a read-only value that gives the number of pixels of blank space the Web browser is
to insert above and below the picture and content adjacent to the graphics image on the Web page.
You can retrieve the value of vspace with a JavaScript statement of the form VerticalSpace =
document.images[ImageIndex].vspace or VerticalSpace = document.ImageName.vspace.

width This is a read-only value that gives the width of the image in pixels. You can retrieve
the picture’s width with a JavaScript statement of the form ImageWidth = document.images
[ImageIndex].width or ImageWidth = document.ImageName.width.

Exploiting the JavaScript Links Array
The document object’s links array lets you work with the properties of hyperlinks inserted on the
Web page with <a> tags and hotspots on images as defined by <area> tags. Both Netscape Navigator
and Internet Explorer (version 4 and above) let you modify (as well as display) the properties of links
array elements. Therefore, you can change, on-the-fly, the Web page (or other file) the Web browser
loads when the visitor clicks a hyperlink. As such, you can create a banner ad by writing a script that
changes the image displayed on a page as well as the URL of the Web page the browser will retrieve
when the visitor clicks on the banner image. Similarly, you can have hyperlinks move to different
portions of a Web page (or to different Web pages altogether) based on the time of day or day of the
week—all without having to change the Web page at the Web server either manually or through a
server-side script.

3 9 8 H T M L & W e b D e s i g n T i p s & T e c h n i q u e s

Tip&Tec / HTML & Web Design Tips & Techniques / Anderson, King, Jamsa / 9394-8 / Chapter 8

P:\010Comp\Tip&Tec\394-8\ch08.vp
Thursday, January 03, 2002 4:51:50 PM

Color profile: Generic CMYK printer profile
Composite Default screen

TE
AM
FL
Y

Team-Fly®

As it reads the Web page HTML, the browser fills the document object’s links array with the
properties of all <a> tags (that is, hyperlinks) and image map hotspot <area> tags the browser finds,
in the order in which it encounters the tags. The following sections discuss properties the browser
stores about each hyperlink in the links array’s elements. At the end of each description, you will find
the format for a JavaScript statement you can use in a script to view or change the value of the
property described.

hash This is the portion of the href attribute in a hyperlink anchor that includes the hash mark (#)
and the name of the fragment identifier that follows the hash mark (#). If the visitor clicks a hyperlink
that has a fragment identifier, the Web browser will display the portion of the Web page that starts
with an <a> tag whose name attribute is set to the value of the fragment identifier. You can retrieve
the name of the fragment identifier from the hyperlink’s href attribute with a statement of the form
FragmentIdentifier = document.links [LinkIndex].hash. Conversely, you can change the fragment
identifier (thereby pointing the hyperlink to a new location within a Web page) with a statement of
the form document.links[LinkIndex].hash = NewFragmentIdentifier.

host This is the IP address or domain name portion of a hyperlink’s href attribute value. For a given
hyperlink, the value of the host property differs from the value of the hostname property (discussed
next) only in that the host property includes the port number (80, by default) that the Web browser
is to use when communicating with the Web server. To retrieve the domain name (or IP address),
including port number, from a hyperlink, execute a statement such as HostNameWithPort =
document.links[LinkIndex].host or HostNameWithPort = document.links[LinkIndex].host.

hostname This is the IP address or domain name portion of a hyperlink’s href attribute value.
You can retrieve the value of the hostname in a hyperlink with a JavaScript statement of the form
HostName = document.links[LinkIndex].hostname. You can also change the domain name (or IP
address) in a hyperlink with document.links[LinkIndex].hostname = NewHostName.

href This is the value of the hyperlink’s target address (including the bookmark, if any) assigned
to the href attribute in the hyperlink’s <a> tag or <area> tag. You can retrieve the hyperlink’s target
address with a JavaScript statement of the form HyperlinkTarget = document.links[LinkIndex].href.
You can also change a hyperlink’s target by assigning a new value to the href property with a
JavaScript statement of the form document.links.[LinkIndex].href = NewTargetAddress.

pathname This is the pathname portion of a URL. For example, given the hyperlink Client List, the pathname property
will contain the string “/htdocs/clients.htm” on Netscape Navigator and “htdocs/clients.htm” on
Internet Explorer. You can retrieve a hyperlink’s pathname with a statement of the form Pathname =
document.links[LinkIndex].pathname. You can also change the pathname of the Web page retrieved
by clicking the hyperlink, by assigning a new value to the pathname property with a statement of the
form document.links[LinkIndex].pathname = NewPathname. (When assigning a new pathname, be sure
to include the leading slash [/] in the new pathname for both Internet Explorer and Netscape Navigator.)

Tip&Tec / HTML & Web Design Tips & Techniques / Anderson, King, Jamsa / 9394-8 / Chapter 8

C h a p t e r 8 : J a v a S c r i p t 3 9 9

P:\010Comp\Tip&Tec\394-8\ch08.vp
Monday, January 07, 2002 1:40:01 PM

Color profile: Generic CMYK printer profile
Composite Default screen

port This is the port number on which to communicate with the Web server. The port number, if
present, follows the domain name or IP address. For example, in a hyperlink with a href attribute
value of “http://www.NVBizNet.com:80/clients.htm”, the port number is 80. You can retrieve the
port number with a statement of the form PortNumber = document.links[LinkIndex].port. A
hyperlink need not include a port number, because the Web browser will set the port number to 80,
by default. Internet explorer will return “80” unless the hyperlink specifies a different port number;
Netscape Navigator will return no port number unless the hyperlink includes one.

protocol This is the delivery protocol portion of the hyperlink’s target. You will find the delivery
protocol at the beginning of the hyperlink’s href attribute before the two forward slashes (//). The
protocol, which indicates the way in which the Web browser is to retrieve its target Web page or
other file, may be one of the following:

• file The browser is to retrieve the document from a local computer or from a disk on a local
computer or network workstation

• ftp The browser is to retrieve the document using an FTP program

• gopher The browser is to retrieve the document using the Gopher protocol

• http The browser is to retrieve a Web page

• mailto The browser is to launch the system’s default e-mail program and create a message
to the address specified in the hyperlink

• JavaScript The hyperlink points to a file with JavaScript statements

You can retrieve the value of a hyperlink’s protocol property with a JavaScript statement of the
form DeliveryProtocol = document.links[LinkIndex].protocol.

search This is the query string portion of the hyperlink’s href attribute, including the leading
question mark (?). If present in the hyperlink, the query string follows a question mark (?). When the
visitor clicks the hyperlink’s anchor text or graphics image, the browser passes the query string to a
CGI program on the Web server for processing. You can retrieve the value of a hyperlink’s search
property with a JavaScript statement of the form SearchString = document.links[LinkIndex].search.
You can also change the search string with a statement in the form documents.links[LinkIndex].search =
SearchString (where SearchString is a string such as “?fname=konrad&lname=king”).

target This is the name of the window or frame in which the Web browser is to display the document
it retrieves when the visitor clicks the hyperlink’s anchor text or graphics image. By default, the browser
will replace the Web page in the current window with the new Web page. However, if the hyperlink’s
<a> tag includes a target attribute setting other than “_self ”, the Web browser will leave the original
Web page onscreen and display the Web page it retrieves in a different window or frame. You can
retrieve the name of a hyperlink’s target frame or window with a JavaScript statement of the form
FrameName = document.lists[ListIndex].target. You can also change the hyperlink’s target window
or frame with a statement in the form document.lists[ListIndex].target = NewFrameName.

4 0 0 H T M L & W e b D e s i g n T i p s & T e c h n i q u e s

Tip&Tec / HTML & Web Design Tips & Techniques / Anderson, King, Jamsa / 9394-8 / Chapter 8

P:\010Comp\Tip&Tec\394-8\ch08.vp
Thursday, January 03, 2002 4:51:51 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Changing Web Page Colors Using JavaScript
When you design a Web page, you may want to specify a color scheme so that the page will look
the same to all visitors and not change foreground, background, and hyperlink colors based on the
browser’s settings. Unfortunately, no matter how good the color scheme looks on your own system,
some visitors may have problems viewing your content if you use colors other than the default black
text on a white or gray background. For example, colorblind visitors may not be able to see one or
more of the colors you used, or you may have specified colors beyond the capabilities of the visitor’s
display. Whatever the reason for the problem, you can use a JavaScript function to get around the
“color issue” by letting visitors select a color scheme they find more appealing.

Table 8-8 lists the Web page properties you can use to change the colors the Web browser is using
to display the page text, background, and hyperlinks. Remember, the browser stores all the Web page
properties in a document object as it reads the Web page HTML. To change the Web page color scheme,
you need only to change the values of the document object’s color properties.

The following JavaScript function will set the Web page color scheme based on the value of the
ColorScheme parameter passed to the function by the Web browser. Although the selectScheme()
function has only two color schemes, you can add additional selections by adding more else if {…}
statement blocks that set the five document color properties to other values:

<script>

<!--

function selectScheme(ColorScheme)

{

if (ColorScheme == "1")

{

document.alinkColor = "#008080"; //Teal

document.bgColor = "#FFFFE0"; //Light Yellow

document.fgColor = "#A52A2A"; //Brown

document.linkColor = "#008000"; //Green

document.vlinkColor = "#FF00FF"; //Magenta

}

else if (ColorScheme == "2")

{

document.alinkColor = "Ivory";

document.bgColor = "Lightblue";

document.fgColor = "Magenta";

document.linkColor = "Darkred";

document.vlinkColor = "SlateGray";

}

return;

}

//-->

</script>

C h a p t e r 8 : J a v a S c r i p t 4 0 1

Tip&Tec / HTML & Web Design Tips & Techniques / Anderson, King, Jamsa / 9394-8 / Chapter 8

P:\010Comp\Tip&Tec\394-8\ch08.vp
Thursday, January 03, 2002 4:51:51 PM

Color profile: Generic CMYK printer profile
Composite Default screen

After you declare the preceding function in the Web page header, you need only make it accessible
to the site visitor by inserting a button or a hyperlink with an onClick event handler that calls the
function. For example, the following code will place two buttons on the Web page:

<form>

<input type="button" value="Color Scheme 1"

onClick="selectScheme(1)">

<input type="button" value="Color Scheme 2"

onClick="selectScheme(2)">

</form>

If the visitor clicks either button, the Web browser will call the selectScheme() function, which in
turn, will change the colors of the background, foreground, and hyperlinks on the page.

Storing a Cookie on the Visitor’s Hard Drive
A “cookie” is a string with up to 4,096 (4K) characters that you can tell the Web browser to store on
a visitor’s hard drive. Cookies give you a way to store information about the site visitor that you can
retrieve each time the visitor returns to the site—so long as the visitor uses the same Web browser
and computer system. Each Web browser type stores all cookie data in a single file unique to the
browser. As such, if you use Internet Explorer on one visit to a site and Netscape Navigator on the
next, Netscape Navigator will not retrieve the cookies previously saved by Internet Explorer.

Without cookies, you have no way of determining what happened the last time the visitor came to
the site—or even if the visitor has ever been to your site before. If you store a cookie on the visitor’s hard
drive, the Web browser can retrieve information saved to the cookie file during subsequent visits. For
security reasons, the Web browser can only write data to and read data from a cookie file as opposed
to writing and reading files with private information on your hard drive. Moreover, the script on a
Web page can only read cookies written by scripts on Web pages from the same domain (that is, Web
pages sent from the same Web server).

4 0 2 H T M L & W e b D e s i g n T i p s & T e c h n i q u e s

Tip&Tec / HTML & Web Design Tips & Techniques / Anderson, King, Jamsa / 9394-8 / Chapter 8

Property Description

alinkColor The color of the hyperlink as the visitor clicks it

bgColor The Web page background color

fgColor The color of the Web page nonhyperlink text

linkColor The color of unvisited hyperlinks

vlinkColor The color of visited hyperlinks

Table 8-8 Document Object Color Properties

P:\010Comp\Tip&Tec\394-8\ch08.vp
Thursday, January 03, 2002 4:51:51 PM

Color profile: Generic CMYK printer profile
Composite Default screen

C h a p t e r 8 : J a v a S c r i p t 4 0 3

Tip&Tec / HTML & Web Design Tips & Techniques / Anderson, King, Jamsa / 9394-8 / Chapter 8

To set a cookie, that is to add a cookie to the cookie file on the visitor’s hard drive,
execute a JavaScript statement in the following form:

document.cookie = "CookieName=Cookievalue [;expires=ExpDate]
[;domain=DomainName][;path=Pathname][;secure]

The only required values when saving a cookie are the cookie’s name and text data you want to
save. The following sections discuss the optional values you can store with a cookie.

expires This is the date (in GMT format) when the cookie expires. After a cookie expires, the Web
browser will no longer provide its value to any script and will remove the cookie from the cookie file.
If you do not supply an expiration date, the cookie will be available only until the visitor exits the
Web browser. If you set the cookie to expire prior to the local date and time, the Web browser will
remove the cookie from the cookie file.

domain By default, scripts on Web pages from the same domain as the Web page that wrote the
cookie can retrieve the cookie’s value. By adding a domain value to the cookie, you can further
restrict access to specific Web servers within the domain. For example, if a script on a Web page
from NVBizNet.com wrote the cookie, scripts on Web pages from NVBizNet.com and SQLServer.
NVBizNet.com can retrieve the cookie’s data. If you set domain=“SQLServer.NVBizNet.com” when
you save the cookie, only scripts on Web pages sent from the SQLServer.NVBizNet.com Web site
will be able to read the cookie.

path By default, any Web page from the same path as the Web page that created the cookie can
retrieve the cookie from the cookie file. By adding a pathname to the cookie, you can specify the
path from which a Web page must come in order to have access to the cookie. For example, if a
script on a Web page from “/htdocs” stored the cookie, Web pages stored in “/htdocs”, “/htdocsabc”,
“htdocs/xyz”, and so on can retrieve the cookie. If you include path=“/htdocs/cookieddocs/” when
you save the cookie, only Web pages stored on a path that starts with “/htdocs/cookiedocs” can read
the cookie. Similarly, if you include path=“/”, the script on any Web page from the Web site can
retrieve the cookie, because the path for every Web page on the site starts with “/” (the site’s root).

secure If you add the secure keyword when storing the cookie, only Web pages sent over a secure
(HTTPS) connection can read the cookie’s value.

The following JavaScript statements add two cookies to the cookie file. The first cookie (named Email)
expires July 14, 2002. Meanwhile, the second cookie (named pwd) has the same expiration date; however,
only browsers with a secure (HTTPS) connection to the Web server can read the cookie:

<script>

<!--

document.cookie =

"Email=kki@NVBizNet.com;expires=Sun, 14 Jul 2002 00:00:00 GMT";

document.cookie =

"pwd=king;expires=Sun, 14 Jul 2002 00:00:00 GMT;secure";

P:\010Comp\Tip&Tec\394-8\ch08.vp
Thursday, January 03, 2002 4:51:52 PM

Color profile: Generic CMYK printer profile
Composite Default screen

4 0 4 H T M L & W e b D e s i g n T i p s & T e c h n i q u e s

Tip&Tec / HTML & Web Design Tips & Techniques / Anderson, King, Jamsa / 9394-8 / Chapter 8

// -->

</script>

Formatting Cookie Data Using JavaScript
In the preceding Tip, you learned how to save cookie data to a file on the visitor’s
computer. Unfortunately, the format of the cookie data is easy to forget, and calculating

GMT-formatted expiration dates is tedious at best. As such, you may want to include the following
setCookie() function between start and end script tags (<script></script>) in the header section of
Web pages that need to store cookies:

function setCookie(CookieName,CookieValue,ExpDate,Domain,Path,

Security)

{

var CookieData = CookieName;

//store letters and numbers as themselves, but store any

//symbols or spaces in the cookie value as an ASCII code

CookieData = CookieData + "=" + escape(CookieValue);

//check for optional parameters values

if (ExpDate.value != "")

CookieData = CookieData + "; expires=" +

ExpDate.toGMTString();

if (Domain != "")

CookieData = CookieData + "; domain=" + Domain;

if (Path != "") CookieData = CookieData + "; path=" + Path;

if (Security == "secure") CookieData = CookieData + "; secure"

//insert the cookie in the cookie file

document.cookie = CookieData;

return ;

}

The setCookie() function in this example accepts the cookie name, value, expiration date, domain,
path, and security restrictions and puts them into the required format before inserting the cookie within
the cookie file.

After you include the setCookie() function in your Web page header, you can tell the browser to call the
function with cookie data you want to save. Suppose, for example, that your Web page has the following
form definition, which asks the visitor to enter a first name, last name, and e-mail address:

<form name="RegistrationForm">

<table>

P:\010Comp\Tip&Tec\394-8\ch08.vp
Thursday, January 03, 2002 4:51:52 PM

Color profile: Generic CMYK printer profile
Composite Default screen

C h a p t e r 8 : J a v a S c r i p t 4 0 5

Tip&Tec / HTML & Web Design Tips & Techniques / Anderson, King, Jamsa / 9394-8 / Chapter 8

<tr><td>First Name:</td>

<td><input type="text" name="fname" size="20"></td></tr>

<tr><td>Last Name:</td>

<td><input type="text" name="lname" size="20"></td></tr>

<tr><td>E-mail:</td>

<td><input type="text" name="email" size="20"></td></tr>

<tr><td><input type = "button" value = "Register"

onClick="visitorSignIn(RegistrationForm)"></td></tr>

</table>

</form>

When the visitor clicks the Register button at the bottom of the form, the browser calls the
visitorSignIn() function, which in turn, validates the form data and then calls the setCookie()
function. To use the form, declare the visitorSignIn() function between the start and end script
tags (<script></script>) in the Web page header:

function visitorSignIn(Form)

{

if (Form.fname.value == "") return false;

if (Form.lname.value == "") return false;

if (Form.email.value == "") return false;

//Generate an expiration date one year from today

var ExpDate = new Date ();

ExpDate.setTime (ExpDate.getTime() +

(365 * 24 * 60 * 60 * 1000));

//Write the cookies that store the first name, last name,

//and e-mail address

setCookie("FirstName",Form.fname.value,ExpDate,"","/","");

setCookie("LastName",Form.lname.value,ExpDate,"","/","");

setCookie("eMailAddr",Form.email.value,ExpDate,"","/","");

//load another Web page

self.location = "htdocs/LoggedIn.htm"

}

The first three statements of the visitorSignIn() function tell the browser to return to the registration
form if any of the form’s fields are blank. The three calls to the setCookie() function near the end of
the visitorSignIn() function store data in the form’s fields as three cookie values in the cookie file.

P:\010Comp\Tip&Tec\394-8\ch08.vp
Thursday, January 03, 2002 4:51:52 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Retrieving a Cookie Value from the Cookie File
As you learned from a previous Tip in this chapter, the Web browser creates an object named document
when it receives a Web page from the Web server. The browser stores Web page properties and the
properties of the objects inserted on the page in the document object. In addition, the browser reads
the cookie file and stores in the document.cookie property the name/value pairs from cookies that
scripts on the Web page can use. Before you can use a specific cookie’s value, you must extract the
value from the string of all available cookie names and values in the document.cookie property.

The following JavaScript function will return a single cookie’s value from the document
object’s cookie property:

function cookieValue(FirstChar)

{

//Semicolons separate the cookie name/value pairs in

//document.cookie property. Find the index of first

//semicolon that follows the start of the cookie value

var LastChar = document.cookie.indexOf (";", FirstChar);

if (LastChar == -1)

LastChar = document.cookie.length;

return unescape(document.cookie.substring(FirstChar, LastChar));

}

The unescape() function in the last statement of the cookieValue() function converts escape
sequences in the cookie’s value to the ASCII symbol they represent. Remember, in the preceding Tip,
you used the escape() function when you stored the cookie value. As a result, the browser stored
“kki@NVBizNet.com” in the cookie file as “kki%40NVBizNet.com”. The unescape() function
converts the escape sequence “%40” back into an at sign (@) symbol.

Before you can call the cookieValue() function, however, you must know where the value of the
cookie you want starts among the string of all cookie name/value pairs in document.cookie. The following
function will find the first character in the value of the cookie whose name you pass to the function in
the CookieName parameter. After it calls the cookieValue() function, the getCookieValue() function
will return the cookie value associated with the name you passed to the function in the CookieName
parameter:

function getCookieValue(CookieName)

{

CookieName = CookieName + "=";

var NameLength = CookieName.length;

var CookieLength = document.cookie.length;

var FirstChar = 0;

var LastChar = 0;

while (FirstChar < CookieLength)

4 0 6 H T M L & W e b D e s i g n T i p s & T e c h n i q u e s

Tip&Tec / HTML & Web Design Tips & Techniques / Anderson, King, Jamsa / 9394-8 / Chapter 8

P:\010Comp\Tip&Tec\394-8\ch08.vp
Thursday, January 03, 2002 4:51:53 PM

Color profile: Generic CMYK printer profile
Composite Default screen

{

LastChar = FirstChar + NameLength;

if (document.cookie.substring(FirstChar, LastChar) ==

CookieName)

return cookieValue (LastChar);

//go 1 character past the space between cookie name/value pairs

FirstChar = document.cookie.indexOf(" ", FirstChar) + 1;

if (FirstChar == 0) break;

}

return null;

}

Therefore, to retrieve cookie values from the document.cookie property by name, first declare the
cookieValue() and getCookieValue() functions between start and end script tags (<script></script>) in
the Web page header. You can then insert a script such as the following in the body of the Web page
to retrieve and display the names and e-mail address from cookies stored in the preceding Tip, as shown
in Figure 8-8:

<script>

<!--

document.RegForm.fname.value = getCookieValue("FirstName");

document.RegForm.lname.value = getCookieValue("LastName");

document.RegForm.email.value = getCookieValue("eMailAddr");

// -->

Removing a Cookie from the Cookie File
As the browser scans the cookie file, looking for cookies to add to the document object’s cookie
property for the current Web page, it removes any cookies that have expired. Remember, when you
save a cookie, you save the expiration date along with the cookie’s name and value. Because each
cookie increases the cookie file’s size and the cookie file can hold at most 200 cookies for any single

C h a p t e r 8 : J a v a S c r i p t 4 0 7

Tip&Tec / HTML & Web Design Tips & Techniques / Anderson, King, Jamsa / 9394-8 / Chapter 8

Figure 8-8 A form with data retrieved from cookie values stored in document.cookie

P:\010Comp\Tip&Tec\394-8\ch08.vp
Thursday, January 03, 2002 4:51:53 PM

Color profile: Generic CMYK printer profile
Composite Default screen

domain, you want to delete cookies you no longer need. Because the Web browser automatically
removes expired cookies from the cookie file, simply set the expiration date of the cookie you want
to delete to a date and time in the past.

If you declare the following function between a set of start and end script tags
(<script></script>) in your Web page html (preferably in the header section),

you can call the deleteCookie() function anytime you want to delete a cookie:

function deleteCookie (CookieName)

{

document.cookie = CookieName +

"= ; expires=Thu, 01 Jan 1970 00:00:01 GMT";

return

}

The deleteCookie() function “expires” the cookie by setting the cookie’s expiration date to the
earliest usable date (one second past midnight on 01 January 1970). Because the correct local time
on any computer is long after the 01 January 1970 at present, calling deleteCookie() will cause a
Web browser to delete from the cookie file the cookie whose name you pass to the function in the
CookieName parameter. Suppose, for example, that you previously stored a cookie named toDelete.
If you execute the statement deleteCookie(“toDelete”); (as shown near the end of the following code
sample), the Web browser will remove the cookie, as shown in Figure 8-9:

<html>

<head>

<script language="JavaScript">

<!--

function deleteCookie (CookieName)

{

document.cookie = CookieName +

"= ; expires=Thu, 01 Jan 1970 00:00:01 GMT";

return

}

// -->

</script>

<body>

<h1>HTML & Web Design Tips and Techniques</h1>

<h2>Deleting Cookie Values </h2>

<h3>Cookies available before calling "deleteCookie()"</h3>

<script language="JavaScript">

<!--

document.write('<p>cookie = ' + document.cookie+'</p>');

deleteCookie ("toDelete");

document.write('<h3>Cookies available AFTER calling ' +

4 0 8 H T M L & W e b D e s i g n T i p s & T e c h n i q u e s

Tip&Tec / HTML & Web Design Tips & Techniques / Anderson, King, Jamsa / 9394-8 / Chapter 8

P:\010Comp\Tip&Tec\394-8\ch08.vp
Thursday, January 03, 2002 4:51:53 PM

Color profile: Generic CMYK printer profile
Composite Default screen

TE
AM
FL
Y

Team-Fly®

'"deleteCookie()"</h3>');

document.write("<p>cookie = " + document.cookie+'</p>');

// -->

</script>

</body>

</html>

Saving Time and Programming
by Using Prewritten (External) Scripts
As you add to your JavaScript library, you will no doubt write some functions and scripts you can use
on several Web pages. The cookie maintenance and display functions you saw in the previous three
Tips are a good example. You could simply cut and paste the functions to set, retrieve, and delete
cookies between start and end script tags (<script></script>) on each Web page that needs them.
However, by using the src attribute in a <script> tag to include an external script file, you can save
the time you would otherwise spend searching for and copying JavaScript code into your Web pages.
Moreover, telling the Web browser to read code stored in other files reduces the amount of “clutter”
in your HTML document, which lets you zero in on the tags you need to change to keep the site’s
content up to date.

To tell the Web browser to include functions and scripts stored in external files, add the
src attribute to the start <script> tag as <script src=“RelativePath/ScriptFilename”>.

Suppose, for example, that you store script files in a folder named scripts and Web pages in the
hotdocs folder—both at your Web site’s root. To include functions (or scripts) stored in the scripts
folder on a Web page stored in the htdocs folder, the HTML would look something like this:

<head>

<script src="../scripts/GetCookieValue.js"></script>

</head>

C h a p t e r 8 : J a v a S c r i p t 4 0 9

Tip&Tec / HTML & Web Design Tips & Techniques / Anderson, King, Jamsa / 9394-8 / Chapter 8

Figure 8-9 Cookies available before and after causing a cookie to expire

P:\010Comp\Tip&Tec\394-8\ch08.vp
Friday, January 04, 2002 12:36:02 PM

Color profile: Generic CMYK printer profile
Composite Default screen

4 1 0 H T M L & W e b D e s i g n T i p s & T e c h n i q u e s

Tip&Tec / HTML & Web Design Tips & Techniques / Anderson, King, Jamsa / 9394-8 / Chapter 8

The ../scripts in the code sample is the relative path to the script file you want the browser to include.
In this case, the HTML tells the browser it can find the script file relative to the current Web page (stored
in the htdocs folder) by moving up one level in the folder hierarchy (to the Web site’s root folder),
and then down one level to the scripts folder. If you were to include the same script file in a Web
page (such as index.htm) stored at the root of the Web site, your <script> tag would read as follows:

<head>

<script src="scripts/getCookieValue.js"></script>

</head>

In this case, the path relative to the current Web page tells the browser to start from the current
folder (the Web site’s root) and move down one level into the scripts folder. You can include as many
sets of start and end script tags (<script></script>) as necessary to include the files with the scripts
and functions you need on the Web page. For example, if you stored the cookie management functions
you learned about in the previous three Tips in three files, the HTML you would use to include the
files would look like this:

<head>

<script src="../scripts/SetCookie.js"></script>

<script src="../scripts/GetCookieValue.js"></script>

<script src="../scripts/DeleteCookie.js"></script>

</head>

Note that scripts you save in external files have no start and end script tags (<script></script>).

Creating an Animation Using the onLoad Event
You create an animation on a Web page by displaying one image after another in rapid succession.
Each picture in an animation, like each frame in a movie, is slightly different from the one that
precedes it. Your mind perceives motion (that is animation) as objects in one location in a picture
seem to “move” to a new location when the Web browser replaces the current image with the next.

By adding the onLoad event to an tag, you can tell the Web browser to replace the
image the tag inserts on the page with another picture each time the browser is finished

loading an image. To get a feel for how the process works, you must understand that the Web browser
activates the onLoad event handler after the browser loads (that is, displays) the image on the Web
page. Thus, the following tag will display the picture Frame1.jpg. Then the browser will
trigger the onLoad event handler, which, in turn, will call the (user-defined) nextImage() function:

<img name="animation" src="images/Frame1.jpg"

onLoad="nextImage(document.animation.src)">

P:\010Comp\Tip&Tec\394-8\ch08.vp
Thursday, January 03, 2002 4:51:55 PM

Color profile: Generic CMYK printer profile
Composite Default screen

C h a p t e r 8 : J a v a S c r i p t 4 1 1

Tip&Tec / HTML & Web Design Tips & Techniques / Anderson, King, Jamsa / 9394-8 / Chapter 8

The nextImage() function creates the animation effect. As shown by the following code, each time
the Web browser calls nextImage(), the function changes the src property of the image named animation
in the document object’s images array. Changing the src property causes the Web browser to load
(that is, display) another image, which, in turn, triggers the onLoad event, and the process repeats:

<script>

<!--

function nextImage(ImageSource)

{

var i = ImageSource.indexOf (".jpg",0);

var NextFrame = ImageSource.substring(i-1, i);

if (NextFrame == "1")

document.animation.src = "images/Frame2.jpg";

else if (NextFrame == "2")

document.animation.src = "images/Frame3.jpg";

else if (NextFrame == "3")

document.animation.src = "images/Frame4.jpg";

else

document.animation.src = "images/Frame1.jpg";

return;

}

// -->

</script>

The animation displayed by the preceding code has four frames (that is, four different pictures)
and repeats indefinitely. To stop the animation sequence after it plays once, remove the two statements
just before the function’s return; statement. If you do not load the first image again after you load the
last, the browser will call nextImage() once more after loading Frame4.jpg. However, during the final
pass, nextImage() makes no change to the document object’s src property, because none of the function’s
if statements evaluate to true. As a result, the animation stops, because the Web browser does not
trigger the onLoad event again, because the function did not tell the browser to load another picture.

Displaying Self-Changing Banners Using JavaScript
Banner ads—almost every business-oriented Web site has them. The concept is simple, display a small
graphic image that advertises a company or product. Rather than fill the entire screen with advertisements
(and drive your visitors away permanently), you can display an (unlimited) series of advertisements
in a small area onscreen by replacing one picture with another at timed intervals. In fact, displaying
banner ads is a lot like creating an animation (which you learned about in the preceding Tip). Both
animations and self-changing banner ads require the Web browser to display a series of pictures, one
after another. With a banner ad, however, you want the browser to leave each picture onscreen for
5–10 seconds, so that the visitor has enough time to view the ad.

P:\010Comp\Tip&Tec\394-8\ch08.vp
Thursday, January 03, 2002 4:51:55 PM

Color profile: Generic CMYK printer profile
Composite Default screen

To create a self-changing (rotating) banner, include an onLoad event handler such as the
following in the Web page HTML’s <body> tag:

<body onLoad="rotateBanner('images/Banner1.jpg')">

In this case, the onLoad event handler tells the Web browser to call the user-defined function
rotateBanner() after the browser loads (displays) the Web page in the application window. Although
a JavaScript function can change the image displayed on a Web page, a function cannot add a new
image to the page. As such, you must display the initial banner graphic by inserting an tag
similar to that shown near the middle of the following HTML, somewhere in the Web page body:

<h1>HTML & Web Design Tips and Techniques</h1>

<h2>Rotating Banner Ad</h2>

<table>

<tr><td></td>

</tr>

</table>

Finally, declare a rotateBanner() function similar to the following between start and end script
tags (<script></script>) in the header section of your Web page HTML:

function rotateBanner(BannerSrc)

{

var TimerID

//swap the picture

document.banner.src = BannerSrc;

//wait for timeout and call myself to swap next picture

if (BannerSrc == "images/Banner1.jpg")

TimerID = setTimeout("rotateBanner('images/Banner2.jpg')",5000);

else if (BannerSrc == "images/Banner2.jpg")

TimerID = setTimeout("rotateBanner('images/Banner3.jpg')",5000);

else if (BannerSrc == "images/Banner3.jpg")

TimerID = setTimeout("rotateBanner('images/Banner4.jpg')",5000);

else

TimerID = setTimeout("rotateBanner('images/Banner1.jpg')",5000);

return;

}

Each time rotateBanner() changes the src property of the image named animation in the document
object’s images array, the Web browser will display the new image onscreen. The built-in setTimeout()
function creates the “rotating” banner effect by calling the rotateBanner() function recursively every
five seconds to change the banner on the Web page. The syntax of the setTimeout() function call may
appear a bit confusing at first. However, the idea is the function evaluates the expression supplied as
the first parameter after the number of milliseconds specified in the second parameter. Thus, given

4 1 2 H T M L & W e b D e s i g n T i p s & T e c h n i q u e s

Tip&Tec / HTML & Web Design Tips & Techniques / Anderson, King, Jamsa / 9394-8 / Chapter 8

P:\010Comp\Tip&Tec\394-8\ch08.vp
Thursday, January 03, 2002 4:51:55 PM

Color profile: Generic CMYK printer profile
Composite Default screen

C h a p t e r 8 : J a v a S c r i p t 4 1 3

Tip&Tec / HTML & Web Design Tips & Techniques / Anderson, King, Jamsa / 9394-8 / Chapter 8

the syntax TimerID = setTimeout(“expression”, DelayInMilliseconds), the first call to setTimeout() in
the example script tells the browser to call the rotateBanner() function after 5,000 milliseconds (that
is, after 5 seconds), and pass the pathname of the “next” banner to display (images/Banner2.jpg). To
display your own banner ads, simply replace the pathnames in the example with the pathnames of
your banner ad graphics and adjust the millisecond delay in each setTimeout() function call to the
amount of time you want each ad to stay onscreen. You can increase or decrease the number of ads
by inserting or removing else if statements.

Note that almost all (and perhaps all) banner ads let visitors click the banner ad graphic to follow a
hyperlink to the Web page with the advertised product or service for sale. In the next tip, you will learn
how to change not only the graphics image, but also the hyperlink associated with the banner ad.

Pointing Hyperlinks to New Files On-the-Fly
When a visitor clicks hyperlinked text or on an image map hotspot, the Web browser retrieves the
Web page (or other file) specified by the href attribute in the hyperlink’s <a> tag. Normally, you
want the Web browser to retrieve the same file every time the visitor clicks a particular hyperlink.
Sometimes, however, you may find it convenient to point the hyperlink to a new file based on the
date or the graphics image onscreen when the visitor clicks the mouse. Fortunately, the links array
in the documents object has three properties you can change to point a hyperlink to a new file: hash,
pathname, and href.

The hash property lets you change everything to the right of a hash mark (#) in the
hyperlink. As such, the hash property lets you change the name of the target bookmark

without changing the file the browser will retrieve. Suppose, for example, that you have a hyperlink
such as the following, which points to a bookmark named monday on the events.htm Web page:

Today's Events

Assuming this is the first hyperlink on the page, you can execute the statement: document.links[0].hash
= “tuesday” to change the hyperlink’s target to “http://www.NVBizNet.com/htdocs/events.htm#tuesday”.
Therefore, if events.htm has a bookmarked section for each day of the week, you can use a single
hyperlink to move to the current day’s section whenever the visitor clicks the anchor text Today’s
Events. You need only write a script that uses the date object’s getDay() method to determine the day
of the week and then assigns the current day to the hash property each time the browser loads the
Web page.

The pathname property lets you change everything between the domain name and the hash mark
(#) in the hyperlink. As such, the pathname property lets you change the pathname of the file you
want the browser to retrieve without changing the domain name or bookmark (if any). Suppose, for
example, that you have a hyperlink such as the following, which points to a file named Jan.htm in the
/news/2001 folder:

This Month's Birthdays

P:\010Comp\Tip&Tec\394-8\ch08.vp
Thursday, January 03, 2002 4:51:56 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Assuming that this is the second hyperlink on the page, executing the statement document.links[1].
pathname = “/news/2001/Feb.htm” will change the hyperlink’s target to “http://www.NVBizNet.com/
news/2001/Feb.htm#birthday”. (Notice the reference to the “birthday” bookmark was not lost during
the assignment.) Therefore, if you store the company’s monthly newsletters in the /news/2001 folder
on the Web site, you can use a single hyperlink to move to the “birthday” section of the current
month’s newsletter whenever the visitor clicks the anchor text This Month’s Birthdays. You need
only write a script that uses the date object’s getYear() and getMonth() methods to build a pathname
based on the year and month and then assigns the new path and filename to the pathname property
each time the browser loads the page.

The href property lets you change the hyperlink’s entire URL. As such, setting the href property in
the links array has the same effect as specifying a new value for the href attribute in the hyperlink’s
<a> tag. Suppose, for example, that you have a rotating banner and want to let visitors move to a
company’s Web site by clicking the company’s banner ad. First, anchor a hyperlink to the banner
graphic with HTML similar to this:

Next, update the function that rotates the banner ads by adding statements that assign the company’s
Web address to the href property (such as those in the first group of if..else statements in the following
function):

function rotateBanner(BannerSrc)

{

var TimerID

//swap the picture

document.banner.src = BannerSrc;

//update the banner's hyperlink to the company's Web site

if (BannerSrc == "images/Banner1.jpg")

document.links[0].href = "http://www.NVBizNet.com"

else if (BannerSrc == "images/Banner2.jpg")

document.links[0].href = "http://www.NVBizNet2.com"

else if (BannerSrc == "images/Banner3.jpg")

document.links[0].href = "http://www.osborne.com"

else

document.links[0].href = "http://www.mcgrawhill.com"

//wait for timeout and call myself to swap next picture

if (BannerSrc == "images/Banner1.jpg")

TimerID = setTimeout("rotateBanner('images/Banner2.jpg')",5000);

else if (BannerSrc == "images/Banner2.jpg")

TimerID = setTimeout("rotateBanner('images/Banner3.jpg')",5000);

else if (BannerSrc == "images/Banner3.jpg")

TimerID = setTimeout("rotateBanner('images/Banner4.jpg')",5000);

4 1 4 H T M L & W e b D e s i g n T i p s & T e c h n i q u e s

Tip&Tec / HTML & Web Design Tips & Techniques / Anderson, King, Jamsa / 9394-8 / Chapter 8

P:\010Comp\Tip&Tec\394-8\ch08.vp
Thursday, January 03, 2002 4:51:56 PM

Color profile: Generic CMYK printer profile
Composite Default screen

else

TimerID = setTimeout("rotateBanner('images/Banner1.jpg')",5000);

return;

}

Pre-caching Pictures to Reduce Image Display Time
Pre-caching graphics images is a technique by which you tell the Web browser to retrieve pictures
from the Web server now, in anticipation that you may need to display the images later. By telling the
browser to retrieve the pictures in the background (that is, while the visitor is doing other things on
the Web page), you can eliminate the download delay the visitor would experience when clicking a
thumbnail to display a larger picture. Similarly, if your Web page makes extensive use of scripts that
display graphics images for mouseover effects or animations, you will want to pre-cache images not
yet displayed. A pre-cached image will appear onscreen immediately when the browser calls for it
instead of after a (perhaps lengthy) delay while waiting for the Web server to send the image to the
browser. Suppose, for example, that your Web page has the eight thumbnails shown in Figure 8-10.

You can pre-cache the images the browser will display when the visitor clicks the
thumbnails by adding an onLoad event handler to either the Web page <body> tag or to

one of the thumbnail tags. For example, if you add the following onLoad event handler to the
 tag for the last thumbnail displayed in Figure 8-10, the Web browser will call the user-defined
function preCache():

<td>

<img onLoad="preCache()" border="0"

src="images/Pix8_small.jpg"></td>

Your preCache() function, in turn, will be something like this:

function preCache()

{

var Pictures = new Array();

for (i=1; i<=8; i++)

{

Pictures[i] = new Image();

Pictures[i].src = "images/Pix"+i+".jpg";

}

return;

}

After creating a new array named Pictures, the function uses the new Image() constructor to create
new image objects into which it then loads images from the Web server. The Web browser does not
display the images as the function downloads them from the Web site. However, the browser does
store the image files in the system cache. When the visitor clicks one of the thumbnails for a larger

C h a p t e r 8 : J a v a S c r i p t 4 1 5

Tip&Tec / HTML & Web Design Tips & Techniques / Anderson, King, Jamsa / 9394-8 / Chapter 8

P:\010Comp\Tip&Tec\394-8\ch08.vp
Thursday, January 03, 2002 4:51:56 PM

Color profile: Generic CMYK printer profile
Composite Default screen

picture the preCache() function retrieved, the browser can fetch the larger picture from the local
cache (that is, from the local system’s memory or hard drive). Thus, downloading each thumbnail’s
larger image to the system’s cache lets the browser avoid the download delay normally incurred when
the browser has to retrieve the image from the Web server. As a result, the corresponding larger
picture appears onscreen immediately after the visitor clicks a thumbnail. If you decide to pre-cache
graphics images, make sure that the browser loads pictures inserted on the Web page before you call
the preCache() function. After all, your intent is to load images into the system cache so the browser
can display the pictures more quickly if the visitor asks to see them. The last thing you want to do is
to make the visitor wait to see other images while you load a bunch of pictures into the system cache—
especially if the visitor decides not to look at the pictures in the end.

When deciding where to place the onLoad event handler that calls the preCache() function, you
must understand the way the browser retrieves and displays the Web page content. The browser first
writes the text and renders the forms and tables as it finds them in the HTML. Next, the browser
opens several simultaneous connections to the Web server to download graphics images inserted on
the page. If you place the onLoad event handler on the last tag in the Web page HTML, you
can make sure the browser has at least started to download all thumbnails before calling the pre-cache
function. Moreover, if the thumbnails are not all the same size, and you have a choice as to their
arrangement, assign the pathname of the thumbnail with the largest file size to the src attribute of the
last tag. That way, by the time the browser is finished loading the last, largest thumbnail, and the
onLoad event handler calls the preCache() function, the Web browser will have loaded all the thumbnails.

Creating a Scrolling Marquee Using JavaScript
The <marquee> tag has been around for quite some time. Unfortunately, only Internet Explorer
supports the tag at present. As a result, when you use the <marquee> tag to display a line of scrolling
text on your Web site, visitors using Netscape Navigator see a line of regular, nonmoving text.

4 1 6 H T M L & W e b D e s i g n T i p s & T e c h n i q u e s

Tip&Tec / HTML & Web Design Tips & Techniques / Anderson, King, Jamsa / 9394-8 / Chapter 8

Figure 8-10 A Web page with eight thumbnails displayed while the browser loads the
larger images

P:\010Comp\Tip&Tec\394-8\ch08.vp
Thursday, January 03, 2002 4:51:57 PM

Color profile: Generic CMYK printer profile
Composite Default screen

C h a p t e r 8 : J a v a S c r i p t 4 1 7

Tip&Tec / HTML & Web Design Tips & Techniques / Anderson, King, Jamsa / 9394-8 / Chapter 8

Fortunately, JavaScript has timer and string manipulation functions you can use to turn a single-line
text field on a form into the display area for a scrolling text marquee.

To create a scrolling marquee, first define a form with two text fields—a hidden field
to hold the marquee’s text and a visible field in which to display the moving text. For

example, the following HTML will create a form that lets you display a marquee with up to 50 characters
visible at any one time:

<form name="marquee">

<input type="hidden" name="marquee_text"

value=

"Welcome to JavaScript in HTML & Web Design Tips & Techniques!">

<input type="text" name="display_area" size="50">

</form>

If you want to display a different length marquee, change the value of the size attribute to the
maximum number of characters you want displayed onscreen. (Also, be sure to set the value attribute
to the text string you want the marquee to scroll across the screen.) Next, to create the scrolling text
effect, insert the following function between a set of start and end script tags (<script></script>) in
your Web page header:

var StartPos = 0;

function scrollingMarquee()

{

var i

var Padding = 20 ; //number of spaces between repeats

var ScrollingText = document.marquee.marquee_text.value;

var StringLength = document.marquee.marquee_text.value.length;

var TimerID;

//Padding is the number of blanks between the end of the

//scrolling text and the start of the next copy of the text.

for(i=1; i<=Padding; i++) ScrollingText += " ";

ScrollingText += ScrollingText

document.marquee.display_area.value =

ScrollingText.substring(StartPos, StartPos + StringLength +

Padding);

if(StartPos++ == (StringLength + (Padding - 1))) StartPos=0;

//Wait 200 milliseconds before moving right 1 character

TimerID = setTimeout("scrollingMarquee()",200);

}

Remember, you can have as many forms as you want on a Web page, so placing a marquee on a
page does not prevent you from accepting visitor input on another form. Moreover, you can place your
form(s) in a table. As such, you can use a table with hidden borders to place the scrolling marquee (that
is, the form field with the “scrolling” text) exactly where you want it to appear on the Web page.

P:\010Comp\Tip&Tec\394-8\ch08.vp
Thursday, January 03, 2002 4:51:57 PM

Color profile: Generic CMYK printer profile
Composite Default screen

CHAPTER 9

Java Applets and
ActiveX Objects

Tip&Tec / HTML & Web Design Tips & Techniques / Anderson, King, Jamsa / 9394-8 / Front Matter

TIPS IN THIS CHAPTER

� Using an Applet to Create a Pop-Up Navigation Menu 437

� Using an Applet to Animate a Text String 440

� Using an Applet to Display and Print a Calendar for Any Year 442

� Using an Applet to Display a Passage at Random from a Text File 443

� Using an Applet to Create a Navigation Menu that Runs in Its
Own Window 444

� Using an Applet to Scroll the Contents of a File Vertically Within a
Rectangular Box Onscreen 448

� Using an Applet to Animate an Image Along a Sine Wave 450

� Editing Java Source Code to Build a Custom Applet 452

� Using the Microsoft Chat ActiveX Control to Add Internet Chat to a
Web Page 457

� Using Only ActiveX Objects with Internet Explorer 460

P:\010Comp\Tip&Tec\394-8\ch09.vp
Thursday, January 03, 2002 5:26:14 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Copyright 2002 by The McGraw-Hill Companies, Inc. Click Here for Terms of Use.

TE
AM
FL
Y

Team-Fly®

In Chapter 8, you learned how to create scripts using JavaScript that you place within your HTML
files. When a Web browser encounters JavaScript, the browser executes the corresponding statements.

Although JavaScript provides many capabilities you can use to create simple scripts, JavaScript does
not provide the tools programmers need to create multimedia applications that manipulate sounds and
graphics or enable programmers to interact with remote data, such as a corporate database. To develop
high-end applications for the Web, many programmers use the Java programming language.

Specifically, using Java, programmers create Web-based applications, called applets. Using the
HTML <applet> tag, Web developers integrate the Java applet into a Web page, in much the same
way that you would place a graphic within a Web page using the tag. When the browser
encounters an <applet> tag within an HTML page, the browser will download and run the specified
applet from the server. Java applets are well suited for use on the Web because:

• Java applets are generic, meaning that the same applet will run under Windows, Linux, MacOS,
and more (Java’s generic nature makes applets more portable, meaning that programmers can
easily move the applet among different computer types that run different operating systems).

• Java applets cannot access a user’s disk or files, which means that an applet cannot place a
virus on the user’s system, and the applet cannot access information stored on the user’s disk.

This chapter examines the steps you must perform to integrate Java applets into your Web pages.
This chapter also presents several ready-to-run applets you may want to put to immediate use. Java
applets are programs, and Java is a powerful programming language. This chapter will not teach you
how to program in Java. However, this chapter will show you how to download the Java programming
tools and use them to make simple changes to Java programs. From the Web, you can retrieve the
program statements for many Java applets. Often, you can customize the applets by making a few
simple changes to the program code, such as changing the names of files the program manipulates
or text the program displays. This chapter shows you how to make such changes to a Java program
and then how to rebuild the applet to put your changes into effect.

In addition to using Java to implement Web applications, many sites rely on ActiveX objects
(similar to programs) to perform specific tasks. Using an ActiveX object, for example, a Web site
might display a stock ticker or a status bar that indicates the percentage of a task (such as a file
download) that the Web browser has completed. ActiveX objects differ from Java applets as follows:

• ActiveX objects are not generic. Unlike a Java applet that supports Windows, Linux, the Mac,
and more, ActiveX objects exist only for the Windows platform.

• ActiveX objects are not safe. Unlike a Java applet that runs within the browser and that cannot
access a user’s files and disk, an ActiveX object resides on the user’s disk and has access to all
the system’s resources. A malicious ActiveX object, for example, could introduce a virus and
could steal, corrupt, or destroy information on a user’s disk.

Given that ActiveX objects support only Windows and that ActiveX objects are not safe, you may
be wondering why you would want to use ActiveX objects—a fair question. Because ActiveX objects
reside on a user’s system, the objects can interact with Windows. As a result, programmers can create

419

Tip&Tec / HTML & Web Design Tips & Techniques / Anderson, King, Jamsa / 9394-8 /

P:\010Comp\Tip&Tec\394-8\ch09.vp
Thursday, January 03, 2002 5:26:14 PM

Color profile: Generic CMYK printer profile
Composite Default screen

very powerful solutions using ActiveX. Across the Internet, the fact is that most users surf the Web
using Windows. Because ActiveX objects are not safe, you should use only ActiveX objects that you
create yourself, those created by programmers whom you know and trust, and those that you download
from a trusted Web site (such as Microsoft). This chapter will show you the steps you must perform
to integrate ActiveX objects into your Web pages.

Understanding How a Browser Executes a Java Applet
A Java applet resides within a file. For years, Java programmers used the <applet> tag to place a Java
applet within a Web page. As shown here, you use an <applet> tag to reference the applet’s filename:

<applet code="Demo.class">

</applet>

Although browsers still support the <applet> tag, you should use, according to the W3C, the <object>
tag as shown here to insert Java applets within a Web page:

<object code="Demo.class">

</object>

As you examine HTML files that use Java applets, you will find widespread use of the <applet> tag.
The W3C, however, has deprecated the <applet> tag in favor of the <object> tag. In the future, in
theory, browsers may stop supporting the <applet> tag. However, because of the tag’s current widespread
use, browsers will likely continue to support the tag for some time to come. Further, until all browsers
fully support the <object> tag, you may find fewer compatibility problems by using the <applet> tag
as shown throughout this chapter.

When the browser encounters the <applet> tag, the browser must download the applet from the
server, much like the browser must download a graphic when it encounters an tag. Java applet
files use the .class file extension. In this case, the <applet> tag directs the browser to download an
applet file named Demo.class. After the browser downloads the applet file, the browser will execute
the applet’s statements. Figure 9-1 illustrates the process the browser performs to identify, download,
and execute a Java applet.

Normally, when programmers create applications, the program code the programmer writes is
specific to a hardware and operating system platform. For example, a programmer might create an
application that can run on a Intel-based processor (or compatible CPU) running Windows, or the
programmer might create code for a Motorola processor running MacOS. If the programmer must
support both environments (the Mac and Windows), the programmer must create two separate
programs. The Windows-based program will not run on the Mac and vice versa.

In contrast to applications programmers create using other programming languages, Java applets
are not constrained by platform. Rather than program code that is specific to the Intel processor or the
Motorola processor, Java applets contain a generic set of instructions, which programmers refer to as
bytecode. After a browser downloads a Java applet, the browser converts the generic bytecode into
machine-specific code that the user’s CPU can execute. In other words, if the browser is running on a
Windows-based system, the browser converts the bytecode into Intel-specific instructions. Likewise,

4 2 0 H T M L & W e b D e s i g n T i p s & T e c h n i q u e s

Tip&Tec / HTML & Web Design Tips & Techniques / Anderson, King, Jamsa / 9394-8 / Chapter 9

P:\010Comp\Tip&Tec\394-8\ch09.vp
Thursday, January 03, 2002 5:26:15 PM

Color profile: Generic CMYK printer profile
Composite Default screen

if the browser is running on a Mac, the browser converts the bytecode into Motorola-specific instructions.
By using generic bytecode, the same Java applet can run on a variety of platforms, as shown in
Figure 9-2.

C h a p t e r 9 : J a v a A p p l e t s a n d A c t i v e X O b j e c t s 4 2 1

Tip&Tec / HTML & Web Design Tips & Techniques / Anderson, King, Jamsa / 9394-8 / Chapter 9

Figure 9-1 The browser downloads Java applets from a Web server

Figure 9-2 Java applets use generic bytecode, which the browser translates into
machine-specific code, which lets the same applet run on various machine types

P:\010Comp\Tip&Tec\394-8\ch09.vp
Thursday, January 03, 2002 5:26:16 PM

Color profile: Generic CMYK printer profile
Composite Default screen

You may be wondering why all programmers do not simply use Java to create applications that can
run on all system types. The problem with Java’s generic bytecode is that the browser must translate
the program code into a processor-specific program each time the application runs. This translation
process adds overhead, which causes a delay before the program runs. Further, the processor-specific
code the browser generates is often less efficient than the instructions a programming language can
create for a specific processor. Thus, if you run equivalent Java and C++ programs side by side, the
C++ program will normally execute faster. Also, each time the user runs the applet, the browser must
download the applet. In contrast—as you will learn later in this chapter—when a Web site uses an
ActiveX object, the site must download the object only one time. After that, the object will reside on
the user’s disk, and applications that use the object will always use the local copy.

Performance issues aside, however, the generic nature of Java applets is well suited for Web-based
applications that may be run by users using a variety of system types and operating systems. Further,
the Java security model protects users from viruses and other threats present in programs that users
download from the Web.

Understanding Why Java Applets Are Safe to Run
Any time a user downloads an executable program from the Web, the user puts his or her system at
risk of infection from a computer virus or other malicious programs that may try to steal information
that resides on the user’s disks.

Java applets are not stand-alone executable programs. You cannot, for example, download a Java applet
and simply run the applet from within Windows or Unix. Instead, applets can run only within a browser.

When Sun Microsystems developed the Java programming language, the developers focused on
security and the threats to user systems from running programs that users download from the Web.
To eliminate threats such as viruses and information theft, Java applets cannot access resources
(specifically files) that reside on the user’s disk. As shown in Figure 9-3, Java simply does not
provide programmers with the tools they need to perform operations on the user’s PC. Further, Java
applets cannot read system properties, load library files, or open network connections to sites other
than the host from which they were downloaded.

As you have learned, the user’s Web browser executes the Java applet. Programmers refer to the
specific software within the browser that executes applets as the Java Virtual Machine (JVM). When
a browser encounters an <applet> tag within an HTML file, the browser essentially hands off the applet
to the Java Virtual Machine, which, in turn, downloads, translates (the bytecode into processor-specific
code), and executes the applet.

Programmers often refer to the security model that the Java Virtual Machine uses to run applets as
the sandbox. You can think of the sandbox as a security fence that surrounds the applet and keeps the
Java program away from the private areas in memory and your hard drive.

Understanding How a Browser Executes an ActiveX Object
ActiveX objects are like Java applets in that they let you add programs to a Web page. On the Web,
you can find thousands of ActiveX objects (which programmers also call ActiveX controls) that
perform a wide range of tasks, from displaying a message marquee to generating voice output from

4 2 2 H T M L & W e b D e s i g n T i p s & T e c h n i q u e s

Tip&Tec / HTML & Web Design Tips & Techniques / Anderson, King, Jamsa / 9394-8 / Chapter 9

P:\010Comp\Tip&Tec\394-8\ch09.vp
Thursday, January 03, 2002 5:26:16 PM

Color profile: Generic CMYK printer profile
Composite Default screen

text, or that let you implement voice recognition within your programs and Web pages! To locate
ActiveX objects, begin your search at the following Web sites:

• http://activex.microsoft.com/activex/activex/

• http://visualbasic.about.com/cs/activexfree/

• http://webreference.com/programming/activex.html

• http://activex.microsoft.com

• http://zdnet.com/devhead/

ActiveX, unlike Java, is not a programming language. Rather, ActiveX is a means of integrating
objects written in different languages within the Windows environment. Unfortunately, years after its
initial release, ActiveX is still Windows specific (so there are no ActiveX objects for Unix systems
or the Macintosh), and ActiveX support does not come standard in Netscape Navigator. (Microsoft,
Macromedia, and other major software companies provide plug-ins that allow Netscape Navigator to
run ActiveX objects, but these plug-ins do not come standard with the Web browser.)

As with a Java applet, to use an ActiveX object, you place a tag within an HTML file at the location
where you want the object to appear on the Web page. To place an ActiveX object on a page, you use
an <object> tag.

Unlike Java applets, which run within the browser, ActiveX objects must reside on the user’s disk.
If the user visits a Web page that uses an ActiveX object and the user does not have the object installed
on his or her disk, the Web server will try to download the object to the user’s computer. Normally,
depending on the user’s security settings, the Web browser will display a dialog box, similar to that
shown in Figure 9-4, that warns the user that he or she is about to download an ActiveX object.

C h a p t e r 9 : J a v a A p p l e t s a n d A c t i v e X O b j e c t s 4 2 3

Tip&Tec / HTML & Web Design Tips & Techniques / Anderson, King, Jamsa / 9394-8 / Chapter 9

Figure 9-3 To provide a safe downloadable solution, Java applets prevent disk and file
operations

P:\010Comp\Tip&Tec\394-8\ch09.vp
Thursday, January 03, 2002 5:26:17 PM

Color profile: Generic CMYK printer profile
Composite Default screen

4 2 4 H T M L & W e b D e s i g n T i p s & T e c h n i q u e s

Tip&Tec / HTML & Web Design Tips & Techniques / Anderson, King, Jamsa / 9394-8 / Chapter 9

The browser warns the user about ActiveX objects because, unlike Java applets, which have a
security model that prevents them from accessing the user’s files and disk, ActiveX objects are not
safe. An ActiveX object must actually reside on the user’s disk (or more specifically, on the Web
pages that the user visits) before the user can use the object. Furthermore, unlike Java applets, which
execute within a sandbox that prevents the applets from accessing system resources, ActiveX objects
can access all of the files and resources on a computer. After the user downloads an ActiveX object,
a Web page can interact with the object using a scripting language, such as VBScript or JavaScript.

If the visitor is too trusting and accepts an ActiveX object from an unknown Web site, the visitor
might just wind up installing a program that contains a virus or that sends the user’s personal data (or
perhaps the entire contents of the hard drive) to an unauthorized party. As a designer, your job is to
put ActiveX objects only from trusted sources (such as Microsoft, Macromedia, or programmers you
trust) on your Web pages.

Programmers create ActiveX objects using myriad programming languages, such as Visual Basic
and Visual C++. This chapter will not teach you how to write ActiveX objects. Instead, this chapter
shows you how you can integrate existing ActiveX objects into your Web pages.

Placing a Java Applet Within a Web Page
As you have learned, a Java applet is a program that a Web browser runs as part of your Web page
content. To embed an applet in a Web page, you use the start and end applet tags (<applet> </applet>).
Within the <applet> tag, you use the code attribute to specify the filename of the Java applet (which
will have a .class file extension, or a .jar file extension if the applet requires multiple files). You may
also use other attributes that specify the size of the window within which the applet will run as well
as values you want to pass to the applet, such as a text message you want the applet to display.

Figure 9-4 A dialog box warning the user that he or she is about to download an ActiveX object

P:\010Comp\Tip&Tec\394-8\ch09.vp
Thursday, January 03, 2002 5:26:18 PM

Color profile: Generic CMYK printer profile
Composite Default screen

The following tags, for example, will embed an applet that resides in the file appletClassName.class
on a Web page:

<applet code="appletClassName.class" height=150 width=150>

</applet>

When the browser encounters the <applet> tag, the browser must download the applet from the
server, much like the browser must download a graphic when it encounters an tag. In this
example, the Web browser will expect to find the applet file appletClassName.class in the same
folder as the Web page in which you embedded the applet. The height and width attributes tell the
Web browser to give the applet a 150-pixel by 150-pixel viewable area (that is, to make the Java
program’s input-output screen 150 pixels high by 150 pixels wide).

As the original developer of the Java programming language, Sun Microsystems offers many
sample Java applets on its Web site (http://java.sun.com). Figure 9-5, for example, shows a Java
applet that you can use to display a simple analog clock on a Web page.

To get started with Java, you will first use Sun’s analog clock applet, which you can download
from either Sun’s Web site or this book’s Web site at http://www.Osborne.com. When you download
the application, you will actually download a Zip file, named demo.zip, that contains applet’s .class
files (in this case, AnalogClock.class, CustomParser.class, JavaClock.class, and ParamParser.class) to
a folder on your Web site. After you download the Zip file, you must then unzip the file’s contents.
When you unzip the file, place the applet’s .class files in a folder in which you can create an HTML
document that will contain the applet.

Next, create an HTML file, named FirstApplet.html, that contains the following <applet> tag, which
embeds the Java analog clock applet onto a Web page:

<applet code="JavaClock.class" width="150" height="150">

</applet>

Using your browser, open the file FirstApplet.html. When the browser encounters the <applet> tag,
the browser will load the applet file. After the browser translates the applet’s generic bytecode, the
browser runs the applet, displaying the analog clock shown in Figure 9-5.

Although the analog clock applet uses the four .class files previously listed, you specify only one,
JavaClock.class, in the <applet> tag. When you embed an applet that has multiple .class files, the
applet’s documentation will tell you the name of the class to assign to the code attribute.

C h a p t e r 9 : J a v a A p p l e t s a n d A c t i v e X O b j e c t s 4 2 5

Tip&Tec / HTML & Web Design Tips & Techniques / Anderson, King, Jamsa / 9394-8 / Chapter 9

Figure 9-5 The original analog clock applet developed by Sun Microsystems

P:\010Comp\Tip&Tec\394-8\ch09.vp
Thursday, January 03, 2002 5:26:18 PM

Color profile: Generic CMYK printer profile
Composite Default screen

4 2 6 H T M L & W e b D e s i g n T i p s & T e c h n i q u e s

Tip&Tec / HTML & Web Design Tips & Techniques / Anderson, King, Jamsa / 9394-8 / Chapter 9

Specifying the Applet’s Location on a Web Page
An applet, like a picture, takes up space on your Web page, and you locate the applet’s viewable area
(as you do a graphics image) by placing the start and end applet tags (<applet> </applet>) in the Web
page HTML where you want the applet to appear on the page. The Web browser takes care of executing
the Java code in the applet and displaying the results in the applet’s viewable area. Within a Web page,
you treat applets as you do other objects, such as images, text, animations, and video clips—meaning,
in general, that you only have to determine the size of the applet’s output area and where you want
the area to appear on your Web page. For example, the following HTML statements insert the analog
clock applet on a Web page, below the text at the top of the page and between the two images, as
shown in Figure 9-6:

<html>

<body bgcolor="#ADD8E6">

<h1><center>HTML and Web Design Tips & Techniques</center></h1>

<p>The clock appears on the page below this text and between

the two pictures. In this example, the applet's location

is controlled by the location within the Web page HTML of

the tags used to insert the applet on the page. The

applet appears after content inserted before the applet's

tags in the HTML, before content inserted after the

applet's start and end applet tags.</p>

<applet code="JavaClock.class" width="150" height="150">

</applet>

</body>

</html>

Similarly, if you want text to flow around an applet, as shown in Figure 9-7, you would use code
similar to the following:

<html>

<body bgcolor="#ADD8E6">

<h1><center>HTML and Web Design Tips & Techniques</center></h1>

<hr>

This text appears to the right of the first image on the

page. The text flows along the right-hand side of the image

because the align attribute tells the browser to place the

image flush with the left-hand margin.<hr>

P:\010Comp\Tip&Tec\394-8\ch09.vp
Thursday, January 03, 2002 5:26:18 PM

Color profile: Generic CMYK printer profile
Composite Default screen

C h a p t e r 9 : J a v a A p p l e t s a n d A c t i v e X O b j e c t s 4 2 7

Tip&Tec / HTML & Web Design Tips & Techniques / Anderson, King, Jamsa / 9394-8 / Chapter 9

<p><applet align="right" code="JavaClock.class"

width="150" height="150"></applet>

This text is to the left of the second "image"; that is, the

applet on the Web page. Although the text follows the

applet's tags in the Web page HTML, it appears before

(that is, to the left of) the applet because the align tag

tells the browser to put the applet along the right-hand

margin and flow text in the same paragraph with the applet

along the applet's left-hand side. </p>

</body>

</html>

Within the Web page, you can use the align attribute to tell the Web browser where to place text
in relation to both an image and an applet. In this example, align=“left” in the tag tells the
browser to place the image along the left side of the page and to flow text along the picture’s right
side. Similarly, align=“right” in the <applet> tag tells the browser to place the applet flush with the
right margin and float text along the left side of the applet’s viewable area.

When you want an applet—that is, the applet’s viewable area—to appear at a specific location on
the Web page, you can use an HTML table (as you learned from Tips in Chapter 2) or a rule on a
Cascading Style Sheet (as you learned from Tips in Chapter 4). For example, to center an applet on

Figure 9-6 An applet below text and between two images on a Web page

P:\010Comp\Tip&Tec\394-8\ch09.vp
Thursday, January 03, 2002 5:26:19 PM

Color profile: Generic CMYK printer profile
Composite Default screen

4 2 8 H T M L & W e b D e s i g n T i p s & T e c h n i q u e s

Tip&Tec / HTML & Web Design Tips & Techniques / Anderson, King, Jamsa / 9394-8 / Chapter 9

a Web page between two columns of text, as shown in Figure 9-8, you might use a table with zero-width
(hidden) borders, as follows:

<html>

<body>

<h1><center>HTML and Web Design Tips & Techniques</center></h1>

<hr>

<center>

<table border="0">

<tr><td width="150">

Text in the first column of the table appears to

the left of the applet</td>

<td width="150">

<applet code="JavaClock.class"

width="150" height="150"></applet></td>

<td width="150">

Text in the third column (from the left) in the

table appears to the right of the applet, because

the applet itself is in the second column, which

happens to be the center column of a three-column

Figure 9-7 A Web page with an image left aligned and an applet right aligned

P:\010Comp\Tip&Tec\394-8\ch09.vp
Thursday, January 03, 2002 5:26:19 PM

Color profile: Generic CMYK printer profile
Composite Default screen

TE
AM
FL
Y

Team-Fly®

table.</td>

</tr>

</table>

</center>

</body>

</html>

In short, you treat your Java applet as you would an image you insert on a Web page. As with an
image, decide where you want the applet’s rectangular viewable area to appear and then insert the
start and end applet tags (<applet></applet>) in the Web page HTML next to other objects or within
a table cell to position the applet at a specific location on the page.

Passing Parameter Values to an Applet
On the Web, you can find dozens of sites with hundreds of applets you can use on your Web pages.
Some applets come complete with source code you can modify and then compile to customize the
applets to suit your needs. However, most applets let you specify initial values, called parameters,
which you can use to change the applet’s appearance and output without having to do any programming
whatsoever.

When you download an applet from the Web, the documentation the programmer provides with
the applet will tell you the name and purpose of each parameter the applet will accept. To pass values

C h a p t e r 9 : J a v a A p p l e t s a n d A c t i v e X O b j e c t s 4 2 9

Tip&Tec / HTML & Web Design Tips & Techniques / Anderson, King, Jamsa / 9394-8 / Chapter 9

Figure 9-8 A Web page with an applet positioned between columns of text using a table

P:\010Comp\Tip&Tec\394-8\ch09.vp
Thursday, January 03, 2002 5:26:19 PM

Color profile: Generic CMYK printer profile
Composite Default screen

to an applet, you simply insert a <param> tag with the name and value of each parameter you want to
pass between the applet’s start and end applet tags (<applet></applet>), as shown here:

<applet code="AppletName.class"
width="PixelWidth" height="PixelHeight">

<param name="ParameterName1" value="ParameterValue1">
<param name="ParameterName2" value="ParameterValue2">
<param name="ParameterNameN" value="ParameterValueN">

</applet>

To better understand how passing parameter values to a Java applet lets you customize the applet’s
processing, consider Sun Microsystems’ NervousText.class applet that animates the letters in a text
string by bouncing the letters in a nervous fashion, as shown next. You can download the NervousText
applet from the Sun Microsystem Java Web site or from this book’s Web site at http://www.Osborne.com.

After you download and unzip the NervousText applet, you can embed the applet within an HTML
page using the following <applet> tag:

<applet code="NervousText.class"

width="468" height="50"></applet>

Although the text displayed by NervousText provides an interesting animation effect, you will
want to change that text that the applet displays before you use the applet to display bouncing text
on your Web pages. Without parameters, you would have to download the applet’s Java source file
(NervousText.java), edit the text string that the applet animates (Hot Java), and then compile the
program into a new Java .class file that you embed on the Web page. Fortunately, the NervousText
applet lets you use a parameter to pass the string to animate, which means that you do not have to
do any programming to change the text that the applet displays.

To have the applet NervousText.class animate the string “I’m nervous until I have my java.” you
would use the <param> tag when you embed the applet in your Web page, as follows:

<applet codebase="/java" code="NervousText.class"

width="510" height="50">

<param name="text" value="I'm nervous until I have my java." >

</applet>

After you load the HTML file that contains the <param> tag to specify a parameter within your
browser, the applet will use the parameter text, as shown here:

4 3 0 H T M L & W e b D e s i g n T i p s & T e c h n i q u e s

Tip&Tec / HTML & Web Design Tips & Techniques / Anderson, King, Jamsa / 9394-8 / Chapter 9

P:\010Comp\Tip&Tec\394-8\ch09.vp
Thursday, January 03, 2002 5:26:20 PM

Color profile: Generic CMYK printer profile
Composite Default screen

If the parameter value you pass changes the amount of space that the applet needs to display its output,
you must increase the values of the width and height attributes in the <applet> tag accordingly. In this
example, the increase in the animated text’s length requires you to increase the width of the area
allocated to the applet on the Web page. If size of the area you specify (with the width and height
attributes in the <applet> tag) is too small, the browser will simply cut off that portion of the applet’s
output that does not fit. (If the applet’s documentation does not specify the dimensions of the applet’s
output area, or if you pass a parameter value to change the applet’s output, you may need to
experiment with different height and width attribute values until you get the sizing just right.)

Understanding Java Archive (.jar) Files
One criticism of Java applets is the amount of time the Web browser takes to download the applet files.
Each time the browser retrieves a Web page with an embedded applet, the browser must retrieve the
applet, as it does graphics images, sound files, and all other embedded objects. Applets that are larger
and more complex often require multiple class files, each of which the browser must download before
the applet can run.

To reduce download times, Java programmers often store an applet’s files (class files, graphics
files, sound files, and so on) within a Java Archive (or .jar) file. You can think of a .jar file as similar
to a compressed Zip file. By storing an applet’s files in a single .jar file, the programmer reduces the
amount of time the Web browser takes to download the applet from the Web server.

To use a .jar file when you embed an applet, you must add the archive attribute to the <applet>
tag, as follows:

<applet code="JavaClock.class" width="150" height="150"

archive="Clock.jar">

</applet>

In this case, when the browser encounters the <applet> tag, the browser will establish an HTTP
connection with the server and request the Clock.jar Java Archive file. If the archive file does not
exist, most browsers will try to retrieve the applet’s individual .class files instead. Note that the name
of the archive file need not be the same as the name of the applet’s main .class file.

Understanding the codebase Attribute
If you keep your Java .class files in a folder other than the one in which you store your HTML
documents, you must use the codebase attribute within the <applet> tag to tell the Web browser
where to find the .class file you specify in the code attribute. Suppose, for example, that you keep
your Web page files in the Web site’s HTDocs folder and your Java applet .class files in a folder
named Classes. If both folders are in the Web site’s root folder, you would use the codebase attribute
within the <applet> tag as follows to embed the JavaClock.class applet:

<applet codebase="/Classes" code="JavaClock.class"

width="150" height="150">

</applet>

C h a p t e r 9 : J a v a A p p l e t s a n d A c t i v e X O b j e c t s 4 3 1

Tip&Tec / HTML & Web Design Tips & Techniques / Anderson, King, Jamsa / 9394-8 / Chapter 9

P:\010Comp\Tip&Tec\394-8\ch09.vp
Thursday, January 03, 2002 5:26:20 PM

Color profile: Generic CMYK printer profile
Composite Default screen

You can also use the codebase attribute to tell the browser to embed a Java applet that resides at a
different Web site into a Web page. To embed a remote applet, you simply specify the full URL of
the folder that contains the applet’s .class files in the codebase attribute. For example, to embed the
analog clock applet in the Classes folder on www.NVBizNet2.com on your Web page, you would
use the following codebase attribute:

<applet codebase="http://www.nvbiznet2.com/classes"

code="JavaClock.class" width="150" height="150">

</applet>

� NOTE

Be careful when you embed applets stored at other Web sites. Remember that the Web browser must
download all of the applet’s .class files after the browser retrieves the Web page on which you
inserted the applet. If someone deletes the .class files or moves them to a different folder, the Web
browser will be unable to retrieve them and therefore unable to display the applet on your Web page.
Unless you control the content on the remote site, to ensure that the applet is available when you
need it, download the applet’s .class files to a folder on your Web site.

Embedding an ActiveX Object in a Web Page
Like a Java applet, an ActiveX object provides program code that you want a Web browser to run as
part of your Web page content. To embed an ActiveX object in a Web page, insert the object as you
would an applet, except instead of using the <applet> tag (which you would use to insert an applet),
use a set of start and end object tags (<object></object>) to place the ActiveX object on the page.

Suppose, for example, that you want to display the stock ticker from the Microsoft Network
(MSN) financial Web site (at http://moneycentral.msn.com) on your page. You would insert the
following code in the Web page HTML where you want the stock ticker (shown here) to appear on
the Web page:

<object id="StockTicker" width="100%" height="34"

type="application/x-oleobject"

classid="clsid:52ADE293-85E8-11D2-BB22-00104B0EA281"

codebase="http://fdl.msn.com/public/investor/v7

/ticker.cab#version=7,1999,1104,1">

<param name="ServerRoot" value="http://moneycentral.msn.com" />

<param name="NewsTarget" value="_newstop" />

<param name="BackgroundColor" value="0x00ADD8E6" />

<!-- The following <embed> tag lets Netscape Navigator v 6.1

4 3 2 H T M L & W e b D e s i g n T i p s & T e c h n i q u e s

Tip&Tec / HTML & Web Design Tips & Techniques / Anderson, King, Jamsa / 9394-8 / Chapter 9

P:\010Comp\Tip&Tec\394-8\ch09.vp
Thursday, January 03, 2002 5:26:20 PM

Color profile: Generic CMYK printer profile
Composite Default screen

(and later) run the ActiveX Control -->

<embed type="application/x-eskeractivex" id="StockTicker"

clsid="52ADE293-85E8-11D2-BB22-00104B0EA281"

codebase="http://fdl.msn.com/public/investor/v7

/ticker.cab#version=7,1999,1104,1"

width="100%" height="34"

serverroot="http://moneycentral.msn.com"

BackgroundColor="0x00ADD8E6"

newstarget="_newstop" value="0x00ADD8E6" />

</object>

After reviewing the <object> tag’s contents, you will notice several similarities between it and the
<applet> tag. The attributes within an <object> tag have the following meanings:

• id A unique name you assign to the object so that other objects on the same Web page can
communicate with the object and so you can work with the object (by name) in any scripts
inserted on the page.

• width, height The object’s initial dimensions in pixels. Bear in mind that an ActiveX object
can change the size (and location) of its display area. While the stock ticker in this example and
the Macromedia Shockwave animation (you will embed in the next example) stay within the
dimensions defined, an ActiveX pop-up menu, for example, will start at the size of a standard
pushbutton and expand to whatever dimensions it needs to display all of the items on the menu.

• type Optional attribute that identifies the type of content you are embedding.

• classid Attribute that identifies the object’s implementation: that is, the name of the runtime
program you want to execute. The long string of digits and letters assigned to the classid
attribute is a 128-bit value known as a globally unique identifier (GUID). The programmer that
writes the ActiveX application that runs a special software tool (GUIDGEN.EXE) to create a
unique GUID—meaning no two programs ever have the same GUID.

• codebase Attribute that specifies the location where the browser can find and download the
program specified by the classid attribute, if necessary. (If the browser previously downloaded
and installed the ActiveX object, the browser will use the local copy instead of downloading
the program again.) If you omit the codebase attribute, the browser will expect to find the
implementation (that is, the ActiveX program) in the same folder as the document in which
you embedded the object. In this example, the codebase attribute instructs the browser that the
implementation is within a .cab file. (Programmers put a program that requires more than one
file for installation in a .cab file, much like Java developers use .jar files.)

• param Values you wanted passed to the ActiveX program at run time. Normally parameters
contain setup information and initial values for program variables.

Although the classid and codebase attributes seem to have undecipherable values, do not worry
about how the values are generated. The programmer who writes your ActiveX program or the
documentation of the program you download from the Internet will give you both of these values.

C h a p t e r 9 : J a v a A p p l e t s a n d A c t i v e X O b j e c t s 4 3 3

Tip&Tec / HTML & Web Design Tips & Techniques / Anderson, King, Jamsa / 9394-8 / Chapter 9

P:\010Comp\Tip&Tec\394-8\ch09.vp
Thursday, January 03, 2002 5:26:21 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Your main job as a designer is to decide what you need the ActiveX object to do and where you want
the object to appear on your Web page. The programmers will write and compile the program, use an
application named genuid.exe to generate a unique 128-bit identifier for the program, and store the
code (that is, the implementation) in a folder on the Web server. After you read the documentation
(or question the programmer), you simply plug in the values provided to you for the classid and
codebase attributes.

Making ActiveX Objects Work with Netscape Navigator and Internet Explorer
Unfortunately, the two companies whose browsers are likely to be used by 95 percent of your site’s
visitors have not been able to agree on the “best” way to embed external programs in Web pages. While
Internet Explorer uses <object> tags and ActiveX objects to add functionality to the browser, Netscape
Navigator uses <embed> tags and plug-ins (which are external helper programs).

The result, and the part that concerns you as a designer, is that Netscape Navigator will not run an
ActiveX object until you install a program-specific plug-in. Moreover, Netscape Navigator requires
you to use an <embed> tag instead of an <object> tag to embed the program you want the browser to
execute. Fortunately, you can insert start and end embed tags (<embed></embed>) within start and
end object tags (<object></object>), and each browser will ignore the HTML intended for the other.
The plug-in you must download and install differs depending on your version of Netscape Navigator.

You can find plug-ins that provide Netscape Navigator with ActiveX support at several Web sites.
You might first visit http://www.esker.com, which offers a plug-in you can download that supports a
wide range of ActiveX controls. In addition, you can find links to other plug-ins and explanation of the
steps you should follow for your specific version of Netscape at http://www.mozilla.org.

For example, if you want to play a Shockwave animation (ants.swf) stored in the same folder as your
Web page, you might insert the following statements on the page where you want the animation to appear:

<object

classid="clsid:D27CDB6E-AE6D-11cf-96B8-444553540000"

codebase="http://download.macromedia.com/pub/shockwave/cabs/flash

/swflash.cab#version=5,0,30,0"

width="300" height="120">

<param name="movie" value="ants.swf">

<param name="quality" value=high>

<param name="salign" value="TL">

<embed

src="ants.swf"

quality="high"

pluginspage="http://www.macromedia.com/shockwave/download

/index.cgi?P1_Prod_Version=ShockwaveFlash"

type="application/x-shockwave-flash"

width="200" height="200" salign="TL">

</embed>

</object>

4 3 4 H T M L & W e b D e s i g n T i p s & T e c h n i q u e s

Tip&Tec / HTML & Web Design Tips & Techniques / Anderson, King, Jamsa / 9394-8 / Chapter 9

P:\010Comp\Tip&Tec\394-8\ch09.vp
Thursday, January 03, 2002 5:26:21 PM

Color profile: Generic CMYK printer profile
Composite Default screen

When Internet Explorer encounters the preceding code, the browser uses the attributes and parameters
found prior to the <embed> tag to start the Shockwave animation (and to download Shockwave Player,
if necessary). Netscape Navigator, on the other hand, will ignore the HTML up to the <embed> tag
and use the code between the start and end embed tags (<embed></embed>) to play the animation
(and download the plug-in, if necessary).

Understanding Signed Objects
Because ActiveX objects can be unsafe, you should download and install ActiveX objects only from
programmers or companies that you trust. Often, programmers who develop trusted ActiveX objects
will attach a digital signature to the object that users who download the object can examine to confirm
that the individuals or company claiming to have developed the object is authentic (meaning that they
are who they claim to be). In addition, if an ActiveX control contains a valid certificate, users can be
confident that a hacker did not intercept and change the object as it made its way across the Internet.
Within Windows, for example, many users will direct their browsers to automatically install and use
signed objects, as opposed to prompting the user for permission before installing the objects. If a
system’s security level directs the browser to prompt the user before it downloads and installs an
ActiveX object, the browser will display a Security Warning dialog box similar to that shown
previously in Figure 9-4 when an <embed> tag calls for an ActiveX object not already installed on
the user’s system.

Within the Security Warning dialog box, you can view certificate information by clicking the
publisher’s name. Your browser, in turn, will display a Certificate dialog box, within which you can
view the specifics of the setting, as shown in Figure 9-9.

To give users greater security control, Windows assigns two levels of security for ActiveX
controls: safe for initialization and safe for scripting. When a programmer specifies that an ActiveX
control is safe for initialization, the programmer is stating the control will not misbehave (meaning
that the object will work correctly, and a script cannot cause the object’s code to fail or to perform a
malicious operation), regardless of the initial values the user may assign to the control using <param>
tags. If Internet Explorer encounters an ActiveX control within an HTML page that is not safe for
initialization and the <object> tag contains one or more <param> tags that initialize the object,
Internet Explorer may, depending on your security settings, display a dialog box that alerts you to
a potential security violation.

When a programmer marks an ActiveX control as safe for scripting, the programmer is stating that
the control will behave properly, regardless of how a script manipulates the control. Again, if Internet
Explorer encounters an ActiveX control within an HTML page that is not marked as safe for scripting,
the browser may, depending on your security settings, display a dialog box that warns of a potential
security violation.

Fine-Tuning Java and ActiveX Security Settings
To prevent your browser from downloading Java applets or ActiveX objects without your knowledge
or permission, Windows lets you assign settings that dictate how the browser handles the applets and
objects. Using the security settings, for example, you might direct the browser to download and

C h a p t e r 9 : J a v a A p p l e t s a n d A c t i v e X O b j e c t s 4 3 5

Tip&Tec / HTML & Web Design Tips & Techniques / Anderson, King, Jamsa / 9394-8 / Chapter 9

P:\010Comp\Tip&Tec\394-8\ch09.vp
Thursday, January 03, 2002 5:26:21 PM

Color profile: Generic CMYK printer profile
Composite Default screen

4 3 6 H T M L & W e b D e s i g n T i p s & T e c h n i q u e s

Tip&Tec / HTML & Web Design Tips & Techniques / Anderson, King, Jamsa / 9394-8 / Chapter 9

install signed objects automatically, but to prompt you before downloading unsigned objects. To use
the Windows security settings to control Java and ActiveX objects, perform these steps:

1. Select the Start menu Settings option and choose Control Panel. Windows will open the
Control Panel window.

2. Within the Control Panel, double-click the Internet Options icon. Windows will display the
Internet Properties dialog box.

3. Within the Internet Properties dialog box, select the Security tab. Windows will display the
Security sheet.

4. Within the Security sheet, click the Custom Level button. Windows will display the Security
Settings dialog box, shown in Figure 9-10.

5. Within the Security Settings dialog box, use the radio buttons to select the setting levels you
desire and then click OK to return to the Internet Options dialog box. Then click OK within
the Internet Options dialog box to exit the dialog box.

Figure 9-9 Viewing the specifics of an object’s certificate

P:\010Comp\Tip&Tec\394-8\ch09.vp
Thursday, January 03, 2002 5:26:21 PM

Color profile: Generic CMYK printer profile
Composite Default screen

� NOTE

Within Internet Explorer, you can access the Internet Options dialog box by selecting Tools |
Internet Options.

Using an Applet to Create a Pop-Up Navigation Menu
As you increase the number of Web pages available on your Web site, you must increase the number
of entries on your navigation menu. After all, you want to let your visitors jump to specific pages
without forcing them to go through several other pages first. Unfortunately, increasing the number of
hypertext links on your navigation menu also means increasing the menu’s size, which often forces
you to split content into two pages. PopupNavigator.class, an applet written by Branko Dimitrijevic,
provides a solution that lets you present a navigation bar in the form of a hierarchical menu. To save
space, the applet appears on the screen as a pushbutton that, when clicked, displays a pop-up menu
over the Web page content, as shown in Figure 9-11.

When a user clicks the pushbutton, the browser will launch the applet, which displays the pop-up
menu. Within the menu, the user simply clicks the menu choice he or she desires. The applet then
retrieves and displays an HTML document linked to the visitor’s choice. The Web page that
corresponds to the menu option can reside at the current Web site or at another site. If the visitor

C h a p t e r 9 : J a v a A p p l e t s a n d A c t i v e X O b j e c t s 4 3 7

Tip&Tec / HTML & Web Design Tips & Techniques / Anderson, King, Jamsa / 9394-8 / Chapter 9

Figure 9-10 Setting Java and ActiveX security within the Security Settings dialog box

P:\010Comp\Tip&Tec\394-8\ch09.vp
Thursday, January 03, 2002 5:26:22 PM

Color profile: Generic CMYK printer profile
Composite Default screen

4 3 8 H T M L & W e b D e s i g n T i p s & T e c h n i q u e s

Tip&Tec / HTML & Web Design Tips & Techniques / Anderson, King, Jamsa / 9394-8 / Chapter 9

moves the mouse pointer over a menu choice that has a right arrow (such as Applets in Figure 9-11),
the applet will display a submenu of additional choices.

You can view and download the PopupNavigator.class applet and its source code at
http://www.osborne.com. After copying PopupNavigator.zip to a folder on your computer,

extract the .class (Java applet), .gif (picture), and .jar (Java Archive) files from the compressed (Zip)
file. To use the pop-up navigation menu on a Web page, copy all .gif files and either the .jar file or all
of the .class files into the same folder as the Web page. Then insert HTML statements similar to the
following on the page where you want the pop-up menu button to appear:

<applet align="center" width="210" height="24"

code="PopupNavigator/PopupNavigatorApplet.class"

archive="PopupNavigator.jar">

<param name="Label"

value="HTML & Web Design;Arial;BOLDITALIC;16;RED;200 255 0">

<param name="Image" value="down_arrow1.gif">

<param name="ImagePosition" value="LEFT;4">

<param name="0" value="NVBizNet;http://www.NVBizNet.com">

<param name="1" value="Figures;ListOfFigures.htm">

<param name="2" value="Applets;">

Figure 9-11 The PopupNavigator applet after a mouse click

P:\010Comp\Tip&Tec\394-8\ch09.vp
Thursday, January 03, 2002 5:26:22 PM

Color profile: Generic CMYK printer profile
Composite Default screen

TE
AM
FL
Y

Team-Fly®

<param name="2;0" value="JavaClock;Chpt09Tip1.htm">

<param name="2;1" value="PopupNavigator;Chpt09Tip2.htm">

</applet>

� NOTE

PopupNavigator.jar is a Java Archive file that contains the applet’s .class files in a compressed
format. To reduce download times, you should use a .jar file when one is available. The applet will
function the same way whether you use the .class files or the .jar file. To use the .jar file, you must
use the archive attribute in the <applet> tag to specify the name of the Java Archive file. Without an
archive attribute, the start applet tag <applet> tells the browser to load the applet’s .class files.

The parameters you use to set up the pop-up menu are described next.

label A semicolon (;) delimited string with the label you want on the pushbutton and a description
of how you want the label and the pushbutton itself to look. The syntax of the label’s value string is
“<label>;<typeface>;;;<label text color><button color>”. If you omit the label
parameter altogether, the applet will display “Navigate” as the pushbutton’s label text. You can also
use browser default values for <typeface>, , and <size> by omitting these values from the
value string. When specifying the label text or button color, either use the Netscape Navigator color
name or express the color as a triplet of decimal numbers (with a space between each number) that
indicates the RGB values that make up the color. If you omit <label text color> or <button color>, the
applet will display black text on a gray (control) button.

image The pathname (URL) of an image you want displayed on the pushbutton. If you want only a
text label, omit the image parameter. For example, the preceding code labels the button “HTML &
Web Design” by setting the label parameter’s value to “HTML & Web Design;Arial;BOLDITALIC;16;
RED;200 255 0”.

imageposition The location of the image (specified by the image parameter) in relation to the sides
of the pushbutton. Here are the possible values:

• CENTER Center the image on the button.

• LEFT, RIGHT, TOP, and BOTTOM Position the image relative to the middle of the left,
right, top, or bottom of the pushbutton. For example, value=“LEFT;4” tells the applet to position
the image 4 pixels away (toward the center of the button) from the left side of the button.

• ABSOLUTE Position the image at specific (x,y) coordinates within the pushbutton. For
example, value=“ABSOLUTE;24;16” tells the applet to position the image at coordinates
24(x), 16(y) relative to the top left corner of the pushbutton.

<menu item> the parameter tag <param> for each menu item has a name attribute that consists of a
semicolon (;) delimited set of integer coordinates. The parameter tag’s value attribute consists of the

C h a p t e r 9 : J a v a A p p l e t s a n d A c t i v e X O b j e c t s 4 3 9

Tip&Tec / HTML & Web Design Tips & Techniques / Anderson, King, Jamsa / 9394-8 / Chapter 9

P:\010Comp\Tip&Tec\394-8\ch09.vp
Thursday, January 03, 2002 5:26:22 PM

Color profile: Generic CMYK printer profile
Composite Default screen

item text followed by a semicolon and then the URL of the Web page that the applet is to display
when the visitor selects the menu choice.

Although the menu in the example at the start of this Tip has only two levels, you can
create a hierarchical menu with as many submenus as you want—meaning that submenus

can have submenus that, in turn, can have submenus, and so on. For example, to add two levels of
submenus to the Figures option in the preceding example, you would change the parameter declarations
as follows:

<param name="0" value="NVBizNet;http://www.NVBizNet.com">

<param name="1" value="Figures;">

<param name="2" value="Applets;">

<param name="1;0" value="Chapter 1; ">

<param name="1;1" value="Chapter 2; ">

<param name="1;0;0" value="Chapter 1, Figure 1;Fig1-1.htm">

<param name="1;0;1" value="Chapter 1, Figure 2;Fig1-2.htm">

<param name="1;1;0" value="Chapter 2; Figure 1;Fig2-1.htm">

<param name="1;1;1" value="Chapter 2; Figure 2;Fig2-2.htm">

<param name="2;0" value="JavaClock;Chpt09Tip1.htm">

<param name="2;1" value="PopupNavigator;Chpt09Tip2.htm">

Notice that menu items that lead to submenus when selected (such as Figures, Applets, and Chapter 1)
have only the item text and no URL. Conversely, menu items that have no submenus (such as NVBizNet,
Chapter 1, Figure 1, Chapter 2, and Figure 2) have both the item text that the browser is to display as
the (sub)menu choice and the URL of the Web page that the applet is to tell the browser to retrieve.

Using an Applet to Animate a Text String
When you want to draw a visitor’s attention to a banner or text passage, animate it. Because
characters on a page normally remain unchanged, animated text (that is, text that changes) attracts
attention. One way to animate text is to create a marquee that moves text across the screen. Another
way is to use an applet, such as AnimText.class, that continuously changes the size of each of the
characters in a stationary string.

You can view and download the AnimText.class applet and its source code at
http://www.osborne.com. After copying AnimText.zip to a folder on your computer,

extract AnimText.class from the compressed file. Next, to use the applet on a Web page, copy the
applet’s .class file (AnimText.class) into the same folder as the Web page. Then insert HTML similar
to the following on the page where you want the animated text to appear:

4 4 0 H T M L & W e b D e s i g n T i p s & T e c h n i q u e s

Tip&Tec / HTML & Web Design Tips & Techniques / Anderson, King, Jamsa / 9394-8 / Chapter 9

P:\010Comp\Tip&Tec\394-8\ch09.vp
Thursday, January 03, 2002 5:26:23 PM

Color profile: Generic CMYK printer profile
Composite Default screen

<applet code="AnimText.class" width="575" height="65">

<param name="text" value="HTML and Web Design">

<param name="font" value="TimesNewRoman">

<param name="style" value="PLAIN">

<param name="fgcolor" value="blue">

<param name="bgcolor" value="255:255:255">

<param name="type" value="wave">

<param name="min" value="14">

<param name="max" value="48">

<param name="align" value="center">

</applet>

To specify the text, the text’s appearance, and the animation effect, you can pass the following
parameters to the applet:

• text The text string you want to animate. Default: “Welcome to Java!”.

• font The typeface you want the applet to use. Default: “TimesRoman”.

• style The font style: plain, bold, or italic. Default: “plain”.

• fgcolor The text color expressed as a word or as a string of three colon (:) delimited RGB
values (as shown by the bgcolor setting in the preceding code). The possible word color values
are red, blue, green, yellow, white, orange, cyan, and magenta. Default: “black”.

• bgcolor The applet’s background color expressed either as a word (as shown by the fgcolor
setting in the preceding code) or as a string of three colon (:) delimited RGB values. The
possible word color values are the same as those listed for fgcolor. Default: “lightgray”.

• type Controls whether the applet increases and decreases the size of all characters in the text
string together (blink) or independently (wave). In addition to blink and wave, you can set the
type attribute to random and let the visitor’s computer select which of the two effects to use
when animating the text. Default: “wave”.

• max The maximum character size, in points. Default: “28”.

• min The minimum character size, in points. Default: “8”.

• align You can align text flush left, flush right, or centered between the sides of the applet.
Default: “center”.

If you want to use the animated text as a hyperlink, simply insert the applet as you would a
hyperlinked image between a set of start and end anchor tags (<a>). Set the href attribute in the
start anchor tag to the URL of the Web page you want the browser to display when the visitor clicks
the animated text.

C h a p t e r 9 : J a v a A p p l e t s a n d A c t i v e X O b j e c t s 4 4 1

Tip&Tec / HTML & Web Design Tips & Techniques / Anderson, King, Jamsa / 9394-8 / Chapter 9

P:\010Comp\Tip&Tec\394-8\ch09.vp
Thursday, January 03, 2002 5:26:23 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Using an Applet to Display and Print
a Calendar for Any Year
When you ask users to enter a specific date (such as when reserving a hotel room) or to enter a date
range (for example, when asking for time off from work), users often will need to refer to a calendar.
Thus, your visitors will find the calendar.class applet helpful when they need to look up a date but do
not have a printed calendar at hand. The calendar.class applet, written by Kerry Newman, lets visitors
not only view but also print a hard copy of the calendar for an entire year of the visitor’s choice.

You can view and download the calendar.class applet (shown in Figure 9-12) and its
source code at http://www.osborne.com.

After copying KNCalendar.zip to a folder on your computer, extract calendar.class from the Zip
file. To use the applet to display a calendar on a Web page, copy the .class file into the same folder as
the Web page. Then insert HTML similar to the following on the page where you want the calendar
to appear:

<applet code="calendar.class" width="780" height="680">

</applet>

You cannot use parameters to customize the calendar’s appearance or change its size. However,
your site visitors can use the FontColor and BackColor buttons on the calendar to change the text and

4 4 2 H T M L & W e b D e s i g n T i p s & T e c h n i q u e s

Tip&Tec / HTML & Web Design Tips & Techniques / Anderson, King, Jamsa / 9394-8 / Chapter 9

Figure 9-12 A calendar displayed by the calendar.class applet

P:\010Comp\Tip&Tec\394-8\ch09.vp
Thursday, January 03, 2002 5:26:24 PM

Color profile: Generic CMYK printer profile
Composite Default screen

background colors. Of course, the KNCalendar.zip file does include the Java source code (in
calendar.java). Therefore, if you have installed a Java compiler on your computer, such as the one
in the free Java software development kit at the Sun Microsystems Web site, you can always modify
the applet to accept parameters such as the initial date, colors, and size.

Using an Applet to Display a Passage
at Random from a Text File
One of the challenges in designing a Web site is to keep your content fresh, so visitors continue to
come back. The PetQuotes.class applet lets you display passages, one at a time, from a text file. By
using random selection to choose the passage to be displayed, the applet will likely display a different
passage each time the visitor’s browser retrieves the Web page, as shown in Figure 9-13.

Although the applet (as written) will retrieve the text to be displayed only from a file named
PetQuotes.txt, you can place any lines of text you want in the file. Thus, you can use the PetQuotes.class
applet to display jokes, quotations, or any other type of text you choose to place in the file.

You can view and download the PetQuotes.class applet and its source code at
http://www.osborne.com. After copying PetQuotes.zip to a folder on your computer,

extract PetQuotes.class and PetQuotes.txt from the compressed file. Next, to use the applet on a

C h a p t e r 9 : J a v a A p p l e t s a n d A c t i v e X O b j e c t s 4 4 3

Tip&Tec / HTML & Web Design Tips & Techniques / Anderson, King, Jamsa / 9394-8 / Chapter 9

Figure 9-13 Quotation displayed on the screen by the PetQuotes.class applet

P:\010Comp\Tip&Tec\394-8\ch09.vp
Thursday, January 03, 2002 5:26:24 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Web page, copy the two files (PetQuotes.class and PetQuotes.txt) into the same folder as the Web page.
Then insert HTML similar to the following on the page where you want the text passage to appear:

<applet code="PetQuotes.class" width="410" height="72">

<param name="font" value="Arial">

<param name="font_size" value="18">

<param name="color" value="black">

<param name="bgcolor" value="white">

</applet>

To change the appearance of the text and the applet’s background color, you can pass the
following parameters:

• font The typeface you want the applet to use. Default: “TimeRoman”.

• font_size The character size, in points. Default: “18”.

• color The text color. Possible values are black, white, lightgray, gray, darkgray, red, pink,
orange, yellow, green, magenta, cyan, and blue. Default: “black”.

• bgcolor The text color. Possible values are black, white, lightgray, gray, darkgray, red, pink,
orange, yellow, green, magenta, cyan, and blue. Default: “white”.

To supply your own quotes, jokes, or other text passages for the applet to display, edit the file
PetQuotes.txt. On the first line in the file, enter the number of lines of text in the file. Then, on the second
and subsequent lines, enter the lines of text you want displayed. Enter each passage and source on a
separate line as <text passage>||<source>. Note the double-pipe symbol (||) between the text of each
quotation or passage and the source (that is, the author) of the quotation or passage. The following
file illustrates sample content you might include in the PetQuotes.txt file:

3

Some men dream of doing great things. Others stay up late and

get them done.||Anonymous

Sometimes a scream is better than a thesis.||Ralph Waldo Emerson

I've been on a diet for two weeks and all I've lost is two

weeks.||Totie Fields

Using an Applet to Create a Navigation Menu that Runs
in Its Own Window
When you create a Web site, you want to make it easy for the site visitor to move from page to page
or to jump to a particular page. If visitors have to move through 15 documents to get to the page they
want, some might bookmark the page, but most will just go to another Web site that is easier to navigate.
To make site navigation easy, you can insert a menu of hyperlinks on each of the site’s Web pages.

4 4 4 H T M L & W e b D e s i g n T i p s & T e c h n i q u e s

Tip&Tec / HTML & Web Design Tips & Techniques / Anderson, King, Jamsa / 9394-8 / Chapter 9

P:\010Comp\Tip&Tec\394-8\ch09.vp
Thursday, January 03, 2002 5:26:25 PM

Color profile: Generic CMYK printer profile
Composite Default screen

The only problem with navigation menus is that they can take up a lot of room on large sites due to
the number of hypertext links you must include in the menu.

Fortunately, you can use the MenuApplet.class applet to display a navigation menu with as many
as 400 hyperlinks—without sacrificing room on the screen for your Web site’s content. Because the
applet displays the menu in a new window, you have to allow room for only a single pushbutton on
each of your site’s Web pages to let your visitors call for the navigation menu when they want to use
it, as shown in Figure 9-14.

Moreover, the applet helps you organize the pages on your site by letting you split the site’s pages
into 20 categories, with 20 menu items per category.

You can view and download the MenuApplet.class applet and its source code at
http://www.osborne.com. After copying MenuApplet.zip to a folder on your computer,

extract the two .class files (MenuApplet.class and LabelButton.class), the .ini file (MenuApplet.ini),
and the menu Web page (menu.html) from the compressed file. After you edit the contents of the .ini
file and the .html file (as discussed in the following paragraphs), copy the .class files, MenuApplet.ini,
and menu.html to the same folder as the Web pages on which you want to insert the Site Menu
buttons that call the MenuApplet.class applet.

The MenuApplet.ini file contains the categories and menu items that the applet presents to the
visitor on the navigation menu. There are two types of lines in the .ini file: those that start and end

C h a p t e r 9 : J a v a A p p l e t s a n d A c t i v e X O b j e c t s 4 4 5

Tip&Tec / HTML & Web Design Tips & Techniques / Anderson, King, Jamsa / 9394-8 / Chapter 9

Figure 9-14 A navigation menu opened in a floating (new) window after the visitor clicks a
pushbutton on a Web page

P:\010Comp\Tip&Tec\394-8\ch09.vp
Thursday, January 03, 2002 5:26:25 PM

Color profile: Generic CMYK printer profile
Composite Default screen

4 4 6 H T M L & W e b D e s i g n T i p s & T e c h n i q u e s

Tip&Tec / HTML & Web Design Tips & Techniques / Anderson, King, Jamsa / 9394-8 / Chapter 9

with a plus sign (+), and those that start with a backslash (\). Lines that start (and end) with a plus sign (+)
are menu categories, which the applet displays in its left column, under the heading “Select.” Lines that
start with a backslash (\) are menu items, which the applet displays in its right column, labeled “Go To.”
When the visitor clicks a category in the applet’s Select column, the applet displays the menu items
in the category selected in the Go To column. Similarly, when the visitor clicks a menu item in the
Go To column, the applet tells the Web browser to retrieve and display a Web page in the window
whose name you pass to the applet through the targetWindow parameter (discussed later in this Tip).

Use a text editor to open MenuApplet.ini and replace the file’s contents with your own categories
and menu items. When you open the file the first time, you will see entries similar to the following:

+Test pages+

\test1\ "test_html/test1.html"

\test2\ "test_html/test2.html"

+Links+

\Osborne-McGrawHill\ "http://www.Osborne.com/"

\NVBizNet\ "http://www.NBVizNet.com"

To add a category to the menu, type the category text between plus signs (+) such as the category
entries +Test pages+ and +Links+ shown in this example. To add menu items to a category, type the
menu item text between backslash characters (\) followed by the relative address or URL that the
browser is to retrieve, in quotation marks. In this example, \test1\ is a menu item in the Test pages
category, and “test_html/test1.html” is the relative address of the Web page that the browser is to
retrieve when the visitor clicks the test 1 menu choice. Note that you must define each menu choice
within a category, and each category can have at most 20 menu choices.

If you look at the contents of the menu Web page (menu.html), you will see that it contains code
similar to the following that embeds the MenuApplet.class applet in the Web page:

<applet code="MenuApplet.class" width="222" height="144">

<param name="targetWindow" value="LoadHere">

<param name="fontType" value="TimesRoman">

<param name="fontStyle" value="0">

</applet>

Bear in mind that the MenuApplet.class applet lets you display a navigation menu in a window other
than the one in which you are displaying your site’s Web pages. Thus, you embed the menu applet in
its own menu Web page (menu.html, in this example) and not in the Web page HTML of any of your
site’s content pages.

To customize the applet, use a text editor to open the menu Web page menu.html and set the
following three parameters to the values you want the applet to use:

• targetWindow The window in which you want the applet to display the Web page retrieved
when the visitor clicks a menu choice. Default: “_self”.

P:\010Comp\Tip&Tec\394-8\ch09.vp
Thursday, January 03, 2002 5:26:25 PM

Color profile: Generic CMYK printer profile
Composite Default screen

C h a p t e r 9 : J a v a A p p l e t s a n d A c t i v e X O b j e c t s 4 4 7

Tip&Tec / HTML & Web Design Tips & Techniques / Anderson, King, Jamsa / 9394-8 / Chapter 9

• fontType The typeface you want the applet to use when displaying the menu’s categories and
items. Default: “Helvetica”.

• fontStyle A number from 0 to 3, inclusive, that specifies the font style of the menu text. 0 =
plain, 1 = bold, 2 = italic, and 3 = bold + italic. Default: “0” (that is, plain).

To give visitors access to the menu, insert the following form definition on your Web pages where
you want visitors to see the pushbutton they can click to display the navigation menu:

<form>

<input type="button" name="NavButton" value="Site Menu"

OnClick="window.open('menu.html', 'SiteNavMenu',

'menubar=no, height=166, width=244')">

</form>

The form definition in this example will insert a standard pushbutton labeled Site Menu. When the
visitor clicks the pushbutton, the Web browser executes the pushbutton’s JavaScript, which opens the
menu Web page (menu.html) in a new window named SiteNavMenu. The MenuApplet.class applet
(embedded in the menu.html Web page) then displays the navigation menu in the SiteNavMenu window.

One last consideration you must take into account is the size of the window in which you want the
MenuApplet.class applet to display the navigation menu. To calculate the height of the window, review
the menu definition you created in MenuApplet.ini and determine whether your menu has more
categories or more menu items in a single category. Then use the formula

height = (n + 1) * 18

where n is the maximum number of categories or maximum number of links in a single category,
whichever is greater. To calculate the width, use the formula

width >= 12 + (p * 7) + (q * 7)

where p is the number of characters in the longest category name, and q is the number of characters
in the longest menu item entry.

After you calculate the height and width, assign these values to the height and width attributes in the
start applet tag <applet> in the menu Web page HTML (that is, in the file menu.html). Then, whatever
values you compute for the applet’s height and width, make them add 20 pixels to each dimension and
assign those values to the height and width parameters the JavaScript passes to the window.open()
function in the input tag <input> you use to put the Site Menu button on the Web page.

An added benefit of using the applet is that you will be able to make changes to the navigation menu
at any time (by modifying the MenuApplet.ini file) and have those changes reflected immediately on all
pages where you inserted the Site Menu pushbutton. (Using a traditional navigation bar inserted on each
page, you would have to make the same menu change repeatedly on each of the site’s pages.)

P:\010Comp\Tip&Tec\394-8\ch09.vp
Thursday, January 03, 2002 5:26:26 PM

Color profile: Generic CMYK printer profile
Composite Default screen

4 4 8 H T M L & W e b D e s i g n T i p s & T e c h n i q u e s

Tip&Tec / HTML & Web Design Tips & Techniques / Anderson, King, Jamsa / 9394-8 / Chapter 9

Using an Applet to Scroll the Contents of a File
Vertically Within a Rectangular Box Onscreen
If you must scroll a single line of text horizontally across the screen, Internet Explorer lets you specify
the text you want to scroll between a set of start and end marquee tags (<marquee></marquee>). For
a more flexible solution, you might write JavaScript to perform the same function, since Netscape
Navigator does not support the marquee tags, but both Netscape and Internet Explorer support JavaScript.
When you want to display more than one line of text on the screen at the same time and scroll the text
horizontally, you need something more than a simple marquee; you need the NewsScroller applet.

The NewsScroller applet, written by E. A. Graham, Jr., lets you scroll the text from an ASCII file
vertically within a rectangular area on a Web page, as shown in Figure 9-15.

Within the input file to be displayed, the applet lets you designate single and multiline headings,
messages, and clickable (that is, hyperlink-like) text, each in its own color.

You can view and download the NewsScroller applet and source code at http://www.
osborne.com. After copying NewsScroller.zip to a folder on your computer, extract

Scroller.jar and News.txt from the compressed file. Next, to use the applet on a Web page, copy the
Java Archive file Scroller.jar and the news message file News.txt into the same folder as the Web
page. Then insert HTML similar to the following in the Web page HTML where you want the
scrolling text to appear:

<applet code="crackers.Scroller.NewsScroller.class"

archive="scroller.jar" width="400" height="150">

<param name="DataFile" value="News.txt">

<param name="ClickColor" value="#0000FF">

<param name="HeadColor" value="#FF0000">

<param name="Font" value="Serif">

<param name="FontSize" value="18">

<param name="MousePause" value="">

<param name="TopPause" value="0">

<param name="Refresh" value="0">

<param name="Foreground" value="#000000">

<param name="Background" value="#FFFFFF">

<param name="Border" value="8">

<param name="Picture" value="bg_gif.gif">

<param name="Target" value="_top">

<param name="SleepTime" value="30">

<param name="Scrollby" value="1">

</applet>

P:\010Comp\Tip&Tec\394-8\ch09.vp
Thursday, January 03, 2002 5:26:26 PM

Color profile: Generic CMYK printer profile
Composite Default screen

TE
AM
FL
Y

Team-Fly®

C h a p t e r 9 : J a v a A p p l e t s a n d A c t i v e X O b j e c t s 4 4 9

Tip&Tec / HTML & Web Design Tips & Techniques / Anderson, King, Jamsa / 9394-8 / Chapter 9

To customize the applet, you can pass the following parameters:

• DataFile The relative address or URL of the file with the headlines, hypertext links, and
messages you want to display. Default: “News.txt”.

• ClickColor The color (expressed as a hexadecimal triplet) that the applet will use to display
clickable (that is, hyperlink) text in the data file. Default: “#0000FF” (blue).

• HeadColor The color (expressed as a hexadecimal triplet) that the applet will use to display
heading text in the data file. Default: “#FF0000” (red).

• Font The typeface in which to display the text in the data file. Default: “Serif”.

• FontSize The point-size of the scrolling text. Default: “12”.

• MousePause If you pass this parameter, even with a value of “”, NewsScroller will stop
scrolling the text when the visitor moves the mouse pointer over the applet, and start scrolling
text again when the visitor moves the mouse off the applet. For text scrolling uninterrupted by
mouse movements, omit the MousePause parameter.

• TopPause The number of milliseconds you want each heading to pause when the applet
scrolls the heading to the top of the viewable area. Default: “0”.

• Refresh The number of minutes to wait before re-reading the news file. Default: “0”
(meaning no refresh).

• Foreground The color (expressed as a hexadecimal triplet) that the applet will use to display
message text in the data file. Default: “#000000” (black).

• Background The color (expressed as a hexadecimal triplet) of the applet background.
Default: “#FFFFFF” (white).

Figure 9-15 The NewsScroller applet scrolling text vertically on an area of a Web page

P:\010Comp\Tip&Tec\394-8\ch09.vp
Thursday, January 03, 2002 5:26:26 PM

Color profile: Generic CMYK printer profile
Composite Default screen

• Border The pixel width of the boarder around the applet. Default: “0”.

• Picture The relative filename or URL of the graphics image file you want to use as the
applet’s background.

• Target The frame in which the applet tells the Web browser to display the Web page that the
browser retrieves when the visitor clicks the hypertext link in the scrolling text.

• SleepTime The number of milliseconds that the applet waits between updates. Default: “30”.

• ScrollBy The number of pixels that the applet scrolls during each update cycle. Default: “1”.

To customize the text that the applet displays, use a text editor to open and modify the contents of
the file you specified in the DataFile parameter, News.txt by default. Your news file consists of
heading, hyperlink, frame, message, and end data, denoted by the following tags:

• @HEAD Indicates that heading data follows. Each news item starts with a @HEAD
(heading) line. Heading data may flow across multiple lines. The next @URL, @MSG, or
@END tag terminates the heading tag.

• @URL Indicates that hyperlink data follows. The applet will treat any text up to the next
@END tag as part of the hyperlink that the visitor can click to load another Web page.

• @FRAME Indicates that the name of a target frame or target window follows. The
@FRAME tag must follow a @URL tag in the preceding line.

• @MSG Indicates that message data follows. You terminate a message by placing an @END
tag on the line following the last line in a message.

• @END Indicates that the line in the news file is an end message line.

Review the contents of News.txt, which you extracted from NewsScroller.zip, for an example that
shows how to define headings, hyperlinks, and messages for the applet to display.

Using an Applet to Animate an Image
Along a Sine Wave
The preceding Tip shows how to animate text by executing an applet that moves the text left to right
(or right to left) across the screen along a sine wave. Instead of scrolling text along a sine wave to
create an animated banner, you can use the SinLogo.class applet to animate an otherwise static image
such as a logo, as shown in Figure 9-16.

Note that the letters in the logo at the top in Figure 9-16 appear level. Conversely, the characters
in the logo at the bottom of the figure are at different heights, showing the way the applet aligns the
bottom of the logo along the curves of a sine wave.

You can view and download the Sinlogo.class applet and its source code from
http://www.osborne.com. After copying Sinlogo.zip to a folder on your computer, extract

4 5 0 H T M L & W e b D e s i g n T i p s & T e c h n i q u e s

Tip&Tec / HTML & Web Design Tips & Techniques / Anderson, King, Jamsa / 9394-8 / Chapter 9

P:\010Comp\Tip&Tec\394-8\ch09.vp
Thursday, January 03, 2002 5:26:27 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Sinlogo.class from the compressed file. Next, to use the applet on a Web page, copy the Sinlogo.class
and an image you want to animate into the same folder as the Web page. Then insert HTML similar
to the following in the Web page HTML where you want the shimmering image to appear:

<applet code="Sinlogo.class" width="363" height="97>

<param name="image_logo" value="Web4.gif">

<param name="angle_add" value="1.9">

<param name="bg_red" value="0">

<param name="bg_green" value="0">

<param name="bg_blue" value="0">

</applet>

To adjust the animation effect in the applet, you can pass the following parameters:

• image_logo The pathname of the GIF or JPG file you want to use the applet to animate.

• angle_add The factor (that is, the amount) by which the applet shifts the bits in the image
away from the base sine curve. The higher the value, the more the different parts of your image
will move up and down. Default: “0.5”.

• bg_red The “red” value of the RGB background color (expressed as a decimal value).

• bg_green The “green” value of the RGB background color (expressed as a decimal value).

• bg_blue The “blue” value of the RGB background color (expressed as a decimal value).

The applet works by turning the color of the pixels in a portion of your image to the background
color while at the same time turning the color of the pixels in the background of another portion of
the picture to the image color. Thus, the most important parameters to set are bg_red, bg_green, and
bg_blue, which tell the applet the color of the background, so the applet can make portions of the
image seem to disappear and reappear along the curved shape of a sine wave.

C h a p t e r 9 : J a v a A p p l e t s a n d A c t i v e X O b j e c t s 4 5 1

Tip&Tec / HTML & Web Design Tips & Techniques / Anderson, King, Jamsa / 9394-8 / Chapter 9

Figure 9-16 Two views of the same logo: static logo at the top, animated logo at the bottom

P:\010Comp\Tip&Tec\394-8\ch09.vp
Thursday, January 03, 2002 5:26:27 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Editing Java Source Code to Build a Custom Applet
Throughout this chapter, you used the <param> tag to customize Java applets to meet your specific
needs. On the Web, you can find hundreds of ready-to-run applets that you can download and incorporate
into your Web pages. Normally, you can use the <param> tag to customize the applets, just as you
have done in the previous tips. Some applets, however, do not accept setup parameters. To customize
those applets that do not let you pass setup values through <param> tags, you must edit the Java
program statements that the programmer defined to create the applet. Therefore, you can customize
such applets only if the programmer lets you download the source code file that contains the statements.
Before you begin to update Java applets by editing the program statements, you must understand the
steps the programmer performs to create an applet.

When a programmer creates a program, he or she uses a programming language, such as Java,
Visual Basic, or C++, to specify the instructions the computer is to perform. The programmer places
the instructions (that is, the program statements) in a file that programmers refer to as the program’s
(or in this case, the applet’s) source file. Just as you can use a range of text editors to create an HTML
document, programmers can use various editors to create an applet’s source file. Likewise, just as
your HTML pages use the .htm or .html file extension, Java source files use the extension .java.

Earlier in this chapter, you examined the NervousText applet, which bounces around onscreen the
letters within a text message to make the letters appear jittery. The following statements comprise the
source code for a simplified version of the applet, which you will name Nervous.java. (The Java
programming language is case sensitive, which means that it considers the uppercase and lowercase
versions of a single letter to be two different letters. Therefore, when you create the source file
Nervous.java, make sure that you create the file using an uppercase “N” within the filename.)

import java.awt.event.*;

import java.awt.Graphics;

import java.awt.Font;

import java.applet.Applet;

public class Nervous extends Applet implements Runnable

{

String banner;

char bannerChars[];

Thread runner = null;

public void init()

{

banner = "I'm nervous!";

int bannerLength = banner.length();

bannerChars = new char[bannerLength];

banner.getChars(0, banner.length(), bannerChars, 0);

resize(15*(bannerLength + 1), 50);

4 5 2 H T M L & W e b D e s i g n T i p s & T e c h n i q u e s

Tip&Tec / HTML & Web Design Tips & Techniques / Anderson, King, Jamsa / 9394-8 / Chapter 9

P:\010Comp\Tip&Tec\394-8\ch09.vp
Thursday, January 03, 2002 5:26:27 PM

Color profile: Generic CMYK printer profile
Composite Default screen

setFont(new Font("TimesRoman", Font.BOLD, 36));

}

public void start()

{

runner = new Thread(this);

runner.start();

}

public synchronized void stop()

{

runner = null;

}

public void run()

{

Thread me = Thread.currentThread();

while (runner == me)

{

try {

Thread.sleep(100);

} catch (InterruptedException e){ }

repaint();

}

}

public void paint(Graphics g)

{

for(int i=0, length = banner.length(); i < length; i++)

{

int x = (int) (10*Math.random() + 15*i);

int y = (int) (10*Math.random() + 36);

g.drawChars(bannerChars, i, 1, x, y);

}

}

}

It is not important that you understand the specific purpose of the statements within the Java source
file. Instead, this tip’s goal is for you to download and use the Java Software Development Kit (SDK)
from Sun Microsystem’s Java Web site so you can build your first Java applet.

As you have learned, a Java applet consists of a generic bytecode (that is, a file full of ones and
zeros) that the browser executes. To convert the statements that appear within the Java source file

C h a p t e r 9 : J a v a A p p l e t s a n d A c t i v e X O b j e c t s 4 5 3

Tip&Tec / HTML & Web Design Tips & Techniques / Anderson, King, Jamsa / 9394-8 / Chapter 9

P:\010Comp\Tip&Tec\394-8\ch09.vp
Thursday, January 03, 2002 5:26:28 PM

Color profile: Generic CMYK printer profile
Composite Default screen

into the ones and zeros that comprise the bytecode that your Web browser executes, programmers use
a special program called a compiler. As shown in Figure 9-17, the compiler converts the statements
(referred to as code) within the Java source file into bytecode. A Java source file normally has a .java
extension, and the compiler stores the bytecode it produces in a file that has a .class extension. (As
you saw in previous tips, to embed an applet into your Web page, you set the code attribute within
an <applet> tag to the name of the file with the applet’s bytecode.)

For most programming languages, such as Visual Basic or C++, programmers must purchase a
compiler, which may cost several hundred dollars. Sun Microsystems, however, offers the Java
Software Development Kit, which contains the Java compiler (along with other programming tools
and sample programs), for free! You can download the Java SDK from http://www.java.sun.com.

The Java SDK is large (over 30MB). To download the SDK, you will need ample disk space and
patience as you wait for the download to complete. When you download the SDK, you will receive
an executable file that you will run to install Java on your system. (To create Java applets, you must
have the Java compiler installed on your system; to run Java applets, you need only a browser.) After
the download completes, you must run the program to install the Java SDK on your system. The
installation lets you select the folder within which you want to place the Software Development Kit’s
files. For simplicity, install the Java folder in your disk’s root directory (the installation will create
a folder within the root directory within which it places the files). After the Java SDK installation
completes, you must perform a few simple housekeeping tasks before you can use the compiler to
build your first applet.

The Java compiler is a command-line program, meaning that you do not run the compiler within a
window per se, but rather, from a system prompt. To help you get the compiler up and running under
various operating systems (or versions of operating systems), Sun’s Java Web site provides step-by-
step instructions. For instructions on installing the compiler within the Windows environment
(Windows 9x, 2000, and XP), visit http://java.sun.com/j2se/1.3/install-windows.html#Environment.

4 5 4 H T M L & W e b D e s i g n T i p s & T e c h n i q u e s

Tip&Tec / HTML & Web Design Tips & Techniques / Anderson, King, Jamsa / 9394-8 / Chapter 9

Figure 9-17 The Java compiler converts source code statements into bytecode

P:\010Comp\Tip&Tec\394-8\ch09.vp
Thursday, January 03, 2002 5:26:28 PM

Color profile: Generic CMYK printer profile
Composite Default screen

To give you a better understanding of the compiler’s installation process, the remainder of this Tip
discusses the steps you must perform to install the compiler within the Windows 9x environment.

First, within the Windows environment, you run the Java compiler from a command-line prompt
within an MS-DOS window. To open an MS-DOS window, select Start | Run. Windows will display
the Run dialog box. Within the Run dialog box, type command and press ENTER.

The name of the directory that contains the Java programming tools depends on the version of the
Java SDK you installed. Before you can use the compiler to create Java applets, however, you must
add the name of the directory that contains the tools to your command path, defined by the PATH
entry within your system’s AUTOEXEC.BAT file. To select the root directory (which contains the
AUTOEXEC.BAT file), at the command prompt type CHDIR \ and then press ENTER:

C:\Windows> CHDIR \ <Enter>

C:\>

The name of the folder that contains the Java programming tools will normally begin with the letter J.
To locate the folder, type the following DIR command and then press ENTER. Windows will then
display a directory list similar to the one shown here.

C:\> DIR \J* /A:D <Enter>

Volume in drive C has no label

Volume Serial Number is 07CF-0713

Directory of C:\

JAMSAM~1 <DIR> 11-04-99 7:10a Jamsa Media Group

JBUILD~1 <DIR> 05-01-00 3:36p JBuilder3

JREXPR~1 <DIR> 05-01-00 3:44p JRExpress

JOBS <DIR> 01-15-01 10:16a Jobs

J2SDK1~1 0-B <DIR> 12-01-01 2:20p j2sdk1.4.0-beta3

0 file(s) 0 bytes

5 dir(s) 920.94 MB free

In this case, the Java programming tools reside in the directory J2DSK~1.0-B. Write down the name
of the directory within which the Java files are stored on your system (if the name appears to contain
a space, replace the space with a period). Using Windows Notepad, edit the root directory file
AUTOEXEC.BAT:

C:\> notepad \autoexec.bat <Enter>

Within the AUTOEXEC.BAT file, locate the PATH entry. At the end of the entry, add a semicolon,
the current drive letter, a colon, a slash, and the name of Java directory followed by \BIN, as shown here:

PATH C:\WINDOWS\SYSTEM;C:\J2SDK~1.0-B\BIN

Save the file’s contents and exit the editor. Use the EXIT command to close the MS-DOS window;
then shut down and restart your system.

C h a p t e r 9 : J a v a A p p l e t s a n d A c t i v e X O b j e c t s 4 5 5

Tip&Tec / HTML & Web Design Tips & Techniques / Anderson, King, Jamsa / 9394-8 / Chapter 9

P:\010Comp\Tip&Tec\394-8\ch09.vp
Thursday, January 03, 2002 5:26:29 PM

Color profile: Generic CMYK printer profile
Composite Default screen

4 5 6 H T M L & W e b D e s i g n T i p s & T e c h n i q u e s

Tip&Tec / HTML & Web Design Tips & Techniques / Anderson, King, Jamsa / 9394-8 / Chapter 9

After your system restarts, you are ready to compile Java applets. In this case, you will download
(or type) the program statements for the Nervous.java source file. You can download the file from
this book’s Web site at http://www.Osborne.com. If you type the statements, pay very close attention
to your use of uppercase and lowercase letters. Place the file in a folder on your disk, which in this
case you might simply name MyJava. Next, again open an MS-DOS window. Use the CHDIR
command to select the directory within which you stored the Nervous.java file. For example, if you
placed the file in the MyJava directory, use the following CHDIR command:

C:\Windows> CHDIR \MyJava <Enter>

C:\MyJava>

To compile the Nervous.java source file, issue the following javac command from within the folder
in which you stored your Java source file:

C:\MyJava> javac Nervous.java <Enter>

If the Java compiler successfully compiles the program, it will create the file Nervous.class within
the same folder as the applet’s source file. If you typed the file and the compiler displays error
messages, edit the file and compare its statements closely to the text that appears in this book. The
letters and symbols you type must match, exactly, those the book presents. If, when you run the javac
command, your system displays the message “Bad command or file name,” the PATH entry in your
AUTOEXEC.BAT file is not pointing correctly to the file that contains the Java programming tools.

After you successfully compile the applet, create the following HTML file, Nerves.html, which
embeds your newly created applet on a Web page for your browser to execute:

<html>

<head><title>Nervous</title></head>

<body>

<hr>

<applet code="Nervous.class" width=375 height=50>

<param name=text value="Java Development Kit 1.2">

</applet>

<hr>

</body>

</html>

Open the file Nerves.html within your browser (if you stored the HTML document in the directory
C:\MyJava, for example, you would type file://C:/MyJava/Nerves.html in your Web browser’s
Address field and press ENTER). Your Web browser will then load the Web page with your embedded
applet, which displays the bouncing text, “I’m nervous.”

Next, exit your Web browser and use your editor to open the file Nervous.java. Look for the
following line:

banner = "I'm nervous!";

P:\010Comp\Tip&Tec\394-8\ch09.vp
Thursday, January 03, 2002 5:26:29 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Change the line to your name, as shown here:

banner = "Konrad King";

Save the file’s contents and exit the editor. Then issue the following javac command at the MSDOS
command prompt to rebuild your applet:

C:\MyJava> javac Nervous.txt <Enter>

Each time you change the code within the Java source file, you must compile the code using the Java
compiler (javac) to put your change into effect. In this case, the Java compiler will overwrite the
contents of Nervous.class with the bytecode for the modified Java source file (Nervous.java) so that
the next time you load the Web page, Nerves.html, within your Web browser, the embedded applet
(Nervous.class) will display your name. That’s all there is to building or changing and rebuilding
Java applets.

� NOTE

Depending on the number of characters in the text you want the applet to display, you may need to
increase the width of the applet by changing the width attribute within the <applet> tag that embeds
the applet on your Web page.

Using the Microsoft Chat ActiveX Control to Add
Internet Chat to a Web Page
In the previous tips within this chapter, you used Java applets to add various capabilities to your Web
sites. The tips that follow show you how to use ActiveX objects on your Web pages. As discussed
earlier in this chapter, an ActiveX object differs from a Java applet in that you must download and
install the object (that is, the ActiveX control) on your system, as opposed to downloading and
running an applet tucked safely within a browser. Moreover, if you are using Netscape Navigator,
you must download and install a plug-in that provides the browser with support for the specific
ActiveX control that you want to execute.

Before Instant Messaging from AOL (and now Microsoft) and before Internet phone service from
companies like Net2Phone, people talked to each other on the Internet using Internet Relay Chat
(IRC). Even today, with e-mail, text-messaging pagers, cellular phones, and lower long-distance
rates, IRC is still immensely popular. Microsoft Chat lets you put a basic chat control such as that
shown in Figure 9-18 on your Web pages.

After connecting to an IRC server and either joining an existing chat room or starting a new one,
the visitor can type messages in the lower left pane. The control then displays messages the visitor
types, along with messages typed by other people in the same chat room, in real time within the
control’s upper left pane. (The control uses the right pane to list the names of the people in the room.)

C h a p t e r 9 : J a v a A p p l e t s a n d A c t i v e X O b j e c t s 4 5 7

Tip&Tec / HTML & Web Design Tips & Techniques / Anderson, King, Jamsa / 9394-8 / Chapter 9

P:\010Comp\Tip&Tec\394-8\ch09.vp
Thursday, January 03, 2002 5:26:29 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Many companies have found chat sessions a convenient way to let customers speak directly
to customer support. Chat rooms are especially convenient for new product releases, when

several customers have the same questions about installation and (new) features. Companies can save
time and money by answering the questions once in a chat forum, so that many customers can read
the answers instead of the company’s having to answer the same questions repeatedly by phone over
the company’s toll-free support number. To use the Microsoft Chat control on a Web page, insert
code similar to the following in the Web page HTML where you want the chat control’s input and
output panes to appear:

<object id="Chat"

classid="clsid:D6526FE0-E651-11CF-99CB-00C04FD64497"

align="baseline" border="0" width="600" height="200"

standby="Downloading the Microsoft Chat Control"

type="application/x-oleobject">

<param name="MaxMessageLength" value="2000">

<param name="MaxHistoryLength" value="32767">

<param name="UIOption" value="4095">

<param name="BackColor" value="255">

<!-- the following uses the esker.com activeX plug-in to insert

the chat ActiveX control on a Web page displayed within

Netscape Navigator Version 6.1 and later. -->

<embed type="application/x-eskeractivex"

id="Chat"

clsid="D6526FE0-E651-11CF-99CB-00C04FD64497"

width="600" height="200"

MaxMessageLength="2000"

MaxHistoryLength="32767"

UIOption="4095"

BackColor="255"

</embed>

</object>

Note that the code in this example has an <embed> tag that loads the Microsoft Chat ActiveX control
onto the Web page when it is displayed by Netscape Navigator. Remember that you must install the
plug-in that lets Netscape Navigator execute the ActiveX control before the browser will load and

4 5 8 H T M L & W e b D e s i g n T i p s & T e c h n i q u e s

Tip&Tec / HTML & Web Design Tips & Techniques / Anderson, King, Jamsa / 9394-8 / Chapter 9

Figure 9-18 The Microsoft Chat IRC ActiveX control

P:\010Comp\Tip&Tec\394-8\ch09.vp
Thursday, January 03, 2002 5:26:30 PM

Color profile: Generic CMYK printer profile
Composite Default screen

TE
AM
FL
Y

Team-Fly®

display the ActiveX object on the Web page. The <embed> tag in this example requires you to install
the ActiveX plug-in np6esk32.dll, available at http://www.esker.com, before the Microsoft Chat control
will appear on the Web page. The value you assign to the <embed> tag’s type attribute will vary
depending on the ActiveX plug-in you use for your version of Netscape Navigator.

You can customize the chat control by passing the following parameters:

• Standby Text the Web browser displays while downloading the Microsoft Chat control.

• MaxMessageLength The maximum number of characters the visitor can type in the outgoing
message area (that is, into the lower left pane) before clicking one of the two Send buttons to
the right of the pane.

• MaxHistoryLength The number of characters the control will allow to accumulate in the
message (history) list area (that is, in the upper left pane) before deleting the oldest text.

• BackColor A number from 0 to 255, inclusive, that sets the color of the border between
control’s panes.

In addition to the Microsoft Chat control itself, you need to provide the visitor a form for entering
the name of the IRC server, chat room, and chat topic and a nickname to use while in the room.
Moreover, the visitor will need the pushbuttons shown at the bottom of the form in Figure 9-19 to
join or start a chat room, control the interaction with other members, and clear the messages from
the message list area as desired.

Download MSChatPage.htm from http://www.osborne.com for an example of a fully functional
Web page with an embedded Microsoft Chat ActiveX control. Feel free to rearrange the form’s fields
and text labels. The VBScript functions called when the visitor clicks the form’s pushbuttons are

C h a p t e r 9 : J a v a A p p l e t s a n d A c t i v e X O b j e c t s 4 5 9

Tip&Tec / HTML & Web Design Tips & Techniques / Anderson, King, Jamsa / 9394-8 / Chapter 9

Figure 9-19 Form that lets the visitor enter login information and send control commands to the
Microsoft Chat client by clicking pushbuttons

P:\010Comp\Tip&Tec\394-8\ch09.vp
Thursday, January 03, 2002 5:26:30 PM

Color profile: Generic CMYK printer profile
Composite Default screen

located at the bottom of the Web page HTML. (Each VBScript function calls a method—that is, a
function—within the Microsoft Chat control to perform the action indicated by the label on the form
pushbutton used to call the function.)

Using Only ActiveX Objects with Internet Explorer
One of the challenges of using ActiveX objects on your Web pages is supporting users running Netscape.
As you have learned, before Netscape can use an ActiveX object, you must have a plug-in that supports
the object. Unfortunately, not all plug-ins support all ActiveX objects. For example, the Microsoft
marquee control lets you display the contents of a Web page vertically, horizontally, or diagonally
within a rectangular area on a Web page, as shown in Figure 9-20. The Microsoft marquee control
displays the text, background, and graphics images as the visitor would see them by visiting the Web
page itself. Thus, the marquee control gives you a way of scrolling text as well as graphics images as
a rotating banner. Unfortunately, many of the Netscape plug-ins do not support the marquee control.

To use the Microsoft marquee control on a Web page, you would normally first create an
HTML file that contains the contents you want the marquee to scroll. Then, within the

HTML file for the page within which you want to place the marquee, you insert HTML statements

4 6 0 H T M L & W e b D e s i g n T i p s & T e c h n i q u e s

Tip&Tec / HTML & Web Design Tips & Techniques / Anderson, King, Jamsa / 9394-8 / Chapter 9

Figure 9-20 Marquee control, which scrolls one Web page in a rectangular area within
another page

P:\010Comp\Tip&Tec\394-8\ch09.vp
Thursday, January 03, 2002 5:26:31 PM

Color profile: Generic CMYK printer profile
Composite Default screen

similar to the following at the page location where you want the scrolling page content to appear
(replace the URL that appears in the szURL parameter with the URL for the HTML page whose
content you want to display):

<object id=marquee width="640" height="260"

classid="clsid:1a4da620-6217-11cf-be62-0080c72edd2d">

<param NAME="szURL"

value="http://www.NVBizNet.com/HWDTT/BookInformation.htm">

<param NAME="ScrollDelay" value=300>

<param NAME="LoopsX" value=-1>

<param NAME="LoopsY" value=-1>

<param NAME="ScrollPixelsX" value=0>

<param NAME="ScrollPixelsY" value=-10>

<param NAME="Whitespace" value=0>

<param NAME="Zoom" value=100>

</object>

You can customize the marquee by passing the following parameters:

• szURL The URL of the source Web page you want the marquee to display.

• ScrollDelay The number of milliseconds between updates.

• LoopsX The number of times the program is to scroll the content horizontally. A value of −1
means forever.

• LoopsY The number of times the program is to scroll the content vertically. A value of −1
means forever.

• ScrollPixelsX The number of pixels the program is to shift the marquee’s contents
horizontally each update cycle. A negative value scrolls the content right to left, and a positive
value scrolls the content left to right.

• ScrollPixelsY The number of pixels the program is to shift the marquee’s contents vertically
each update cycle. A negative value scrolls the contents upward, and a positive value scrolls the
content downward.

• Whitespace The amount of blank space (in pixels) that the program is to leave between
successive copies of the source Web page.

• Zoom The percentage by which to increase (or decrease) the size of the source Web page
within the marquee.

One solution to using ActiveX objects is to embed the objects only for users who are
running Microsoft Internet Explorer. The previous <object> tag, for example, prevents

the page from using the object for Netscape browsers by not including an <embed> tag, which
Netscape requires. Rather than simply ignoring the Netscape users, however, you may want your
Web page to perform one operation (such as embedding the ActiveX object) for Internet Explorer
users and a different operation (such as loading a similar Java applet) for Netscape users.

C h a p t e r 9 : J a v a A p p l e t s a n d A c t i v e X O b j e c t s 4 6 1

Tip&Tec / HTML & Web Design Tips & Techniques / Anderson, King, Jamsa / 9394-8 / Chapter 9

P:\010Comp\Tip&Tec\394-8\ch09.vp
Thursday, January 03, 2002 5:26:31 PM

Color profile: Generic CMYK printer profile
Composite Default screen

The following Active Server Page, for example, uses the HTTP_USER_AGENT value to
determine information about the user’s browser. If the string the function returns contains the letters
MSIE, the script knows that the user is running Microsoft Internet Explorer and so the script places
statements in the HTML file that embed the ActiveX object. If the user is running a browser other
than Internet Explorer, the script does not embed the object:

<%

if instr(1,Request.ServerVariables("HTTP_USER_AGENT"),"MSIE") > 0 then

Response.Write "<object id=marquee width=""640"" height=""260"""

Response.Write "classid=""clsid:1a4da620-6217-11cf-be62-0080c72edd2d"">"

Response.Write "<param NAME=""szURL""

value=""http://www.NVBizNet.com/HWDTT/BookInformation.htm"">"

Response.Write "<param NAME=""ScrollDelay"" value=300>"

Response.Write "<param NAME=""LoopsX"" value=-1>"

Response.Write "<param NAME=""LoopsY"" value=-1>"

Response.Write "<param NAME=""ScrollPixelsX"" value=0>"

Response.Write "<param NAME=""ScrollPixelsY"" value=-10>"

Response.Write "<param NAME=""Whitespace"" value=0>"

Response.Write "<param NAME=""Zoom"" value=100>"

Response.Write "</object>"

else

Response.Write "<applet

code=""crackers.Scroller.NewsScroller.class""

archive=""scroller.jar"" width=""400"" height=""150"">"

Response.Write "<param name=""DataFile"" value=""News.txt"">"

Response.Write "<param name=""ClickColor"" value=""#0000FF"">"

Response.Write "<param name=""HeadColor"" value=""#FF0000"">"

Response.Write "<param name=""Font"" value=""Serif"">"

Response.Write "<param name=""FontSize"" value=""18"">"

Response.Write "<param name=""MousePause"" value="""">"

Response.Write "<param name=""TopPause"" value=""0"">"

Response.Write "<param name=""Refresh"" value=""0"">"

Response.Write "<param name=""Foreground"" value=""#000000"">"

Response.Write "<param name=""Background"" value=""#FFFFFF"">"

Response.Write "<param name=""Border"" value=""8"">"

Response.Write "<param name=""Picture"" value=""bg_gif.gif"">"

Response.Write "<param name=""Target"" value=""_top"">"

Response.Write "<param name=""SleepTime"" value=""30"">"

Response.Write "<param name=""Scrollby"" value=""1"">"

Response.Write "</applet>"

end if

%>

4 6 2 H T M L & W e b D e s i g n T i p s & T e c h n i q u e s

Tip&Tec / HTML & Web Design Tips & Techniques / Anderson, King, Jamsa / 9394-8 / Chapter 9

P:\010Comp\Tip&Tec\394-8\ch09.vp
Thursday, January 03, 2002 5:26:31 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Tip&Tec / HTML & Web Design Tips & Techniques / Anderson, King, Jamsa / 9394-8 /
Blind Folio 463

P:\010Comp\Tip&Tec\394-8\ch09.vp
Thursday, January 03, 2002 5:26:32 PM

Color profile: Generic CMYK printer profile
Composite Default screen

CHAPTER 10

PHP4

Tip&Tec / HTML & Web Design Tips & Techniques / Anderson, King, Jamsa / 9394-8 / Front Matter

TIPS IN THIS CHAPTER

� Sending Data from an HTML Form to a PHP Script 484

� Using PHP to Parse and Extract Form Results 488

� Using PHP to Send an E-Mail Message 491

� Determining Whether a Visitor’s Web Browser Accepts Cookies 493

� Using PHP and a Disk File to Set Up Username/Password Access to a
Web Site 496

� Preventing Visitors from Linking Directly to Pages on Your Site 498

� Using a PHP Session to Establish a Persistent Connection Between a
Site Visitor and the Web Server 499

� Creating a MySQL Database and Tables 502

� Displaying SQL Query Results in an HTML Table on a Web Page 504

� Using PHP to Generate a Random Password 507

� Using PHP and MySQL to Set Up Username/Password Access to a
Web Site 509

� Preventing Visitors from Changing Variable Values with URL Arguments 511

� Using PHP and MySQL to Track Where Visitors Go on Your Web Site 512

� Determining the Visitor’s IP Address for Web Page Requests Sent Through a
Proxy Server 514

P:\010Comp\Tip&Tec\394-8\ch10.vp
Thursday, January 03, 2002 5:59:34 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Copyright 2002 by The McGraw-Hill Companies, Inc. Click Here for Terms of Use.

PHP is a tool that lets you create Web pages on-the-fly. In the past, Web sites consisted of static
Web pages with text, graphics, and perhaps flashy (but unchanging) multimedia effects and

animations. Today, visitors expect sites that let them store and query database data and to create new
Web content based on requests made while using the site’s resources. PHP (which originally stood
for Personal Home Page tools) is a hypertext preprocessor that lets you generate Web page content
on-the-fly. You can place statements for the PHP processor to execute in a separate file or embed the
statements within other Web page HTML.

Figure 10-1 shows the steps involved in retrieving and displaying a PHP Web page. When a Web
browser requests a PHP Web page (that is, a file with an extension, usually .php, associated to the
PHP processor), the Web server sends the request to the PHP processor. The processor, in turn, reads
the document that the browser wants to retrieve. As it goes through the file, line by line, the PHP

465

Tip&Tec / HTML & Web Design Tips & Techniques / Anderson, King, Jamsa / 9394-8 /

� Preventing One Visitor from Assuming Another Visitor’s PHP
Session Identity 516

� Using PHP Functions to Create Web Page Templates 517

� Using PHP to Add File Upload Functionality to a Web Page 520

Figure 10-1 PHP Web page processing

P:\010Comp\Tip&Tec\394-8\ch10.vp
Thursday, January 03, 2002 5:59:35 PM

Color profile: Generic CMYK printer profile
Composite Default screen

4 6 6 H T M L & W e b D e s i g n T i p s & T e c h n i q u e s

Tip&Tec / HTML & Web Design Tips & Techniques / Anderson, King, Jamsa / 9394-8 / Chapter 10

processor executes PHP statements enclosed within start PHP (<?php or <?) and end PHP script tags
(?>). The processor writes the output generated by the PHP statements it executes as well as all the
text outside start and end PHP tags to a (virtual, in Web- server memory) Web page that the Web
server eventually sends to the Web browser.

By having the PHP processor generate the Web page HTML after the Web browser sends a request
for a PHP Web page to the Web server, you can do things like generate pages with browser-specific
HTML and pages that display different content depending on who the visitor is or based on the time
of day. In short, PHP lets you convert your Web site from a collection of static Web pages visitors
can view into an application running on the Web server with a Web page user interface.

Suppose, for example, that you want to display the current time on your Web page. If you code the
page statically (using only standard HTML), you will spend your whole day updating the Web page
(once per minute) to make sure the time is correct when a visitor retrieves the page. Conversely, by
inserting a PHP statement that dynamically writes the current time on the Web page after a Web
browser requests the page, you can have the PHP processor update the time on the page automatically.
After receiving a request for a PHP Web page, the processor creates a page that contains the non-PHP
statement (that is, static) content from the Web page file on disk and inserts the current time returned
by the PHP built-in date() function.

Whereas client-side scripting languages (such as JavaScript) run within the Web browser, PHP is a
server-side language, which means a program on the Web server (and not the Web browser) executes
PHP scripts embedded in the Web page HTML. In technical terms, PHP is a cross-platform, markup
language–embedded, server-side scripting language, which means:

• You can run most PHP code without alteration on Web servers running a variety of operating
systems such as Linux, Mac OS, RISC OS, Unix, and Windows.

• You embed PHP statements within your Web page document either alone or alongside the
HTML, XHTML, or XML tags you use to define the page for the Web browser.

• When the Web browser requests a Web page with embedded PHP statements, the Web server
sends the request to the PHP processor. The PHP processor, in turn, locates the requested file
and executes the embedded PHP code in the file, replaces the PHP statements with output (if
any), and passes the results to the Web server. The Web server then passes the page returned
by the PHP processor to the Web browser.

The elegance of using PHP is that the Web browser never works with the PHP embedded in the
Web page. Unlike JavaScript, VBScript, Jscript, or other client-side scripting languages, when you
write PHP scripts, you need not worry whether the visitor’s Web browser supports PHP. To create a
PHP-enabled Web page, you simply embed the PHP commands you want executed within the Web
page HTML and give the Web page document an extension (such as .php) associated with execution
by the PHP processor. When the Web browser requests a Web page with the .php extension, the Web
server knows to send the document request to the PHP processor and send the Web page returned
from the processor to the Web browser for display. The PHP processor executes the PHP statements
and ensures that the Web page sent to the Web server (and then on to the Web browser) is properly
formatted with tags the browser understands.

P:\010Comp\Tip&Tec\394-8\ch10.vp
Thursday, January 03, 2002 5:59:35 PM

Color profile: Generic CMYK printer profile
Composite Default screen

C h a p t e r 1 0 : P H P 4 4 6 7

Tip&Tec / HTML & Web Design Tips & Techniques / Anderson, King, Jamsa / 9394-8 / Chapter 10

Understanding the History of PHP
By reviewing a (very) brief history of PHP, you can see how the origins of the language have influenced
its current usage. Some time in 1994, Rasmus Lerdorf wrote several Perl scripts to determine who
was visiting his personal Web page. Over time, more and more Web developers became interested in
his scripts, and he released them as a package called the Personal Home Page Tools in the spring of
1995—hence the first meaning of PHP. The initial PHP toolset, which Lerdorf referred to as “a CGI
wrapper written in Perl,” contained a few server-side macros and simple utilities, such as a hit counter
and a guest book.

Due to the growing interest in his Perl scripts, Lerdorf rewrote his parsing engine and incorporated
a tool to parse input from HTML forms, called the Form Interpreter (FI), and added mSQL database
support. The combined package, released in mid-1995, was called PHP/FI or PHP2. Soon thereafter,
Web developers began using the tools to perform ever more complicated tasks. PHP’s “open source”
policy allowed a group of developers led by Zeev Suraski and Andi Gutmans to rewrite the PHP
processor again in 1997. The code they released became the foundation of PHP3 (that is, PHP version 3),
which was quickly adopted by more than 1,000,000 Web sites over other server-side scripting languages
such as Microsoft’s Active Server Pages (ASP) and Allaire’s ColdFusion.

The most recent version of PHP (PHP4, that is, PHP version 4) is available free of charge (from
various Web sites, including http://www.PHP.net) and open source, which means you can download
the PHP processor’s source code and “look under the hood,” if you so desire. However, being free
and open source does not account for the fact that PHP is in use on over 6,000,000 domains to date.
PHP has become the server-side scripting language of choice for many Web servers because of the
following reasons:

• PHP can run on either Windows NT or Unix, which makes it easy to build complex Web sites
for either platform.

• PHP has a simple yet elegant object-oriented syntax and excellent documentation (available
both in books from various authors and [for free] online). Moreover, PHP’s constructs are
familiar to developers who have used procedural or object-oriented programming languages.
Thus, if you know C, C++, Java, Pascal, or Visual Basic, learning to write PHP scripts and
functions will be a easy—you will not feel as if you are learning a completely new programming
language.

• PHP is tailored to the Web developer by allowing the developer to perform tasks with a few
function calls (inserted within the Web page HTML), what can only be done with expert
knowledge and cumbersome code in other scripting languages.

• PHP is very fast. Unlike ASP, which tends to bog down an Internet Information Server (IIS)
when parsing many complex ASP pages at once, you can compile, optimize, and cache PHP
scripts in memory—thereby allowing the Web server to serve a large number of PHP Web
pages without a noticeable degradation in performance.

P:\010Comp\Tip&Tec\394-8\ch10.vp
Thursday, January 03, 2002 5:59:36 PM

Color profile: Generic CMYK printer profile
Composite Default screen

4 6 8 H T M L & W e b D e s i g n T i p s & T e c h n i q u e s

Tip&Tec / HTML & Web Design Tips & Techniques / Anderson, King, Jamsa / 9394-8 / Chapter 10

Downloading and Installing PHP
The purpose of this chapter is to teach you how to use PHP to create dynamic Web content. However,
before you can use PHP, you need a working Web server, PHP itself, and (arguably) an SQL database
management system (DBMS) such as MySQL. Showing you how to download and install a Web
server, PHP, and MySQL on several platforms is beyond the scope of this book. In fact, as a designer,
you will normally rely on your Internet Service Provider (ISP) to perform these installation tasks for
you. However, because you must sometimes make your case for providing PHP and MySQL support,
showing how inexpensive (free) and easy it is to install the applications may go a long way toward
getting your ISP to install them for you to use.

If you are working with a Linux or a Unix platform, your Web server of choice is most likely the
Apache Web server, which your ISP can download free of charge from the Apache Software Foundation
site at http://www.apache.org. If you are working with a Windows platform (NT/2000/XP), you will
most likely be using Microsoft’s Internet Information Server (IIS). If your ISP did not install IIS with
the Windows operating system, he or she can download version 4.0 of the software as part of the NT
Option Pack from the Microsoft site at http://www.microsoft.com/ntserver/nts/downloads/ recommended/
NT4OptPk/. (Note that the CD-ROM for most new Window products such as 2000 Professional, 2000
Server, and XP Professional includes the latest version of IIS.)

After installing the Web server software, your ISP can download and install PHP. If you are
working with a Linux or Unix machine, the ISP must not only retrieve the PHP source code but also
compile it using an ANSI C compiler such as gcc or g++, which he or she can download from the
GNU Web site at http://www.gnu.org/gnulist/production/. You can retrieve the latest version of PHP
from http://www.php.net. Download both the PHP source to compile and the documentation, which
will guide you through the installation and help you select the necessary configuration options.

Configuring PHP on Windows NT running IIS is much simpler than compiling and configuring
PHP for the Apache Web server on a Linux or Unix machine. Proceed to the PHP Web site at
http:// www.php.net and click the Downloads hyperlink. In the Win32 Binaries section of the downloads
Web page, click the hyperlink to download the PHP compressed file and then on the hyperlink to
download the PHP installation program (as of this writing, PHP 4.0.6 Zip Package and PHP 4.0.6
Installer, respectively). When prompted, store both files in the same folder (such as C:\PHP) on the
Web server. Remember, PHP is a server-side scripting language. As such, you install and run the
language processor on the Web server.

Next, unzip the PHP compressed file (currently, php-4.0.6-Win32.zip) and then execute the PHP
InstallShield installation program (currently, php406-installer.exe). The installation program will
prompt you to enter the pathname of the folder in which you unzipped the PHP processor’s files and
the folder and version of IIS (or Personal Web Server) to which you want to add PHP support. After
completing its work, the installation program will ask you to let it reboot your NT/2000/XP server to
finish the installation process. If you have any problems during the installation, or want to perform a
manual installation, print and review the contents of the install.txt file in the PHP folder.

P:\010Comp\Tip&Tec\394-8\ch10.vp
Thursday, January 03, 2002 5:59:36 PM

Color profile: Generic CMYK printer profile
Composite Default screen

TE
AM
FL
Y

Team-Fly®

C h a p t e r 1 0 : P H P 4 4 6 9

Tip&Tec / HTML & Web Design Tips & Techniques / Anderson, King, Jamsa / 9394-8 / Chapter 10

� NOTE

The Windows PHP installer installs the CGI version of PHP and will configure the Web server
to send Web pages with .php (versus .htm or .html) extensions to the PHP processor. PHP4 for
Windows comes in two flavors—a CGI executable (php.exe) and several Web server application
program interface (SAPI) modules (such as php4isapi.dll for IIS). Although the SAPI form of PHP4
provides significant improvements in performance over the CGI version, SAPI modules are new and
(as of this writing) not yet considered “production quality.” As such, before performing a manual
PHP installation to make use of an SAPI module, be sure to read the install.txt file in the PHP folder
for the types of errors you might encounter. If you need a reliable, production Web server, use the
CGI version of the PHP executable until the SAPI version is fully tested and certified as the
production version on the PHP Web site (http://www.php.net).

After you install PHP, test your installation with a small Web page such as the following:

<html>

<body>

<?php phpinfo();?>

</body>

</html>

For example, save the preceding HTML on the Web server in a file named test.php (assuming you
opted to use the .php extension for PHP-parsed Web pages during the installation process). Then, use your
browser to retrieve the Web page (test.php) and display results similar to those shown in Figure 10-2.

If everything is working properly, PHP will return information on the processor’s current version
followed by PHP configuration, environment, and variable information. If your browser’s application
window remains blank, or if the browser displays an error message, a problem exists with the PHP
installation, or the PHP processor could not find the Web page (with the .php extension) you tried to
retrieve from the Web server. Refer to the last two pages of the install.txt file (in the PHP folder) for help
in resolving these and other issue(s) if your PHP installation attempt is unsuccessful. If install.txt does
not give you all the information you need, check the support page on the http://www.php.net Web site.

Understanding PHP Start and End Tags
When the PHP processor retrieves a file to parse, you must set statements intended for the processor
apart from those intended for the Web browser. PHP provides three start and end tags you can use to
enclose the code you want the PHP processor to execute:

<?php <php statements> ?>

<? <php statements> ?>

<script language="php"> <php statements> </script>

P:\010Comp\Tip&Tec\394-8\ch10.vp
Thursday, January 03, 2002 5:59:36 PM

Color profile: Generic CMYK printer profile
Composite Default screen

4 7 0 H T M L & W e b D e s i g n T i p s & T e c h n i q u e s

Tip&Tec / HTML & Web Design Tips & Techniques / Anderson, King, Jamsa / 9394-8 / Chapter 10

You are probably already familiar with the third set of PHP code delimiters, because the PHP start
and end script tags (<script></script>) are the same HTML tags you use to delineate client-side scripts
embedded in the Web page HTML. By setting the scripting language to “php” (versus “JavaScript”
or “VBScript”, for example), you tell the PHP processor to execute the embedded script’s statements
instead of passing them on to the browser. Thus, any one of the start script tags “<?php”, “<?”, or
<script language=“php”> tells the PHP processor that it has encountered statements to execute in the
Web page HTML. The PHP processor will execute all statements it reads until the processor encounters
the matching end script tag (“?>” or </script>).

The following code uses each of the PHP start and end tags to produce the Web page HTML
shown in Figure 10-3. Note that neither of the PHP start script tags (“<?php”, “<?”) has a “closing”
greater-than sign (>) you see at the end of normal HTML tags. (That is, the PHP start script tag is
“<?php” or “<?” and not “<?php>” or “<?>”.) Similarly, the PHP end script tag “?>” has no “opening”
less-than sign (<):

Figure 10-2 Web page returned by PHP when sent a Web page that calls the phpinfo() function

P:\010Comp\Tip&Tec\394-8\ch10.vp
Thursday, January 03, 2002 5:59:37 PM

Color profile: Generic CMYK printer profile
Composite Default screen

<html>
<head><title>PHP Start and End Tags</title></head>
<body bgcolor="#ADD8E6">

<h1><center>HTML and Web Design Tips & Techniques</center></h1>

<?php echo "<p><hr>";
echo "The current date is: "; ?>

<?echo gmDate("l, F d, Y.");
echo "

The current time is: ";

?>

<script language="php">
echo gmDate("h:i:s A");
echo "</p>";
</script>

<hr>
The PHP processor ignores the heading at the top of the page,
this text, and the horizontal rule (line) above this text.
The PHP processor simply passes them on to the Web browser for
display.

</body>
</html>

C h a p t e r 1 0 : P H P 4 4 7 1

Tip&Tec / HTML & Web Design Tips & Techniques / Anderson, King, Jamsa / 9394-8 / Chapter 10

Figure 10-3 Web page HTML generated by the PHP processor

P:\010Comp\Tip&Tec\394-8\ch10.vp
Thursday, January 03, 2002 5:59:37 PM

Color profile: Generic CMYK printer profile
Composite Default screen

4 7 2 H T M L & W e b D e s i g n T i p s & T e c h n i q u e s

Tip&Tec / HTML & Web Design Tips & Techniques / Anderson, King, Jamsa / 9394-8 / Chapter 10

Notice that the Web page the PHP processor passes back to the Web server to send to the Web
browser contains HTML tags and text in place of the PHP statements the processor executed. (You
can view the Web page source the browser received from the Web server by selecting View | Source
in Internet Explorer and View | Page Source in Netscape Navigator.)

Understanding PHP Statement Syntax
The PHP scripts in the Web page HTML at the end of the preceding section show you two important
things. First, you can embed PHP scripts within your Web page HTML by simply delimiting those
scripts with the PHP start and end script tags (<? …?> or <?php … ?>) or HTML start and end script
tags (<script language=“php”> … </script>). Second, you can embed HTML tags within PHP scripts,
as long as you enclose those tags within quotes and tell the PHP processor to echo (that is, print) them
in the Web page HTML the processor sends back to the Web server. For example, the following
statement will insert a horizontal rule tag (<hr>) within the Web page HTML the PHP processor
sends back to the Web server:

<?php echo "<hr>"; ?>

Using the Semicolon (;) Statement Terminator
Whether embedding a script within a Web page with HTML (XHTML or XML) statements or in a
file by itself, you must terminate each statement in a PHP script (including the last) with a semicolon
(;). Thus, the syntax of a single-statement PHP script is as follows:

<start script tag> <php statement>; <end script tag>

and the syntax for a multistatement script is as follows:

<start script tag> <php statement>; <php statement>;
<php statement>; <last php statement>; <end script tag>

As shown by the syntax in this example, you can place multiple PHP statements on the same line
within the PHP document. PHP requires only that you terminate each statement with a semicolon (;).
However, to make your code more readable, place each PHP statement on its own line (as shown by
the example code in the preceding section).

Using the Backslash (\) Escape Character
As mentioned in the preceding section, you can embed HTML tags in your PHP scripts by enclosing
those tags between quotes (“ ”) following the PHP echo command. You can also use the PHP echo
statement to insert plain text onto the Web page by enclosing the text in quotes. However, the following
script will cause the PHP processor to generate an error:

P:\010Comp\Tip&Tec\394-8\ch10.vp
Thursday, January 03, 2002 5:59:37 PM

Color profile: Generic CMYK printer profile
Composite Default screen

C h a p t e r 1 0 : P H P 4 4 7 3

Tip&Tec / HTML & Web Design Tips & Techniques / Anderson, King, Jamsa / 9394-8 / Chapter 10

<?php echo "<p>PHP is the "bomb"!</p>"; ?>

PHP thinks that the quote (“) before the b in bomb signals the end of the text the echo statement is
to insert in the Web page, and bomb is undefined.

To include a quotation mark (or other symbol you want the passer to insert and not interpret)
within quoted text, place a backslash (\) in front of the quotation mark (or symbol) you want PHP
to include on the Web page. For example, to show the text “PHP is the “bomb”!” on the Web page,
write the preceding script as follows:

<?php echo "<p>PHP is the \"bomb\"!</p>"; ?>

Inserting Comments in a PHP Script
PHP gives you three symbols you can use to insert comments in your code: “#”, “//”, and “/* .. */”.
Inserting comments in your PHP scripts is an excellent habit. Though ignored by the PHP processor,
comments remind you (and tell others) why you wrote certain portions of the script in a particular
way or what you are trying to accomplish with the script in general. You might also use comments
during the development process to figure out exactly where a processor-reported error occurs. By
commenting out a section of code (that is, by telling the processor to ignore lines of code as “comments”),
you can make an error “go away.” Then, by “uncommenting” one line of code at a time until the
processor reports the error again, you can figure out which line of code produced the error—the
last line of code you changed from a comment back into an executable statement within the script.

The following code shows how you can use each of the three comment delimiters to add comments
to your PHP scripts:

<html>

<body bgcolor="#ADD8E6">

<h1><center>HTML and Web Design Tips & Techniques</center></h1>

<!--

the script will display the current system date onscreen

-->

<?echo gmDate("l, F d, Y.");

The pound sign (or hash mark)(#) lets you insert a single

line of comments

// The same is true for the double slash (//). If you use a

// single-line comment delimiter (// or #), you must place that

// delimiter as the first character in each line of comments.

/* If you want to use multiline comments, without placing a #

or // in on each line, use the C-style comment delimiter /*,

P:\010Comp\Tip&Tec\394-8\ch10.vp
Thursday, January 03, 2002 5:59:37 PM

Color profile: Generic CMYK printer profile
Composite Default screen

and PHP will ignore anything you type until the PHP processor

reads the end comment delimiter */

echo "
";

?>

</body>

</html>

By the way, the statement echo gmDate(“l, F d, Y.”); in the preceding code tells the processor to
call the built-in gmDate() function, which in turn, retrieves the current GMT (Greenwich Mean Time)
date and time. The letters passed to the function form a formatting string in which certain special
letters (such as l, F, d, and Y in this example) tell the parser which portions of the date and time to
print. The function prints all other nonspecial characters (such as the commas [(,)] and period [(.)]
used for punctuation in this example) in the formatting string as is. Figure 10-4 shows the HTML that
the PHP processor will produce when it executes the preceding code.

Notice that only the HTML comments show up in the Web page HTML—along with the HTML
tags and content the browser is to display, of course. PHP comments—although saved in the Web
page file—are ignored by the PHP processor and not passed on to the Web server in the Web page
the PHP processor returns.

Understanding Variables
A variable is a memory location set aside to hold a value. To make it easy to store and retrieve the
data in memory, PHP lets you use a meaningful name to refer to each memory location. For example,
to store the name the visitor used to log in to your Web site, you might name the memory location
you use to hold the name $username. Similarly, you might use $item_number to store the item
number a visitor selected for purchase, and use $amount_purchased to store the total value of the
visitor’s purchases.

4 7 4 H T M L & W e b D e s i g n T i p s & T e c h n i q u e s

Tip&Tec / HTML & Web Design Tips & Techniques / Anderson, King, Jamsa / 9394-8 / Chapter 10

Figure 10-4 Web page HTML produced by a PHP script with comments

P:\010Comp\Tip&Tec\394-8\ch10.vp
Thursday, January 03, 2002 5:59:38 PM

Color profile: Generic CMYK printer profile
Composite Default screen

PHP places few limits on the names you can use for variables. You can use an unlimited number
of characters in a PHP variable name. However, each variable must start with a dollar sign ($)
followed by a letter or an underscore (_). The remainder of the characters in the name can be any
combination of letters, numbers, and underscores (_). Other special symbols, such as +, -, /, *, &, “,
@, and so on, are not allowed. Bear in mind that PHP variable names are case-sensitive, which means
that the following code will produce two different variables:

$username = "Konrad King";

$userName = "Andy Anderson";

You will use four main types of variables in your PHP scripts—integer, float (also called real or
double), string, and array. When using variables in your scripts, you need not declare the variables
first. (In fact, because PHP has no variable declaration statements, the only way to “declare” [that is,
to create] a variable in PHP is to assign a value to a new variable name or to call the array() constructor
function to create an empty array.) When you assign a value to a variable, PHP not only associates a
memory location with the variable’s name, but also determines the variable’s data type based on the
value you place in the variable. For example, the following script creates a variable of each of the four
data types, assigns a value to each variable, and then displays the values of the variables on a Web
page, as shown in Figure 10-5:

<html>

<body bgcolor="#ADD8E6">

<h1><center>HTML and Web Design Tips & Techniques</center></h1>

<hr>

<?

//create a string variable

$authorName = "Konrad King";

//create an integer variable

$familyMemberCount = 3;

//create an array

$petsNames[0] = "Samantha";

$petsNames[1] = "Caesar";

$petsNames[2] = "Floppy";

//create a floating point (that is a real or double) variable

$yearsInNevada = 7.5;

//display all variables on a Web page.

echo "$authorName, the author of several computer-related ";

echo "books, has lived in Nevada for $yearsInNevada years.";

echo "
 There are $familyMemberCount people in the ";

echo "author's family, plus three pets named: ";

echo "$petsNames[0], $petsNames[1], and $petsNames[2]"

?>

</body>

</html>

C h a p t e r 1 0 : P H P 4 4 7 5

Tip&Tec / HTML & Web Design Tips & Techniques / Anderson, King, Jamsa / 9394-8 / Chapter 10

P:\010Comp\Tip&Tec\394-8\ch10.vp
Thursday, January 03, 2002 5:59:38 PM

Color profile: Generic CMYK printer profile
Composite Default screen

4 7 6 H T M L & W e b D e s i g n T i p s & T e c h n i q u e s

Tip&Tec / HTML & Web Design Tips & Techniques / Anderson, King, Jamsa / 9394-8 / Chapter 10

Understanding Operators
The basic function of a PHP operator is to change the value of a variable or to work with the value
of a variable or literal in some way. In the preceding example, the PHP script used the assignment
operator—that is, the equal sign (=)—to assign an initial value (string, integer, and floating point)
to each variable created within the script. PHP has four main types of operators:

• Assignment operators These are used to assign a value to a variable or to change a variable’s
current value by performing an arithmetic operation or string concatenation. The assignment
operators are described in the following table:

Assignment Operator Purpose Example

= Assign a value $variable = expression
$a = 5; $b = $a + 7; $c = 6 * $d;

+= Add the value that follows the equal sign
(=) to the current value of the $variable

$variable += expression
$a = $a + 5; (same as) $a += 5;

−= Subtract the value that follows the
equal sign (=) from the $variable’s
current value

$variable −= expression
$a = $a – 10; (same as) $a −= 10;

/= Divide the $variable’s value by the
(nonzero) value that follows the equal
sign (=)

$variable /= nonzero expression
$a = $a / 10; (same as) $a /= 10;

*= Multiply the $variable’s value by the
value that follows the equal sign (=)

$variable *= expression
a = a * 25; (same as) a *= 25;

%= (Modulus)—Divide the $variable’s
current value by the value that follows
the equal sign (=) and place the remainder
from the division in the $variable

$variable %= expression
$a = $a % 15; (same as)
$a %= 15;

.= (Concatenation)—Concatenate the
string or numeric value that follows
the equal sign (=) onto the string
$variable’s current value

$variable .= “ string value”
$variable .= numeric value
$a = $a . “bcd”; (same as)
$a .= “bcd”;

Figure 10-5 The values of PHP variables displayed on a Web page

P:\010Comp\Tip&Tec\394-8\ch10.vp
Thursday, January 03, 2002 5:59:38 PM

Color profile: Generic CMYK printer profile
Composite Default screen

• Arithmetic operators These are used to perform (as you might expect) arithmetic operations
(such as addition, subtraction, multiplication, and/or division) on the values of two or more
variables or literal numbers in an expression. The arithmetic operators are described in the
following table:

Arithmetic Operator Purpose Example

+ Addition expression + expression

− Subtraction expression – expression

* Multiplication expression * expression

/ Division expression / expression

% Modulus (return the
remainder of a division)

expression % expression

• Comparison operators These are used to compare one expression, variable, or literal value
to another. Typically, you use comparison operators within conditional statements (such as if
and if-else), and control loops (such as while and for). The comparison operators are listed in
the following table:

Comparison Operator Purpose Example

< Less than expression < expression

> Greater than expression > expression

<= Less than or equal to expression <= expression

>= Greater than or equal to expression >= expression

== Double equal sign (=)—Equal to expression == expression

=== Triple equal sign (=)—Identical to $variable === literal value

!= Not equal to Expression != expression

• Logical operators These are used to compare two Boolean (that is, true or false)
values. Typically, you will use logical operators to compare the results of two comparison
expressions in a conditional statement or control loop. The logical operators are described
in the following table:

Logical Operator Purpose Example

&&, and And expression && expression

||, or Or expression || expression

! Not (exclamation point [!])—
negates the value of an expression

!expression

Tip&Tec / HTML & Web Design Tips & Techniques / Anderson, King, Jamsa / 9394-8 / Chapter 10

C h a p t e r 1 0 : P H P 4 4 7 7

P:\010Comp\Tip&Tec\394-8\ch10.vp
Thursday, January 03, 2002 5:59:39 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Understanding Conditional and Repetitive Processing
A PHP script is a list of instructions you want the PHP processor (running on the Web server) to execute
to accomplish a specific task. All the simple scripts you reviewed up to this point in the chapter have
the processor start with the first statement and execute each statement, in order, to the end of the script.
As your scripts become more complex, you will sometimes want the PHP processor to execute one
set of statements if one condition is true, and, possibly, another set if the condition is false. In other
words, you will want the processor to make decisions and respond accordingly. When you write scripts
that instruct the processor to make decisions, you are performing conditional processing. In other
words, based on the outcome of one or more conditions, the processor will execute specific statements.

To make decisions, your scripts must first perform some type of test. For example, one script might
test if the password a visitor entered is correct, and a second script might test if the phone number a
visitor entered has the correct number of digits. To perform such tests, your scripts will use the PHP
comparison operators listed previously. Comparison operators let your scripts test how one value
“compares” to another. In other words, by using comparison operators, the PHP processor can test
if one value is equal to, greater than, or less than a second value. When the processor uses comparison
operators to compare two values, the result of the comparison is either true or false— meaning, the
two values either satisfy the comparison (true) or they do not (false).

Closely related to decision making within your scripts is the ability to repeat one or more statements
a specific number of times or until a known condition occurs. The while statement lets you create a
loop in which the processor executes a set of statements repeatedly as long as the specified condition
remains true. The for statement lets you create a loop in which the PHP processor executes a set of
statements a fixed number of times.

Using the if Statement to Test a Condition
The if statement lets you use a PHP comparison operator to instruct the PHP processor to perform a
test and then execute statements based on the result of the test. If the test result is true, the processor
executes the statement that follows the if. On the other hand, if the test result is false, the processor
ignores (skips) the statement that follows. The format of the if statement is as follows:

if (condition_is_true)

statement;

Notice that you do not place a semicolon (;) after the if (condition_is_true) that starts the if statement
because the if statement continues to the next line.

When you use the if statement for conditional processing, you will sometimes want the processor
to perform only one statement if the condition is true, and other times when you want the processor
to execute several statements. When your script tells the processor to perform only one statement
following an if, you are using a simple statement:

if ($state == "ca")

echo "The state entered was California.";

4 7 8 H T M L & W e b D e s i g n T i p s & T e c h n i q u e s

Tip&Tec / HTML & Web Design Tips & Techniques / Anderson, King, Jamsa / 9394-8 / Chapter 10

P:\010Comp\Tip&Tec\394-8\ch10.vp
Thursday, January 03, 2002 5:59:39 PM

Color profile: Generic CMYK printer profile
Composite Default screen

TE
AM
FL
Y

Team-Fly®

To instruct the PHP processor to perform several statements when a condition evaluates as true,
you must group the statements within left and right braces ({}). The statements that appear within
the braces make up a compound statement, as shown here:

if ($username != "Konrad")

{

header("Location: http://NVBizNet2.com/htmlwdtt/InvalidUser.htm");

exit;

}

� NOTE

Remembering the terms simple statement and compound statement is not important, but rather, that
you know that you must group related statements (that is, statements within a statement block) within
the left and right braces ({}).

In the two previous examples, the processor uses an if statement to determine whether it is to
execute one or several statements. In the first example, the processor inserted text on the Web page if
the condition was true. Similarly, in the second example, the processor redirected the Web browser
to a new Web page if the condition was true—that is, if the value of the $username variable was not
“Konrad”. In both examples, if the condition was false, the processor skipped executing the statement(s)
in the if statement block. In most cases, however, you will want the processor to execute one set of
statements when the condition is true and a second set of statements if the condition is false. To
provide the statements that execute when the condition is false, your scripts must use the else statement.
The format of the else statement is as follows:

if (condition_is_true)

statement;
else

statement;

The following script uses an if-else statement to check whether the value in $username is “Konrad”,
and if so, takes the visitor to the Welcome.htm Web page. Otherwise, the processor will redirect the
visitor to the InvalidUser.htm page:

if ($username == "Konrad")

{

header("Location: Welcome.htm");

exit;

}

else

{

header("Location: http://NVBizNet2.com/htmlwdtt/InvalidUser.htm");

exit;

}

C h a p t e r 1 0 : P H P 4 4 7 9

Tip&Tec / HTML & Web Design Tips & Techniques / Anderson, King, Jamsa / 9394-8 / Chapter 10

P:\010Comp\Tip&Tec\394-8\ch10.vp
Thursday, January 03, 2002 5:59:39 PM

Color profile: Generic CMYK printer profile
Composite Default screen

In addition to using an if-else statement to execute one set of statements when a condition is true
and another set of statements if the condition is false, you may sometimes want the processor to test
several different related conditions or the same condition repeatedly. For example, assume that your
script must determine a visitor’s area code by testing the value in $city for a match with various city
names whose area codes are known to the script. The following statement uses a series of if-elseif
statements to illustrate a simplified example of the processing the processor might perform:

if ($city == "New York")

$areaCode = 212;

elseif ($city == "Houston")

$areaCode = 281;

elseif ($city == "Phoenix")

$areaCode = 602;

elseif ($city == "Seattle")

$areaCode = 206;

else

$areaCode = "**UNKNOWN**";

When the PHP processor executes the if statement, it first tests whether the city is New York.
If so, the processor assigns the $areaCode variable the value 212. If the city is not New York, the
processor performs the following else if to test if the city is Houston. The PHP processor will perform
this processing for each city until it either finds a matching city or reaches the final else statement.
If the processor does not find a matching city, it assigns to the variable $areaCode the string value
“**UNKNOWN**”.

Use the if-elseif structure shown in the preceding example to execute a statement (or set of statements)
when you are testing for inequality (the value of a variable being less than, greater than, or not equal
to another value) or when you want to test the values of multiple, related variables. When you want
to base statement execution on a single variable being equal to a number or string, PHP provides a
switch statement more suitable (than an if-elseif structure) for this purpose. For example, the following
switch statement is more intuitively obvious and elegant than the if and elseif statements in the
previous example:

switch ($city)

{

case "New York":

$areaCode = 212;

break;

case "Houston":

$areaCode = 281;

break;

case "Phoenix":

$areaCode = 602;

break;

case "Seattle":

$areaCode = 206;

4 8 0 H T M L & W e b D e s i g n T i p s & T e c h n i q u e s

Tip&Tec / HTML & Web Design Tips & Techniques / Anderson, King, Jamsa / 9394-8 / Chapter 10

P:\010Comp\Tip&Tec\394-8\ch10.vp
Thursday, January 03, 2002 5:59:39 PM

Color profile: Generic CMYK printer profile
Composite Default screen

break;

default:

$areaCode = "**UNKNOWN**";

}

When it encounters a switch statement, the processor compares the value of the expression that
follows the keyword switch to each of the values in the case clauses. If the values match, the PHP
processor executes the statement(s) that follows the matching case clause until the processor encounters
the end of the switch statement or a break statement. If none of the case clause values matches the value
in the switch clause, the processor will execute the statement(s) associated with the default clause.

The break statements in the preceding example are important because they instruct the PHP processor
to stop executing case clause statements and continue execution at the first statement following the
switch statement. For example, if you were to omit the break in the “Houston” case clause, the processor
would first assign 281 and then 602 to the $areaCode variable.

You may sometimes omit the break statement on purpose. Suppose, for example, that you want to
execute the same statement(s) for multiple case clause values, such as in the first three case clauses in
the following switch statement:

switch ($city)

{

case "Henderson":

case "Las Vegas":

case "Pahrump":

$areaCode = 702;

break;

case "New York":

$areaCode = 212;

break;

case "Houston":

$areaCode = 281;

break;

case "Phoenix":

$areaCode = 602;

break;

case "Seattle":

$areaCode = 206;

break;

default:

$areaCode = "**UNKNOWN**";

}

Because Henderson, Las Vegas, and Pahrump have the same area code (702), you want the PHP
processor to execute the $areaCode = 702; assignment statement whenever the $city has any one of
the three names.

C h a p t e r 1 0 : P H P 4 4 8 1

Tip&Tec / HTML & Web Design Tips & Techniques / Anderson, King, Jamsa / 9394-8 / Chapter 10

P:\010Comp\Tip&Tec\394-8\ch10.vp
Thursday, January 03, 2002 5:59:40 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Using Logical Operators to Test Two or More Conditions
As your scripts become more complex, you will sometimes want the processor to test more than one
condition at a time. For example, your script might test if a visitor’s annual income is greater than
$25,000 and less than $75,000. Likewise, you might test whether a visitor has a good credit history
or if the visitor is a first-time homebuyer. To perform such operations, you will use the PHP logical
AND operator (&& or “and”) and the logical OR operator (|| or “or”). When your scripts use the
logical AND or the logical OR operator to test more than one condition, you will place each condition
within parentheses, as shown by the following if statement, which uses the logical OR operator to test
whether the visitor has good credit or is a first-time homebuyer:

if (($hasGoodCredit) || ($firstTimeHomeBuyer))

statement;

In a similar way, the following statement uses a logical AND operator to determine if a visitor’s
income is in the range $25,000 to $75,000:

if (($income >= 25000) && ($income <= 75000))

statement;

When your scripts use the logical AND operator, all the conditions within the statement must be
true for the entire condition to evaluate as true. If any condition is false, the entire condition becomes
false. For example, if the visitor’s income is not greater than or equal to $25,000, the previous condition
is false. Likewise, if the visitor’s income is greater than $75,000, the condition is false. In order for
the condition to be true, the visitor’s income must be greater than or equal to $25,000 and less than
or equal to $75,000.

For a statement that uses the logical OR operator to evaluate as true, only one condition must be
true. For example, if the visitor has good established credit, the previous condition is true. If the
visitor is buying his or her first home, the condition is true. Moreover, if the visitor has good credit
and is buying his or her first home, the condition is true. The only time the condition would be false
is if the visitor does not have good credit and is not buying a first home, in which case both conditions
are false, and the overall condition evaluates false.

Using the for Statement to Repeat Statements a Specific Number of Times
One of the most common operations your scripts will perform is to instruct the PHP processor to
repeat one or more statements a specific number of times, in which case you will use the for
statement. A PHP for statement has three expressions and a simple or compound statement with
the following syntax:

for (expression1, expression2, expression3) statement;

The PHP processor evaluates the first expression (expression1) once at the beginning of the loop.
At the start of each iteration, the processor evaluates the second expression (expression2). If the
second expression evaluates as true, the PHP processor executes the statement or group of statements
within a begin-end block ({}) as in:

4 8 2 H T M L & W e b D e s i g n T i p s & T e c h n i q u e s

Tip&Tec / HTML & Web Design Tips & Techniques / Anderson, King, Jamsa / 9394-8 / Chapter 10

P:\010Comp\Tip&Tec\394-8\ch10.vp
Thursday, January 03, 2002 5:59:40 PM

Color profile: Generic CMYK printer profile
Composite Default screen

for (expression1, expression2, expression3)
{

statement;
statement;

...

statement;
}

Conversely, if the second expression evaluates as false, the PHP processor stops executing the
for loop. At the end of each iteration, the PHP processor evaluates expression3.

You can use any legal PHP expressions you want within a for loop and any or all three of the
expressions may be empty. However, an empty second expression (expression2 in the preceding
syntax) means that the PHP processor will execute the for loop indefinitely. Thus, the following
for loop with empty second and third expressions will terminate only when the conditional break
statement within the loop (if $count == 10 break;) causes the PHP processor to continue execution
with the first statement that follows the for loop:

for ($count = 1;;)

{

echo "Count = $count
";

if ($count == 10) break;

$count = ++$count;

}

As another example, the following for statement (with three non-empty expressions) displays the
first ten values in the $stateNames array:

for ($stateIndex = 0; $stateIndex <= 9; ++$stateIndex)

echo "\$stateNames[$stateIndex] = $stateNames[$stateIndex]
";

The third expression increments the variable $stateIndex after each iteration of the for loop. While
the second expression ($stateIndex <= 9) is true, the PHP processor will execute the for loop’s
statement block—a single echo statement in this example.

Using a while Loop to Repeat Statements While a Condition Is True
In the preceding section, you learned to use PHP for loops to instruct the PHP processor to repeat one
or more statements a specific number of times. For situations in which you want the PHP processor to
loop as long as a specific condition remains true, but not necessarily a specific number of times, you
can use the PHP while loop. The general format of the while loop is as follows:

while ($conditionIsTrue)

{

statement;
statement;

}

C h a p t e r 1 0 : P H P 4 4 8 3

Tip&Tec / HTML & Web Design Tips & Techniques / Anderson, King, Jamsa / 9394-8 / Chapter 10

P:\010Comp\Tip&Tec\394-8\ch10.vp
Thursday, January 03, 2002 5:59:40 PM

Color profile: Generic CMYK printer profile
Composite Default screen

When the PHP processor encounters a while loop, the processor first tests the specified condition
(within the parentheses after the keyword while). If the condition is true, the processor will execute
the while loop’s statement block (that is, the statements within the braces [{}] that follow the while
clause). After executing the last statement in the loop, the processor again tests the condition. If the
condition is still true, the processor executes the while loop’s statements again, then checks the condition
again, and so on. When the condition finally becomes false, the processor continues execution at the
first statement that follows the last statement in the while loop.

The PHP do-while loop is similar to the while loop in that the do-while loop also instructs the browser
to repeat a set of statements while a condition is true. However, instead of checking the condition
before executing the statements in the loop (as is the case with the while loop), the do-while loop
checks the condition after executing the loop’s statements. The general format of the do-while loop
is as follows:

do

{

statement;
statement;

}

while ($conditionIsTrue)

Because the processor tests the condition after executing the do-while loop’s statements, the
processor will execute the statements in the loop at least once—even if the condition the processor
tests is false before the processor executes the loop’s statements the first time.

Sending Data from an HTML Form to a PHP Script
If PHP were not able to retrieve information from a site visitor, the scripting language would offer
little more than is already available with standard HTML. After all, displaying things such as the
date, time, and visitor count does not give a Web page dynamic content of interest to site visitors.
True, the values of these items will change. However, the overall content of the Web site—that is, the
information a visitor would visit the site to view—remains static unless you give the visitor a means
of telling the Web server what he or she wants to see. You can use HTML forms to let the visitor send
information to the Web server, and PHP scripts to act on the information sent (by the visitor) to create
new Web page content.

As you learned in Chapter 3, after a visitor fills in a form’s text elements, makes radio button and
check box selections, and then clicks on the form’s Submit button, the Web browser sends the form
results to the Web server. However, the Web server does not “understand” the data sent by the browser.
As a result, the Web server must pass the data (that is, the form results) to another program for processing.
Traditionally, Web browsers passed the form results to Perl scripts for processing. Nowadays, you
have the Web server send form results not only to Perl scripts, but also to Java Servlets, Active Server
Pages (ASP), and (as you will learn in this Tip) PHP scripts.

When you read about forms (in Chapter 3), you learned about the various attributes you can use in
a <form> tag. The two attributes important to PHP’s interaction with the form results are the action

4 8 4 H T M L & W e b D e s i g n T i p s & T e c h n i q u e s

Tip&Tec / HTML & Web Design Tips & Techniques / Anderson, King, Jamsa / 9394-8 / Chapter 10

P:\010Comp\Tip&Tec\394-8\ch10.vp
Monday, January 07, 2002 1:36:15 PM

Color profile: Generic CMYK printer profile
Composite Default screen

and method attributes. By setting the action attribute in a <form> tag to the URL of a PHP Web page,
you can tell the Web server to pass the form results (sent to the Web server by the Web browser when
the visitor clicks the form’s Submit button) to a PHP script. The method attribute tells the Web browser
the way in which the browser is to send the form results to the Web server.

Suppose for example, that you create a Web page with the following form definition:

<form action="http://www.NVBizNet2.com/HWDTT/Chpt10Tip01.php"

method="GET">

First Name: <input type="text" name="firstName" size="20">

Last Name: <input type="text" name="lastName" size="20">

E-Mail: <input type="text" name="emailAddr" size="30">

<input type="submit" value="submit">

<input type="reset" value="reset">

</form>

After the visitor clicks the form’s Submit button, the Web browser will send the form results to
the Web server using the GET method. The GET method tells the Web browser to append the form’s
name/value pairs (that is, the form results) onto the URL to which the Web server passes the form
data (http://www.NVBizNet2.com/HWDTT/Chpt10Tip01.php in this example), as shown by the
Address field of the Web browser application window in Figure 10-6.

C h a p t e r 1 0 : P H P 4 4 8 5

Tip&Tec / HTML & Web Design Tips & Techniques / Anderson, King, Jamsa / 9394-8 / Chapter 10

Figure 10-6 Web browser Address field with form results sent using the GET method

P:\010Comp\Tip&Tec\394-8\ch10.vp
Thursday, January 03, 2002 5:59:41 PM

Color profile: Generic CMYK printer profile
Composite Default screen

In this example, the Web browser passes the name/value pairs “firstName=Konrad”, “lastName=King”,
and “emailAddr=kki@NVBizNet.com”.

The “name” portion of the name/value pair in the form results comes from the name attribute of
the form element’s definition and the “value” portion of the pair is the information the visitor entered
into the form element itself. Thus, in this example, the visitor entered “Konrad” into the firstName element,
“King” into the lastName element, and “kki@NVBizNet.com” into the emailAddr element to produce the
form results shown in Figure 10-6. By reviewing the Web browser Address field in Figure 10-6, you
can see that the GET method caused the browser to format the form results as the URL:

http://www.nvbiznet2.com/HWDTT/Chpt10Tip01.php?firstName=Konrad

&lastName=King&emailAddr=kki@NVBizNet.com

from the action attribute in the <form> tag, followed by a question mark (?) and the three name/value
pairs from the form as:

firstName=Konrad

lastName=King

emailAddr=kki@NVBizNet.com

An ampersand (&) separates each of the name/value pairs in the form results appended onto the URL.
One disadvantage of using the GET method is the very public nature of the form results transmission—

the visitor can view all form results in the Address field of the browser application window. Moreover, form
results transmitted as part of a URL are logged in the browser’s history list, the Web server’s log files,
and (if used) a proxy server’s cache. If you do not want the browser to display the form results sent to
the Web server or leave a copy of the results in easily accessible locations, use the POST method as
shown in the following <form> tag:

<form action="http://www.NVBizNet2.com/HWDTT/Chpt10Tip01.php"

method="POST">

After the visitor clicks the Submit button on a form using the POST method, the browser sends the
name/value pairs that make up the form results to the Web server in the body of an HTTP request
(instead of as part of a URL). As a result, the Web browser’s address field will show only the URL
specified by the action attribute and none of the form results. Moreover, using the POST method lets
you transmit more information, because there is a physical limit as to the number of characters the
browser can transmit as part of a URL.

Deciding which method to use (POST or GET) to transmit form results is largely a matter of
preference. The HTML 4.01 specification states you should use the GET method if the application
that will process the form results retrieves information but makes no changes. Conversely, you should
use the POST method whenever the application that processes the form results updates existing data
or stores the form results in a file or database. However, these are just guidelines—they are not hard
and fast rules. Therefore, you might use other criteria to make your selection.

For example, if the visitor might want to bookmark the URL resulting from submitting a search
form or if the URL contains information you want to analyze later (by using a Web server log file
analyzer to determine the most common search terms), use the GET method. Conversely, if the form

4 8 6 H T M L & W e b D e s i g n T i p s & T e c h n i q u e s

Tip&Tec / HTML & Web Design Tips & Techniques / Anderson, King, Jamsa / 9394-8 / Chapter 10

P:\010Comp\Tip&Tec\394-8\ch10.vp
Thursday, January 03, 2002 5:59:41 PM

Color profile: Generic CMYK printer profile
Composite Default screen

results contain sensitive or personal/private information or if the form results are part of a transaction
that should be performed only once (such as a stock purchase or a balance transfer between bank
accounts), use POST.

Whether you use the POST or GET method to send form results to the Web server, the
PHP processor automatically creates variables named after the form elements and stores

the visitor’s input into those variables. Thus, within your PHP script, you can refer to the data
submitted through a form element by using the form element name preceded by a dollar sign ($).

Suppose, for example, that your Web page has the form definition given at the beginning of
this Tip:

<form action="http://www.NVBizNet2.com/HWDTT/Chpt10Tip01.php"

method="GET">

First Name: <input type="text" name="firstName" size="20">

Last Name: <input type="text" name="lastName" size="20">

E-Mail: <input type="text" name="emailAddr" size="30">

<input type="submit" value="submit">

<input type="reset" value="reset">

</form>

You can use the form results in a PHP script such as the one in the body of the following PHP
Web page by saving the page to the URL given by the action attribute in the <form> tag:

<html>

<head>

<title>PHP Processed Form Results</title>

</head>

<body bgcolor="#ADD8E6">

<h1><center>HTML and Web Design Tips & Techniques</center></h1>

<hr>

<?echo "The first name you entered was: ";

echo "$firstName
";

echo "The last name you entered was: ";

echo "$lastName
";

echo "The e-mail address you entered was: ";

echo "$emailAddr
";

?>

</body>

</html>

Given the value of the action attribute in the form definition for this example, you would save
the preceding PHP Web page to a file named Chpt10Tip01.php in the HWDTT folder on the
NVBizNet2.com Web site.

Note that the variable names in the PHP script are case-sensitive. Thus, the Web server will pass
the form element named firstName and the element’s value to the PHP variable $firstName.

C h a p t e r 1 0 : P H P 4 4 8 7

Tip&Tec / HTML & Web Design Tips & Techniques / Anderson, King, Jamsa / 9394-8 / Chapter 10

P:\010Comp\Tip&Tec\394-8\ch10.vp
Thursday, January 03, 2002 5:59:42 PM

Color profile: Generic CMYK printer profile
Composite Default screen

4 8 8 H T M L & W e b D e s i g n T i p s & T e c h n i q u e s

Tip&Tec / HTML & Web Design Tips & Techniques / Anderson, King, Jamsa / 9394-8 / Chapter 10

However, as you learned earlier in this chapter, $firstName is not the same as $FirstName. As such,
to use the value entered in the firstName element, you must use the PHP $firstName variable (spelled
and capitalized exactly the same as the form element name).

Using PHP to Parse and Extract Form Results
The preceding Tip shows you how to retrieve forms data values into your PHP scripts. In short, you
can refer to the value in a form element using a PHP variable whose name matches the value of the
form element’s name attribute. Thus, your PHP script would use $firstName to refer to the value
entered in a form element defined as follows:

<input type="text" name="firstName" size="20">

Before using PHP to process form results, you need to check if the visitor entered valid data in all
the form’s required elements. Often, you will also need to make sure that each item entered is of the
proper data type and within an acceptable range of values. For the sake of efficiency, you normally
instruct the Web browser to validate data entered into a form’s elements before sending the form
results to the Web server.

To perform all form validation at the Web server would increase Web server overhead and use
Internet bandwidth unnecessarily. A visitor may forget to fill in several required form elements
and/or enter values that are out of bounds. Verifying form results at the Web server would require
that the visitor wait while the Web browser sends invalid data to the Web server only to receive a
message detailing what needs to be fixed. In the process of submitting form results, the visitor may
send bad form results across the Internet several times (taking up bandwidth) and the Web server
may have to check the same form data results repeatedly (using up server resources).

By using a JavaScript or VBScript function embedded in the Web page to validate form results
at the Web browser, you can prompt the visitor to fix data entered into the form before the browser
sends the form results to the Web server. Therefore, letting the Web browser validate data entered
into a form before sending the form results to the Web server keeps the Web browser from sending
form results multiple times. Instead, the JavaScript or VBScript used to validate the form alerts the
visitor to errors in the data entered (or omitted) and forces the visitor to correct the data before sending
the form results (once) to the Web server.

Even after validating form results within the Web browser, you should perform a second, final
check of the form’s data at the Web server as well. Theoretically, the JavaScript or VBScript functions
embedded in the Web page HTML will prevent the visitor from submitting invalid data. Unfortunately,
some Web browsers do not support scripting languages, and for safety, some site visitors will instruct a
browser with script support not to execute scripts embedded on a Web page. Therefore, to make sure
you only process valid data, check the form results at the Web server one last time.

To check whether the visitor entered something into a (single-line) text element or a
(multiline) text area, you can simply use the equality comparison operator (==) and

compare the form element’s value to a zero-length string, as in this example:

P:\010Comp\Tip&Tec\394-8\ch10.vp
Thursday, January 03, 2002 5:59:42 PM

Color profile: Generic CMYK printer profile
Composite Default screen

TE
AM
FL
Y

Team-Fly®

if (trim($firstName) == "")

{

echo "** Invalid - Enter Name **
";

$formResultsValid = false;

}

PHP also provides several built-in functions you can use to determine if the data entered in a text
element is numeric [is_numeric(), is_real(), and is_integer()]. After you determine whether the visitor
entered data (and perhaps, specifically numeric data) in a text field, you can perform further comparison
tests to ensure that the text or numeric data entered is within a valid range of values.

Unlike radio buttons, each check box on a form is an individual entity and is not part of a named
group. To ensure that the visitor has made a selection from at least one of what you want to treat as
a set of check boxes, give each check box a unique name, as shown in the following code:

<input type="checkbox" name="windows" value="Windows">Windows

<input type="checkbox" name="mac" value="Macintosh">Mac

<input type="checkbox" name="unix" value="UNIX">Unix

Because the Web browser sends only the name/value pairs of the check boxes into which the visitor
clicked a check mark (or an X), you can then use logical AND operators (&&) in code such as the
following to ensure the visitor made at least one selection:

if ((!isset($windows)) && (!isset($mac)) &&

(!isset($unix)))

{

echo "You must select Windows, Mac, or Unix
";

$formResultsValid = false;

}

The PHP built-in isset() function returns true if the value of the variable you pass to the function
has been set. Because the browser passes only the value of check marked (that is, selected) check
boxes, the values of check boxes not check marked will have no value in the PHP script.

The Web browser handles radio buttons in groups based on a group name you assign to the name
attribute in each radio button’s <input> tag. Whereas you give each check box in a form a different
(unique) name, you give the radio buttons in the same group a single name. For example, the following
code creates a group of two radio buttons under the radio button group name of giveOutEmailAddr:

<input type="radio" value="Yes" name="giveOutEmailAddr">Yes

<input type="radio" value="No" name="giveOutEmailAddr">No

The Web browser lets the visitor select only a single entry within any one radio button group.
However, the browser does not force the visitor to make at least one selection. Therefore, to ensure
that the visitor made one selection from a group of radio buttons, use the PHP built-in function isset()
in code similar to the following:

C h a p t e r 1 0 : P H P 4 4 8 9

Tip&Tec / HTML & Web Design Tips & Techniques / Anderson, King, Jamsa / 9394-8 / Chapter 10

P:\010Comp\Tip&Tec\394-8\ch10.vp
Thursday, January 03, 2002 5:59:42 PM

Color profile: Generic CMYK printer profile
Composite Default screen

if (!isset($giveOutEmailAddr))

{

echo "Please tell us if we can give out your".

" e-mail address.
";

$formResultsValid = false;

}

The Web browser passes only a name/value pair for the (one) selected radio button in a button group
through the button group’s name. As such, if the user makes no selection, the browser does not pass a
value to the button group’s PHP variable.

Finally, suppose your form has a list box defined by code similar to the following:

<select size="6" name="currentOS[]" multiple>

<option value="Windows98">Windows 98</option>

<option value="WindowsME">Windows ME</option>

<option value="WindowsXP">Windows XP</option>

<option value="MacOs">Macintosh</option>

<option value="Unix">Unix</option>

<option value="Linux">Linux</option>

</select>

Note the brackets ([]) that follow the list box element’s name. If you simply name the list box
currentOS, PHP will only have access to the value of a single option (the last one toward the bottom
of the option list) that the visitor selects. This is fine if you omit the multiple attribute from the
<select> tag, which means the Web browser will let the visitor make only a single selection from
the list. By appending the brackets ([]) to the list box name, you instruct the Web browser to return
the values of all selections the visitor makes as an array.

To determine if the visitor made at least one selection within the list box, you would again use the
PHP isset() built-in function as follows:

if (!isset($currentOS))

{

echo "** You must select the operating system(s) " .

"you use. **
";

$formResultsValid = false;

}

Putting together what you have learned in this Tip then, your overall form results validation script
will consist of the following:

<?

$formResultsValid = true;

/*

Statements that display element names and values for valid

form element data set; and that display element names,

4 9 0 H T M L & W e b D e s i g n T i p s & T e c h n i q u e s

Tip&Tec / HTML & Web Design Tips & Techniques / Anderson, King, Jamsa / 9394-8 / Chapter 10

P:\010Comp\Tip&Tec\394-8\ch10.vp
Thursday, January 03, 2002 5:59:43 PM

Color profile: Generic CMYK printer profile
Composite Default screen

"error message" and set the $formResultsValid (Boolean)

variable to false for each element with invalid data.

*/

if ($formResultsValid)

{

/*

PHP code that processes the form results with user-defined

and/or built-in PHP functions or a script typed either here

or in an included external PHP Web page.

*/

echo "<hr>";

echo "The information you entered has been submitted ".

"for processing.
Thank you!";

}

//** If the form is invalid, give the visitor a "Back" Button **

else

{

echo "<form method=POST>";

echo "<input type=\"button\" value=\"Correct Form\"".

" onClick=\"self.history.back()\">";

}

?>

For a complete listing of the form definition and validation script used in this example, download
the Chpt10Tip02 from http://www.osborne.com.

Using PHP to Send an E-Mail Message
Many Web sites have hyperlinks that let site visitors send e-mail messages to people associated with
the site (such as the Webmaster, company employees, or departments such as customer service,
marketing, human resources, and so on). To create a hyperlink that instructs a Web browser to send
an e-mail message, set the href attribute in the hyperlink’s <a> tag to “mailto:” followed by the e-mail
address to which the browser is to send the message.

For example, to send an e-mail message to kki@NVBizNet.com, you might insert the following
hyperlink on a Web page:

Konrad King

Unfortunately, using “mailto:” to instruct the Web browser to send an e-mail message works only
in a limited number of situations. If the visitor has not configured the Web browser to start the e-mail
application or if the visitor has not properly configured the e-mail application itself, the browser will
be unable to send the message as desired. Fortunately, PHP has a built-in mail() function you can use
to instruct the Web server to send the e-mail message through a local—or on a Windows platform,

C h a p t e r 1 0 : P H P 4 4 9 1

Tip&Tec / HTML & Web Design Tips & Techniques / Anderson, King, Jamsa / 9394-8 / Chapter 10

P:\010Comp\Tip&Tec\394-8\ch10.vp
Thursday, January 03, 2002 5:59:43 PM

Color profile: Generic CMYK printer profile
Composite Default screen

through a remote—Simple Mail Transport Protocol (SMTP; that is, e-mail) server. By taking the
Web browser out of the loop, you no longer have to depend on the visitor’s having the proper
software configuration to send an e-mail message successfully.

Before you can use the PHP mail() function, your ISP must specify the SMTP server (or,
for a Unix platform, the path to the Sendmail program) in the PHP.ini file. For example,

if your ISP’s Web server runs under Windows NT, have the ISP open the PHP.ini file in the winnt
folder. Then, set the SMTP and sendmail_from settings in the mail function section of the INI file,
similar to the following:

[mail function]

SMTP = smtp.lvcablemodem.com ; for Win32 only

sendmail_from = kki@NVBizNet.com ; for Win32 only

;For Unix only. You may supply arguments as well (default: 'sendmail -t -i').

;sendmail_path =

To send an e-mail message, create a form such as the one shown in Figure 10-7, and set the action
attribute in the form’s <form> tag to the URL of the PHP Web page with the script that sends the
form results as an e-mail message.

4 9 2 H T M L & W e b D e s i g n T i p s & T e c h n i q u e s

Tip&Tec / HTML & Web Design Tips & Techniques / Anderson, King, Jamsa / 9394-8 / Chapter 10

Figure 10-7 A form that lets a site visitor send an e-mail message through a PHP script

P:\010Comp\Tip&Tec\394-8\ch10.vp
Thursday, January 03, 2002 5:59:43 PM

Color profile: Generic CMYK printer profile
Composite Default screen

In general terms, the PHP script will pass the values entered in the form shown in Figure 10-7 as
parameters to the built-in PHP mail() function. The mail() function, in turn, will pass the parameter
values to either the Sendmail program (Unix) or to an SMTP server.

The syntax of the PHP mail() function call is as follows:

mail($recipientList, $subject, $message [, $headerList

[, $parameterList]]);

Here is a description of the syntax:

• $recipientList String that contains a list of e-mail addresses separated by commas (,)

• $subject String with the “Subject:” line of the e-mail message

• $message String which contains the body of the e-mail message

• $headerList (Optional parameter) string with text the mail() function is to place in the e-mail
header. Separate each header item with a carriage return/new line combination (\r\n).

• $parameterList Command line parameter string the mail() function is to pass to the Sendmail
program or SMTP server

Thus, a PHP mail() function call might look something like this:

mail("kki@NVBizNet.com,konrad@NVBizNet.com",

"Test message to say hello",

"This is the body of the message"

"From: me\r\nReply-To: secret@xyz.com\r\n".

"X-Sender: PHP\r\nCc: userID@domain.com");

Of course, the script in the PHP Web page to which the Web browser sends the form results
(Chpt10Tip03, in this example) passes string variables and not literals as parameters to the mail()
function. You can download the Web page HTML for the form shown in Figure 10-7 and the source
for the PHP script used to process the form results from http://www.osborne.com.

Determining Whether a Visitor’s
Web Browser Accepts Cookies
Cookies are small text data items the Web server can store and retrieve from a cookie file on the
visitor’s hard drive. Normally, the HTTP protocol is stateless, which means that when a Web server
responds to a browser’s HTTP request, the server has no idea if there was a previous request from the
same visitor. The Web server simply sends files (Web pages, graphics images, and so on) to the Web
browser in response to the browser’s HTTP requests. Previous pages viewed and interactions with
Web page objects (such as form element selections or entries) have no effect on the content of each
new page retrieved.

C h a p t e r 1 0 : P H P 4 4 9 3

Tip&Tec / HTML & Web Design Tips & Techniques / Anderson, King, Jamsa / 9394-8 / Chapter 10

P:\010Comp\Tip&Tec\394-8\ch10.vp
Thursday, January 03, 2002 5:59:44 PM

Color profile: Generic CMYK printer profile
Composite Default screen

4 9 4 H T M L & W e b D e s i g n T i p s & T e c h n i q u e s

Tip&Tec / HTML & Web Design Tips & Techniques / Anderson, King, Jamsa / 9394-8 / Chapter 10

However, if you have a subscription site to which the visitor must log in for access to nonpublic
or custom content, the server must have some way to keep track of the visitor’s state as “logged-in”
while the visitor moves from page to page on the site. Otherwise, the visitor must log in repeatedly as
he or she moves from one restricted-access page to another. Cookies let the Web server maintain the
visitor’s state information by storing the following information:

• A visitor’s preferences for a site and the Web pages he or she visited previously

• A key that links the visitor with the personal data you stored about the visitor in the site’s
database

• A “session” key that allows the visitor to log in once and remain logged in until the visitor
leaves the site or exits the Web browser

• A visitor’s product selections on an e-commerce site so you can present items selected on
a order form when the visitor is ready to check out and pay for his or her selections

Unfortunately, because some developers use cookies to gather information on consumers without
their knowledge, and worse yet, sell the information to others, you can expect some of your site visitors
will set their Web browsers not to accept cookies. If processing performed by scripts on your site’s
Web pages depends on storing and retrieving cookie data, use PHP scripts to test whether the visitor’s
Web browser accepts cookies before you let the visitor onto the site.

To test if the browser will accept cookies, insert the following PHP script to write a “test”
cookie before the Web page HTML in your site’s login page or index page:

<?

//create a date string to use as the "test" cookie value

$today = getDate();

$dateString = $today['month']." ".$today['mday'].", ".

$today['year'];

//attempt to set the cookie

setcookie("TestCookie", $dateString);

?>

//display the remainder of the index page or login page content

If you pass only Web pages with a .php extension to the PHP processor, and your site’s index page
(that is, the site’s home page) has an .htm extension, insert the home page content after the preceding
script in a Web page with a .php extension, such as LoginPage.php. Then, insert an onload attribute
such as the following that loads the PHP Web page in the start <body> tag of the site’s home page
(usually index.htm or default.htm):

<body onload="document.location='LoginPage.php'">

P:\010Comp\Tip&Tec\394-8\ch10.vp
Thursday, January 03, 2002 5:59:44 PM

Color profile: Generic CMYK printer profile
Composite Default screen

C h a p t e r 1 0 : P H P 4 4 9 5

Tip&Tec / HTML & Web Design Tips & Techniques / Anderson, King, Jamsa / 9394-8 / Chapter 10

Next, in the PHP Web page the browser loads when the visitor exits the site’s login or index page,
insert the following script:

<?

//create a date string against which to test the cookie value

$today = getDate();

$dateString = $today['month']." ".$today['mday'].", ".

$today['year'];

if (!empty($testCookie))

{

if ($testCookie == $dateString)

{

//validate username and password here & if valid move

//to the "logged in" screen

header("Location: LoggedIn.htm");

exit;

}

}

//If no cookie was set, display a page asking the visitor to

//set the browser to accept cookies.

header("Location: NeedCookies.htm");

exit;

?>

You must spread the cookie test across two Web retrievals, because the Web browser passes and
accepts cookie information only as part of a Web page header. Thus, the setcookie() function call in
the first PHP script creates a cookie the Web server sends to the Web browser in the login or index
page header. The Web browser, in turn, stores the cookie data (the current date, in this example) in
the site’s cookie file on the visitor’s hard drive. When the visitor moves on to another of the site’s
pages, the Web browser sends all the site’s cookies (TestCookie, in this example) to the Web server
as part of the HTTP request for the new page.

When the Web server receives the request for a PHP Web page, the server passes the HTTP (Web
page) request and the cookie data to the PHP processor for processing. The PHP processor, in turn,
can access each cookie value in a variable with the same name as the cookie preceded by a dollar sign
($). Thus, in this example in which the setcookie() function created a cookie named testCookie, the
PHP processor can check the value of $testCookie to see if the cookie’s value is the current date. If
$testCookie is undefined or has a date other than the current date, the Web browser failed to store the
cookie created by setcookie(), which means that the Web browser does not accept cookies. As a
result, the PHP processor directs the Web server to load the Web page NeedCookies.htm, which
prompts the visitor to change the processor’s cookie preferences to accept cookies. Conversely, if
$testCookie contains the current system date, the Web browser stores the cookie setcookie() created,
and the PHP processor loads the Web page that lets the visitor access the site’s content.

P:\010Comp\Tip&Tec\394-8\ch10.vp
Thursday, January 03, 2002 5:59:44 PM

Color profile: Generic CMYK printer profile
Composite Default screen

4 9 6 H T M L & W e b D e s i g n T i p s & T e c h n i q u e s

Tip&Tec / HTML & Web Design Tips & Techniques / Anderson, King, Jamsa / 9394-8 / Chapter 10

Using PHP and a Disk File to Set Up
Username/Password Access to a Web Site
When you set up a Web site with members-only content, you need a way to let authorized users log
in to the site while preventing those not authorized from retrieving the site’s Web pages. You can use
an HTML form such as the one shown in Figure 10-8 to prompt the site visitor for the username and
password that will give him or her access to the site’s restricted content.

To keep things simple, set the name attribute of the form’s first element to “username” and the
second element to “password”. To pass the username and password the visitor enters into the form to
a PHP script, set the action attribute in the form’s <form> tag to the name of the PHP Web page with
the login script as follows:

<form method="post" action="Chpt10Tip05.php" name="loginForm">

In this example, the filename of the PHP Web page with the username/password authentication
script is Chpt10Tip05.php. (You can download the login form Chpt10Tip05.htm and the login script
Chpt10Tip05.php from http://www.osborne.com.)

Figure 10-8 Username/Password Login Form

P:\010Comp\Tip&Tec\394-8\ch10.vp
Thursday, January 03, 2002 5:59:45 PM

Color profile: Generic CMYK printer profile
Composite Default screen

C h a p t e r 1 0 : P H P 4 4 9 7

Tip&Tec / HTML & Web Design Tips & Techniques / Anderson, King, Jamsa / 9394-8 / Chapter 10

After making sure that the visitor entered both a username and a password into the login
form’s elements, the PHP script (in Chpt10Tip05.php) uses the built-in fopen() function

to open a text file named password.txt, which contains the valid username/password pairs. When you
review the script, you will see the following code used to read the contents of the password.txt until
the script finds a username/password pair in the file that matches the username and password the
visitor entered on the login screen:

if ($fp = fopen("c:\\password.txt", "r"))

{

while (feof($fp) == 0)

{

//read 1 line of up to 1,000 characters from the password file

$line = trim(fgets($fp,1000));

//each line in the password file is formatted as:

//"username,password".

$userPass = split(",", $line);

//check for a matching of both username and password

if (($userPass[0] == $username) and ($userPass[1] == $password))

{

header ("Location: Chpt10LoginSuccessful.htm");

exit;

}

}

//invalid username / password entered.

header ("Location: Chpt10AccessDenied.htm");

exit;

}

If the script finds a match, the PHP processor calls the header() function to pass to the Web browser
a Web page in the members-only area of the site (Chpt10LoginSuccessful.htm, in this example).
Conversely, if the script is unable to find a match before reaching the end of the password.txt file, the
PHP processor passes the “invalid login” page (Chpt10AccessDenied.htm) to the Web browser and
denies the visitor access to the site.

To prevent the visitor from using the Web browser to display the contents of the username/
password file, store the file outside the Web site’s folders. (Otherwise, the visitor could display the
contents of the text file by entering the filename into the browser’s Address field.) As long as the
PHP processor has sufficient access rights, you can place the file with the authorized username/
password pairs in any folder on the server’s hard drive. Moreover, to increase security by making
it more difficult for visitors to guess the name of the authentication file, use a filename with letters
and numbers and avoid using password or username in the name.

P:\010Comp\Tip&Tec\394-8\ch10.vp
Thursday, January 03, 2002 5:59:45 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Preventing Visitors from
Linking Directly to Pages on Your Site
In the preceding Tip, you learned how to use a login form and a text file to restrict access to a Web
site by requiring visitors to enter a valid username/password pair. Unfortunately, if you use only a
login page, visitors can access members-only content without providing a valid username/password
by bypassing the login screen altogether.

Suppose, for example, that the login script you wrote to check the username/password pair sends
the LoginSuccess.htm Web page to the Web browser if the visitor enters a valid username/password
pair. If you use only a login screen to secure the site’s pages, a visitor could skip the login process
and access the site’s content by bookmarking a restricted page (such as LoginSuccess.htm, in this
example) or by entering the URL of any members-only page into the browser’s Address field.

4 9 8 H T M L & W e b D e s i g n T i p s & T e c h n i q u e s

Tip&Tec / HTML & Web Design Tips & Techniques / Anderson, King, Jamsa / 9394-8 / Chapter 10

� QUICK TIP

When you set a form input element’s type attribute to “password”, the Web browser obscures
what the visitor enters into the element from view by displaying an asterisk (*) in place of each
character the visitor types. However, when the Web browser submits all form data (including
data in password elements), it sends it as (unencrypted) ASCII text. As such, a hacker could tap
into the Internet, steal and read (as plain text) the body of the HTTP message in which the Web
browser sends the form data results to the Web server.

To safeguard sensitive information, use the Secure Socket Layer (SSL) protocol to encrypt the
data transmissions between the Web server and the Web browser. SSL encryption occurs outside
the scope of PHP—meaning that SSL encryption is transparent to your PHP scripts. When using
a secure connection, the Web browser encrypts the HTTP requests (including those for PHP Web
pages) that the browser sends to the Web server. After receiving an encrypted HTTP request, the
Web server decrypts the message and passes the (decrypted) request to the PHP engine. The
engine, in turn, retrieves the PHP Web page, executes the scripts and functions in the page, and
sends the Web page generated to the Web server. The Web server, in turn, places the page into
the body of an HTTP response, which the server then encrypts and sends to the Web browser.
Upon receipt of the HTTP response (that is, the Web page requested from the Web server), the
Web browser decrypts the message and displays the Web page.

To set up secure processing (in which the Web server and Web browser send encrypted
messages), speak with the ISP hosting your Web site. After your ISP obtains and installs the
required keys and certificates, your scripts will run, for the most part, unchanged. The only
difference you will notice is that your secure URLs will start as “https://” instead of the standard
(unsecure) “http://”. Thus, to use a secure connection when moving from one PHP Web page to
another, use the following, for example:

header (“Location: https://www.NVBizNet2.com/LoginScript.php”
in place of:

header (“Location: http://www.NVBizNet2.com/LoginScript.php”

P:\010Comp\Tip&Tec\394-8\ch10.vp
Thursday, January 03, 2002 5:59:45 PM

Color profile: Generic CMYK printer profile
Composite Default screen

TE
AM
FL
Y

Team-Fly®

C h a p t e r 1 0 : P H P 4 4 9 9

Tip&Tec / HTML & Web Design Tips & Techniques / Anderson, King, Jamsa / 9394-8 / Chapter 10

To prevent visitors from retrieving restricted pages directly (without first logging into the
site), place all the site’s members-only content on PHP Web pages, that is, on Web pages

with a .php extension. Then, insert a PHP script similar to the following before the first line of HTML
in each restricted-access page:

<?

//retrieve the URL of the Web page with the hyperlink used to

//retrieve the current page

$fromPage = getEnv("HTTP_REFERER");

//make sure that the "referrer" contains the URL of a Web page that

//is allowed to link to a page in the members-only section of

//the Web site

if ((substr($fromPage,0,31) !=

"http://www.nvbiznet2.com/hwdtt/") and

(substr($fromPage,0,27) !=

"http://nvbiznet2.com/hwdtt/"))

{

//if not from a valid page, display a page with a custom error

//message or simply send the login screen to the visitor's Web

//browser instead of the page requested

header ("Location: http://NVBizNet2.com/hwdtt/LoginScreen.htm");

exit;

}

?>

The Web browser sends the URL of the Web page with the hyperlink used to retrieve a Web page
as “HTTP_referer” in the header of the HTTP request the Web browser sends to the Web server. If
the visitor retrieves a Web page from the login screen or by clicking a hyperlink on any page within
the “/hwdtt” folder on the NVBizNet2.com Web site, the getenv() function will return a string that
starts http://www.NVBizNet2.com/hwdtt/ or http://NVBizNet2.com/hwdtt/.

To use the preceding script on your Web pages, use your site’s .com address and the pathname
of the folder in which you store the site’s members-only content in the if statement. In addition,
replace the URL in the header() function call with the URL of your login page in the next-to-last line
of the script.

Using a PHP Session to Establish a Persistent Connection
Between a Site Visitor and the Web Server
In a discussion about the World Wide Web, a session is a series of related interactions between a site
visitor and the Web server, which take place over an extended period. A session might consist of a

P:\010Comp\Tip&Tec\394-8\ch10.vp
Thursday, January 03, 2002 5:59:46 PM

Color profile: Generic CMYK printer profile
Composite Default screen

5 0 0 H T M L & W e b D e s i g n T i p s & T e c h n i q u e s

Tip&Tec / HTML & Web Design Tips & Techniques / Anderson, King, Jamsa / 9394-8 / Chapter 10

series of transactions a visitor makes while transferring money between bank accounts, while paying
bills through a Web-based bill payment service, or while updating a stock portfolio. During a session,
the visitor might make multiple requests to execute the same script or the visitor may execute a variety
of scripts on several of the site’s Web pages. In short, a session starts when the visitor retrieves one of
a site’s Web pages and ends when the visitor exits the Web browser or moves on to another Web site.

One way to make data persistent—that is, to have variables retain their values from one HTTP
request to the next—is to instruct the Web server to send the variables (names and values) to the
visitor’s Web browser as cookies. The Web browser, in turn, stores in a (cookie) file the Web
browser creates on the visitor’s hard drive all the cookies sent from a particular site.

Another way to create persistent variables is to have the PHP processor store the values of the
variables in a session file at the Web server. When you install PHP, the installation program prompts
you for the name of the session save path, which is the pathname of the folder in which you want PHP
to create the session files. Typically, you will have PHP store session files in the \PHP\sessiondata
folder on the same drive on which you install the PHP itself. Therefore, if you install PHP on the
D drive, you will have PHP create session files in the D:\PHP\sessiondata folder.

By using session variables instead of cookies, you avoid having to pass the variable data values
between the Web server and Web browser with each HTTP request. Instead of several data values,
the Web server sends only one “key” value—the session ID—to the Web browser as a cookie named
PHPSESSID. The browser then passes the session ID to the Web server with each HTTP request,
and the PHP processor uses the session ID to identify the file (on the Web server’s hard drive) that
contains the persistent data values available to scripts the visitor might run during the session.

To establish a session, call the session_start() function in a PHP script to create a cookie
(PHPSESSID) with a randomly generated session ID. The Web server must pass all

cookies (including PHPSESSID) to the Web browser within the Web page header. As such, the PHP
processor must execute a session_start() function call that creates and inserts the cookie with the
session ID into the Web page header before the script outputs any other content to the page.

Thus, if you plan to use persistent (session) variables, insert the following code at the start of
your site’s login script or at the start of the first PHP Web page the visitor retrieves when accessing
the site:

<?php session_start(); ?>

If the visitor previously started a session on the Web site and did not subsequently exit the Web
browser, calling the session_start() function will continue or re-establish the session with the same
session ID generated earlier. Otherwise, the session_start() function call will generate a new session
ID at random and insert the ID as a cookie (named PHPSESSID) into the Web page header. If the
visitor has his or her browser preferences set to Prompt Before Accepting Cookies, the Web browser
will display a message box similar to that shown in Figure 10-9 when the browser receives the Web
page with the session ID cookie (PHPSESSID) in the page header.

P:\010Comp\Tip&Tec\394-8\ch10.vp
Thursday, January 03, 2002 5:59:46 PM

Color profile: Generic CMYK printer profile
Composite Default screen

C h a p t e r 1 0 : P H P 4 5 0 1

Tip&Tec / HTML & Web Design Tips & Techniques / Anderson, King, Jamsa / 9394-8 / Chapter 10

After you call the session_start() function to establish the session ID and alert the PHP processor
that you plan to use persistent (session) variables, you can register the variables whose values you
want the processor to maintain in the session file. To register a variable, pass the quoted variable
name without the leading dollar sign ($) to the session_register() function as shown in the following
code that registers four persistent-valued, global variables ($s_firstName, $s_lastName, $s_address,
and $s_phoneNumber):

<?

session_register("s_firstName", "s_lastName", "s_address",

"s_phoneNumber");

?>

You can assign the value you want the processor to maintain in a persistent variable anytime after
you register the variable. However, you can only call the session_register() function before the
processor outputs any content (even so much as a single space) to the current Web page. (Calling
the session_register() function to register a session variable does not change (or set) the variable’s
current value.)

Figure 10-9 The Web browser “Accept Cookie” message box displayed when establishing a
new session

P:\010Comp\Tip&Tec\394-8\ch10.vp
Thursday, January 03, 2002 5:59:47 PM

Color profile: Generic CMYK printer profile
Composite Default screen

5 0 2 H T M L & W e b D e s i g n T i p s & T e c h n i q u e s

Tip&Tec / HTML & Web Design Tips & Techniques / Anderson, King, Jamsa / 9394-8 / Chapter 10

For an example showing scripts that establish a session and then use session variable values on
various Web pages, retrieve and view the source code in Chpt10Tip07.zip from http://www .osborne
.com. The script at the beginning of the PHP Web page Chpt10Tip07.php executes the session_start()
function call to generate a unique session ID and start the session. Next, the session_register()
function call near the end of the login script in Chpt10Tip07Login.php registers several session
variables and assigns to two of them the username and password entered in the login form (on the
Chpt10Tip07.php page). Finally, Chpt10GetPI.php and Chpt10GetPI2.php have forms that let the
visitor enter personal information, which the script in Chpt10ShowInfo.php displays onscreen.

Creating a MySQL Database and Tables
In a previous Tip in this chapter you learned how to use the PHP built-in fopen() function to open a
text file on the Web server’s hard drive. You then learned how to use the built-in fgets() function to
retrieve the text file’s contents, one line at a time, in an effort to find a username/password pair that
matched the username and password the visitor entered into the elements of a “login” form.

Now, suppose that you have a text file with the list of products your company sells. Using what
you already know, you could create a PHP script that calls the fgets() function repeatedly to retrieve
the product data one line (or item) at a time. Then, by executing an “echo” statement or calling the
built-in print() function after each read, you could write a script that displays the product list on a
Web page. Thus, you can use PHP and text files on the Web server to create content on-the-fly. In the
current example, the Web page with your company’s product list does not exist until the site visitor
retrieves the PHP Web page with the script that generates the list.

An SQL database, like a text file, is simply a collection of data. However, unlike text files in
which applications store data in unstructured chunks, a DBMS controls all interactions with the
data in an SQL database and organizes the data for fast, easy access and manipulation. As a result,
it would take an unacceptably long time to search through a text file of several thousand username
/password pairs for a match required to grant the user access to a Web site. Meanwhile, a DBMS
can perform the same search (on tens of thousands of records) in a fraction of a second. Similarly,
a DBMS could display a list of specific products or a single product (versus a list of all products)
more quickly than a script reading the text file with the product list from beginning to end.

PHP comes with built-in functions that let you not only retrieve but also update the data stored in
several of the most popular DBMS products such as DB2, FrontBase, Informix, InterBase, mSQL,
MS SQL Server, MySQL, Oracle, ODBC, PostgreSQL, and Sybase. Check with your ISP or database
administrator (dba) to see which of these products is available for you to use to supply data to your
PHP scripts. If none is installed, you may find MySQL of particular interest. MySQL is a multiuser
DBMS you can download free of charge from http://www.MySQL.com and is available for both the
Windows and Unix platforms.

Regardless of the DBMS product to which you have access, you will need to create a
database to hold the tables your PHP scripts can use to store and retrieve information.

P:\010Comp\Tip&Tec\394-8\ch10.vp
Thursday, January 03, 2002 5:59:47 PM

Color profile: Generic CMYK printer profile
Composite Default screen

C h a p t e r 1 0 : P H P 4 5 0 3

Tip&Tec / HTML & Web Design Tips & Techniques / Anderson, King, Jamsa / 9394-8 / Chapter 10

To create a database, use the SQL CREATE DATABASE statement. Suppose for example that you
want to create a database in which to create tables that hold data for use when working with the examples
in this book’s Tips. You might use the first letter in each word of the book’s title as the database
name (HTML & Web Design Tips & Techniques yields HWDTT). Therefore, to create a database
for this book’s example tables execute the SQL CREATE DATABASE statement as follows:

CREATE DATABASE hwdtt;

The syntax of the SQL CREATE DATABASE statement is this:

CREATE DATABASE <database name>

After you create a database, you will need to create tables in which to store your data. A complete
discussion of data normalization (that is, using relational database concepts to determine what data to
include in which tables) is beyond the scope of this book. What is important to understand now is that
an SQL table consists of rows of related information arranged in columns. Each row (sometimes—
albeit loosely—called a record) consists of related data items. For example, if you wanted to create
a table of usernames and passwords, each row in the table would contain a valid username/password
pair—with the username in one column and the associated password in another. To create such a
table, first tell the DBMS which database you want to use and then execute an SQL CREATE TABLE
statement as follows:

USE hwdtt;

CREATE TABLE webSiteUsers

(username VARCHAR(20) NOT NULL,

password VARCHAR(20) NOT NULL);

The syntax of an SQL CREATE TABLE statement is as follows:

CREATE TABLE <table name>

(<column name> <column type> [<column attribute list>],
...

<last column name><last column type> [<last attribute list>])

To be useful, your SQL table needs data, which you can add using SQL INSERT statements.
For example, to insert usernames and passwords into the webSiteUsers table, you can execute an
INSERT statements such as:

INSERT INTO webSiteUsers (username, password)

VALUES ("Konrad", "abc2125");

INSERT INTO webSiteUsers (username, password)

VALUES ("Gracie", "157WXY3");

P:\010Comp\Tip&Tec\394-8\ch10.vp
Thursday, January 03, 2002 5:59:47 PM

Color profile: Generic CMYK printer profile
Composite Default screen

The syntax of an SQL INSERT statement is this:

INSERT INTO <table name> (<column1, column2, ..., columnN)
VALUES (value1, value2 ..., valueN)

Next, to use the table in this example, you can submit a query in the form of an SQL SELECT
statement to the DBMS. For example, to display the usernames and passwords in the table, you can
execute the SQL SELECT statement:

SELECT username, password FROM webSiteUsers;

To test whether a visitor entered a valid username, you can add a WHERE clause that tells the
DBMS to return only those rows in which the username and password matched the values the visitor
entered into the elements of the login form. For example, if the visitor entered Konrad into the username
element and wrongPass into the password element of the login form, your query would be this:

SELECT COUNT(*) FROM webSiteUsers

WHERE username="Konrad" AND password="wrongPass";

If the query returns “1”, the username/password pair submitted is valid, because it is an entry in
the table. Conversely, if the visitor submitted a username/password pair not in the table (as is the case
in this example), the query returns “0” to indicate that no user in the table has the username and password
combination submitted in the query.

The next Tip shows you how to insert data into an SQL table and how to submit queries that
retrieve the SQL table data using PHP scripts.

Displaying SQL Query Results in an
HTML Table on a Web Page
To retrieve and display data from a database onto a Web page, your PHP script must do three things.
First, the script must establish a connection with the DBMS by calling a built-in PHP “database
connect” function (such as mysql_connect(), which lets PHP connect to a MySQL DBMS). Second,
the script needs to send a query to the DBMS through the database connection using a built-in “SQL
query” function (such as mysql_query(), which lets PHP send SQL statements to the MySQL DBMS
for execution). Third, after the DBMS places query results in an output buffer at the Web server, the
script must retrieve the data stored in the buffer and display the information on a Web page. For
example, if you are working with MySQL, your script might use the built-in mysql_fetch_array()
function to retrieve the data in one row of SQL query results (from the DBMS output buffer) and
place the row’s column values into the elements of an array. Next, the script might execute an echo
statement or make a print() function call to display the database field values (from the array) onto
the Web page.

5 0 4 H T M L & W e b D e s i g n T i p s & T e c h n i q u e s

Tip&Tec / HTML & Web Design Tips & Techniques / Anderson, King, Jamsa / 9394-8 / Chapter 10

P:\010Comp\Tip&Tec\394-8\ch10.vp
Thursday, January 03, 2002 5:59:48 PM

Color profile: Generic CMYK printer profile
Composite Default screen

C h a p t e r 1 0 : P H P 4 5 0 5

Tip&Tec / HTML & Web Design Tips & Techniques / Anderson, King, Jamsa / 9394-8 / Chapter 10

Suppose, for example, that you are using the MySQL DBMS and want to display in an
HTML table on your Web page the data in an SQL table named products within the

HWDTT database (that is, within the HTML and Web Design Tips and Techniques database). First,
execute a mysql_connect() function call such as the following:

$link = mysql_connect($db_host, $db_user, $db_pass);

$db_host contains the string “localhost” (if the MySQL server is running on the same system as
the Web server) or a string with the IP address of the computer running the MySQL Server with
which you want to connect. (Speak with the ISP hosting your Web site to get the IP address of the
computer with the SQL server you will be using.) The remaining two parameters, $db_user and
$db_pass, are the username and password the function needs to log in to the MySQL DBMS. (If
you are working with a default installation of MySQL, you can log in with $db_user = “root” and
$db_pass = “”.)

Within the mysql_connect() function, the PHP processor assigns the DBMS connection handle
to the $link variable or returns the Boolean false if the connection attempt fails. Because things do
sometimes go wrong, use an if statement to check if the $link is false and display an error message
on the Web page if necessary. If the connection attempt succeeds, use a function call such as the
following to select the database with the table(s) whose data you want to query:

if (!mysql_select_db($db_name, $link))

{

//Statements to handle a failed "USE database" statement.

}

else

{

//Processing after a successful database connect and select.

}

A MySQL server normally manages several databases, so you need to choose the database with
the table(s) whose data you want to use. In this example, $db_name contains the string “HWDTT”
and $link contains the database connection handle generated by the successful mysql_connect()
function call. As before, check the value returned by the PHP function call [mysql_select_db(), in this
case] to make sure your database selection was successful; the function returns true for success or
false to indicate failure.

After successfully connecting to the MySQL DBMS and selecting a database, call the mysql_
query() function with a statement similar to the following to send the query (or other SQL command)
you want the DBMS to execute:

$result = mysql_query($query, $link);

In this example, in which you want to display the contents of the products table, $query contains
the SQL statement SELECT * FROM products ORDER BY description. As before, $link contains

P:\010Comp\Tip&Tec\394-8\ch10.vp
Thursday, January 03, 2002 5:59:48 PM

Color profile: Generic CMYK printer profile
Composite Default screen

5 0 6 H T M L & W e b D e s i g n T i p s & T e c h n i q u e s

Tip&Tec / HTML & Web Design Tips & Techniques / Anderson, King, Jamsa / 9394-8 / Chapter 10

the database connection handle returned by the successful mysql_connect() function call made near
the start of the script. mysql_query() returns false (if the DBMS was unable to execute the SQL
statement submitted for some reason) or a pointer to the location where the DBMS placed the query’s
output (that is, a pointer to where the DBMS placed the query’s results set).

To retrieve the query results (that is, the rows of data the query selected from the products table),
call the mysql_fetch_array() repeatedly to retrieve each row of query results and store the row’s
column values in an array. Then display the values in the array on the Web page. For example, the
following script retrieves the number of fields (returned in the query results), the names and types
of those fields, and then displays the column values within each row of query results (returned by
each mysql_ fetch_array() function call) in an HTML table the script constructs on the Web page:

//determine the number of fields returned in the results set

$fields = mysql_num_fields($result);

//start the HTML table definition

echo "<center><table border='1' cellpadding='5'>";

//display column names as HTML table headings

echo "<tr>";

for ($i=0; $i < $fields; $i++)

{

echo "<th>" . mysql_field_name($result, $i) . "</th>";

$fieldType[$i] = mysql_field_type($result, $i);

}

echo "</tr>";

//display query results in the HTML table's rows and columns

while ($array = mysql_fetch_array($result))

{

echo "<tr>";

for ($i=0; $i < $fields; $i++)

{

if ($fieldType[$i] <> "string")

echo '<td align="right">';

else

echo '<td align="left">';

echo "$array[$i]</td>";

}

echo "</tr>";

}

echo "</table></center>";

You can retrieve the complete PHP script described in this Tip by downloading Chpt10Tip09.php
from the Osborne Web site at http://www.osborne.com. By changing the connection information and
the SQL query, you can use the script to retrieve and show the results set from any SQL query within
the elements of an HTML table on a Web page. The script displays the names of the columns returned
by the query in a “heading” row across the top of the HTML table and displays the query results
themselves in rows below the headings.

P:\010Comp\Tip&Tec\394-8\ch10.vp
Thursday, January 03, 2002 5:59:48 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Using PHP to Generate a Random Password
When you create a members-only Web site, you want to make sure your subscribers use passwords
that unauthorized users cannot guess. Because people try to think of passwords that are easy to remember,
they often use the names of family members or friends, the numbers in memorable dates, or some
nickname or phrase they are fond of saying. Unfortunately, such “memorable” words, numbers,
or combinations of words and numbers are also easy for someone acquainted with the member to
figure out.

By using the built-in PHP mt_rand() function to generate a password that consists of random
letters and numbers, you can prevent new members from choosing easily compromised passwords.
Unfortunately, if a password is hard to remember, the member is likely to forget it. As such, to keep
your members happy and to avoid a flurry of phone calls for forgotten passwords, you will need to
provide an on-line mechanism members can use to retrieve passwords previously assigned. One often
used method is to have a program on the site send the initial and forgotten passwords to the member’s
e-mail address.

To use a PHP script to assign a random password, you need a Web page with a form
such as the one shown in Figure 10-10, which lets the visitor enter a username and an

e-mail address.

C h a p t e r 1 0 : P H P 4 5 0 7

Tip&Tec / HTML & Web Design Tips & Techniques / Anderson, King, Jamsa / 9394-8 / Chapter 10

Figure 10-10 Web page prospective members can use to request a PHP generated password

P:\010Comp\Tip&Tec\394-8\ch10.vp
Thursday, January 03, 2002 5:59:49 PM

Color profile: Generic CMYK printer profile
Composite Default screen

As indicated by the text at the bottom of the page shown in Figure 10-10, the PHP script will
generate a password of five to eight characters after the visitor enters a username not already in-use
by another member. The script randomizes not only the characters in the password but also the length
of the password itself for added security. (A password is more difficult to crack when the person
trying to guess what the password is also does not know its length.)

You can use a PHP script similar to the following to generate a random password:

function generatePassword()

{

//"seed" the random function and determine the password length

mt_srand ((double)microtime() * 1000000);

$passwordLength = mt_rand (5, 8);

//set ASCII range for random character generation

//ascii 48-57 inclusive are characters 0 to 9

//ascii 65-90 inclusive are characters A to Z

//ascii 97-122 inclusive are characters a to z

$lowerBound = 48;

$upperBound = 122;

//Exclude symbols

$excludeSymbols = array(':',';','<','=','>','?','@','[',

chr(92),']','^','_','`');

//create the random password

$i = 0;

$password = "";

while ($i < $passwordLength)

{

mt_srand ((double)microtime() * 1000000);

$letter = chr(mt_rand ($lowerBound, $upperBound));

if (!in_array ($letter, $excludeSymbols))

{

$password .= $letter;

$i++;

}

}

return $password;

}

Next, insert the username, e-mail address, current IP address, system date, and the (randomly
generated) password in the usernames table in the site’s database. Then, call the built-in PHP mail()
function to send the password to the member’s e-mail address.

When a new member logs in, a user-defined login script will search the usernames table for a
matching username/password pair. If the script can match the username and password stored in the
database table with the username and password the visitor entered in the login form, the login script
“activates” the account. In the current example (not shown here but performed by the PHP script in

5 0 8 H T M L & W e b D e s i g n T i p s & T e c h n i q u e s

Tip&Tec / HTML & Web Design Tips & Techniques / Anderson, King, Jamsa / 9394-8 / Chapter 10

P:\010Comp\Tip&Tec\394-8\ch10.vp
Thursday, January 03, 2002 5:59:49 PM

Color profile: Generic CMYK printer profile
Composite Default screen

TE
AM
FL
Y

Team-Fly®

Chpt10Tip10Login.php), the login script writes the system date into the last_login column of the
visitor’s record in the usernames table to activate the account.

You can retrieve the Web pages with the forms and PHP scripts described in this Tip by
downloading the file Chpt10Tip10.zip from the Osborne Web site at http://www.osborne.com.

Using PHP and MySQL to Set Up
Username/Password Access to a Web Site
In “Using PHP and a Disk File to Set Up Username/Password Access to a Web Site” earlier in this
chapter, you learned how to set up a restricted access (that is, members-only) Web site using PHP and
a text file with the site’s username/password pairs stored on the Web server’s hard drive. Unfortunately,
placing the site’s authorized user list in a text file has several inherent problems. For example:

• Each time you add username/password pairs to the file, you increase the time it takes a user to
log in. It takes longer and longer for the login script to scan the access file (from beginning to
end) for matching username/password pairs as the file gets larger.

• Deleting or changing username/password pairs in the access file is a manual, tedious, and
error-prone process. As a result, someone may inadvertently render the access file unusable to
the authentication script by changing the required <username>,<password> format of each line.

• Network users (such as the system administrator and others with privileged accounts) might not
recognize the access file’s name and delete the file while “cleaning up” folders to free up disk
space (thereby denying everyone access to the Web site). Or, these users may simply view the
file’s contents and thus get a complete (albeit, unauthorized) list of your site’s usernames and
passwords.

By storing username/password pairs in an SQL database, you can avoid all these problems. Everyone
authorized to work with the access table must do so through the DBMS. Therefore, no one can corrupt
the format of the lines in the access file by adding, removing, or changing username/password pairs.
Moreover, you can control who does what in the file by granting some users “insert only” and others
“insert”, “delete”, “view”, and/or “update” access. Moreover, whether the site has 10 or 10,000 members,
it will take the PHP login script the same (short) amount of time to search for a matching username/
password pair when a member logs onto the site.

To use a table in a MySQL database as the site’s access control list, first create the table
in which to store the site’s usernames and passwords with an SQL CREATE statement:

CREATE TABLE siteAccessList

(username VARCHAR(30) PRIMARY KEY,

password VARCHAR(15) NOT NULL);

The SQL CREATE statement in this example creates a two-column database table for usernames
and passwords. The first column, username, can store hold up to 30 characters, and the PRIMARY

C h a p t e r 1 0 : P H P 4 5 0 9

Tip&Tec / HTML & Web Design Tips & Techniques / Anderson, King, Jamsa / 9394-8 / Chapter 10

P:\010Comp\Tip&Tec\394-8\ch10.vp
Monday, January 07, 2002 1:37:05 PM

Color profile: Generic CMYK printer profile
Composite Default screen

KEY attribute specifies that every row in the table must have a unique, nonblank (and NOT NULL)
value in the username column. The second column (password) can hold up to 15 characters and each
row must have a non-NULL password.

Next, execute INSERT statements such as the following to add to the table username/password
pairs subscribers can use to log in to the Web site:

INSERT INTO siteAccessList VALUES ("Konrad","King");

INSERT INTO siteAccessList VALUES ("Sally","Fields");

INSERT INTO siteAccessList VALUES ("Craig","Berry");

(To prevent nonsubscribers from “guessing” passwords and thereby gaining unauthorized access
to the Web site, you should not use last names for passwords as shown in this example.) Each of the
three INSERT statements creates a new row in the table, placing the first item in the VALUES list in
the first table column and the second item into the second column.

After a visitor enters his or her username and password into a login form and clicks the form’s
“Login” button, a PHP script such as the following connects with the MySQL database and determines
if the username/password pair entered is in the site access list:

<?

$db_host = "localhost";

$db_user = "root";

$db_pass = "";

$db_name = "hwdtt";

//Connect to MySQL DBMS

$link = mysql_connect($db_host, $db_user, $db_pass);

//Select the database with the siteAccessList table

mysql_select_db($db_name, $link);

//formulate the query and then send it to DBMS for execution

$query = "SELECT username FROM siteAccessList ".

"WHERE username = \"$username\" ".

"AND password = \"$password\"";

$result = mysql_query($query, $link);

//Check the number of rows in the query results set. If the

//username/password is on file, the query will produce exactly

//1 row of results. If not, mysql_num_rows() will find that the

//query returned zero (0) rows.

if (mysql_num_rows($result) == 0)

header ("Location: Chpt10AccessDenied.php");

else

header ("Location: Chpt10Tip10LoginSuccessful.php");

?>

5 1 0 H T M L & W e b D e s i g n T i p s & T e c h n i q u e s

Tip&Tec / HTML & Web Design Tips & Techniques / Anderson, King, Jamsa / 9394-8 / Chapter 10

P:\010Comp\Tip&Tec\394-8\ch10.vp
Thursday, January 03, 2002 5:59:50 PM

Color profile: Generic CMYK printer profile
Composite Default screen

After calling the mysql_connect() function to log in to the MySQL server, the script calls the
mysql_select_db() function to select the database that contains the site access list (siteAccessList, in
this example). Next, the script builds the query (that is, the SQL SELECT statement) that instructs
the DBMS to return the table rows with a username/password pair that matches the username and
password the visitor entered in the login form. After the script calls the mysql_query() function to
send the query to the DBMS, the DBMS executes the query and places the list of rows with matching
username/password pairs it finds in an output buffer.

The mysql_num_rows() function call returns the number of rows the DBMS returned by executing
the SQL SELECT statement submitted by the mysql_query() function call. If the mysql_num_rows()
function in the if-else statement at the end of the scrip returns “1”, the visitor is authorized to enter
the site. Conversely, if the mysql_num_rows() function returns “0”, the script prevents the visitor
from accessing the site’s members-only content, because the username/password pair the visitor
entered is not one of those in the site access list.

You can retrieve the Web page with the login form and the PHP Web page with the login script
described in this Tip by downloading the file Chpt10Tip11.zip from the Osborne Web site at
http: //www.osborne.com.

Preventing Visitors from Changing
Variable Values with URL Arguments
To pass form results to a PHP script, you can use either the GET method or the POST method. As
you learned in Chapter 3, the POST method causes the Web browser to send form results to the Web
server in the body of an HTTP request. The GET method, meanwhile, appends the form results onto
the URL to which the Web server is to pass the form results. Unfortunately, being able to pass variable
values to a PHP script by appending variable name/value pairs onto the URL of a PHP Web page (as
the GET method does) poses a potential security problem. Visitors might append values for variables
you do not want changed.

Suppose, for example, that your site has a login screen that requires the visitor to enter a valid
username/password pair. After a valid login, your login script establishes a PHP session and sets
a persistent variable such as $s_username to the name the visitor used to log in to the Web site. Prior
to a valid login, $s_username is unset (that is, undefined), so you might place an if statement such as
the following at the beginning of each of the PHP Web pages in the members-only area to prevent
unauthorized access:

<?php

session_start();

if (!isset($s_username))

{

header("Location: http://www.NVBizNet2.com/LoginScreen.htm");

exit;

}

?>

C h a p t e r 1 0 : P H P 4 5 1 1

Tip&Tec / HTML & Web Design Tips & Techniques / Anderson, King, Jamsa / 9394-8 / Chapter 10

P:\010Comp\Tip&Tec\394-8\ch10.vp
Friday, January 04, 2002 12:44:21 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Unfortunately, if the site visitor enters into the Address field of the Web browser the URL of
a page in the members-only area as follows, the PHP engine will set the value of $s_username to
“Konrad”:

http://www.NVBizNet2.com/LoggedIn.php?s_username=Konrad

Because the $s_username variable has a value when checked by the if statement at the start of
the PHP Web page, the visitor is allowed to retrieve the page, although he or she never logged in.

To prevent visitors from setting session variables (and thereby circumventing your login
process), pass all your form results using the POST method. In so doing, you can check

to make sure the site visitor has not entered any URL arguments with code such as the following:

<?php

if ($HTTP_SERVER_VARS["argc"] != 0)

{

header("Location: $PHP_SELF");

exit;

}

?>

By passing any form results in the bodies of HTTP requests, you make sure that none of the PHP
Web pages expects URL arguments. Therefore, if the PHP processor detects any arguments appended
to a URL, the processor should (and does) reload the PHP Web page again—without arguments.

Using PHP and MySQL to Track
Where Visitors Go on Your Web Site
After you create a Web site, you often want to track who visits the site, what pages they view, and
(perhaps) the URL of the Web page with the hyperlink on which the visitor clicked to get to the page
on your site. To create a comprehensive access log of every visit for all your site’s pages, talk to the
ISP hosting your Web site. Most commercial Web servers (including IIS) come with a built-in capability
to generate W3C-compliant site usage logs. After the Web server generates a standard usage log, you
can use an off-the-shelf usage log analyzer (or write an application of your own) to read the ASCII log
file and display information on the site’s page views using both text graphics charts.

If your ISP will not turn on the Web server’s logging functions (due to the space required for the
log files and the server overhead involved in maintaining them), or if you want only to track access
to certain pages, you can use a MySQL table and a few PHP scripts to create your own usage reports.
Suppose, for example, that you execute the following SQL CREATE statement to create a table named
UsageLog in a MySQL database:

CREATE TABLE UsageLog

(visitor_IP TEXT,

5 1 2 H T M L & W e b D e s i g n T i p s & T e c h n i q u e s

Tip&Tec / HTML & Web Design Tips & Techniques / Anderson, King, Jamsa / 9394-8 / Chapter 10

P:\010Comp\Tip&Tec\394-8\ch10.vp
Friday, January 04, 2002 12:45:58 PM

Color profile: Generic CMYK printer profile
Composite Default screen

page_URL TEXT,

DT_retrieved TIMESTAMP,

referer_URL TEXT,

session_ID TEXT,

session_views INTEGER);

You can then insert code that calls the following user-defined function at the start of each PHP
Web page for which you want to track the usage by adding a row into the UsageLog table in the
MySQL database:

<?

function recordPageHit($db_host, $db_user, $db_pass, $db_name, $sessionID)

{

global $REMOTE_ADDR, $PHP_SELF, $link, $result;

//to save space, use str_replace() to strip off the //"http://"

//from the URL. Also, use explode() to remove the query,

//if any, that follows the "?" in a URL

$referer = explode("?",

str_replace("http://", "", getenv("HTTP_REFERER")));

//call a user-defined function to connect with the MySQL DBMS

if (connectToDB($db_host, $db_user, $db_pass, $db_name))

{

//Only insert one row per page per session. If the visitor

//views a page multiple times, keep track of the number of

//visits to the page during the session in the "session_views"

//column of

$query = "UPDATE UsageLog ".

"SET session_views = session_views + 1 ".

"WHERE session_ID = '$sessionID' ".

" AND page_URL = '$PHP_SELF'";

$result = executeQuery($query);

//Check if the UPDATE statement found a row for the page.

//If not, insert a row for the page into the table. A page will

//have only one row of stats per session

if (!mysql_affected_rows($link))

{

$query = "INSERT INTO UsageLog ".

"(visitor_IP, page_URL, referer_URL, ".

"session_ID, session_views) ".

"VALUES ('$REMOTE_ADDR', '$PHP_SELF', ".

"'$referer[0]', '$sessionID', 1)";

$result = executeQuery($query);

C h a p t e r 1 0 : P H P 4 5 1 3

Tip&Tec / HTML & Web Design Tips & Techniques / Anderson, King, Jamsa / 9394-8 / Chapter 10

P:\010Comp\Tip&Tec\394-8\ch10.vp
Thursday, January 03, 2002 5:59:51 PM

Color profile: Generic CMYK printer profile
Composite Default screen

}

}

}

?>

Copy the PHP source code for the preceding function, as well as the user-defined function
connectToDB() (used to connect to a MySQL DBMS near the beginning of recordPageHit()), onto
your computer by downloading the file Chpt10Tip13.zip from the Osborne Web site at http://www
.osborne.com. Chpt10Tip13.php (also included in the Zip file) shows you the statements you need
to insert at the top of your PHP Web page files to start a session and then call the recordPageHit()
function.

Note that the recordPageHit() function calls the same user-defined function (executeQuery(),
which is also included in Chpt10Tip13.zip) to both update an existing row in the UsageLog table
and to insert a new one. When working with MySQL, you use the same PHP built-in function
(mysql_query()) to send to MySQL any statements (such as SELECT, INSERT, UPDATE, CREATE,
DROP, and so on) you want the DBMS to execute. (Bear in mind that logging each Web page request
can bog down your Web server if you get an appreciable amount of traffic and thereby reduce your
site’s scalability.)

Determining the Visitor’s IP Address for Web Page
Requests Sent Through a Proxy Server
In the preceding Tip, you learned how to create a MySQL table and use PHP scripts (some saved as
user-defined functions) to log page views by inserting rows of data into the SQL table. In addition to
generating reports on the number of pages and which specific pages a visitor retrieves during a session,
you might want to identify each visitor to your site by IP address. Given the table UsageLog (created
in the preceding Tip), you could submit an SQL query such as the following to get a list of IP addresses
used during sessions the Web server started during the previous 14-day period:

SELECT visitor_IP 'Visitor IP', session_ID 'Session ID',

DATE_FORMAT(DT_retrieved, '%m/%d/%y %T') 'Date & Time'

FROM usageLog

WHERE (TO_DAYS(NOW()) - TO_DAYS(DT_retrieved)) <= 14

GROUP BY visitor_IP, session_ID;

Each computer on the Internet has a unique Internet Protocol (IP) address. Typically, the Internet
Service Provider (ISP) used to connect the computer to the Internet assigns the IP address to the
computer from the “bank” of IP addresses the ISP controls. When you use your browser to send an
HTTP request for a Web page to a Web server, the Web server uses the IP address the Web browser
sends in the HTTP request header to route the Web page you requested back to your computer. As
mentioned previously, each computer connected to the Internet (either directly or through an ISP’s
equipment) has its own IP address. However, multiple workstations that access the Net through a

5 1 4 H T M L & W e b D e s i g n T i p s & T e c h n i q u e s

Tip&Tec / HTML & Web Design Tips & Techniques / Anderson, King, Jamsa / 9394-8 / Chapter 10

P:\010Comp\Tip&Tec\394-8\ch10.vp
Thursday, January 03, 2002 5:59:51 PM

Color profile: Generic CMYK printer profile
Composite Default screen

single proxy server appear to have the same IP address (that is, the proxy server’s IP address) to those
on the “Internet side” of the proxy server. (Companies usually place a proxy server between computers
on the company’s internal network and the Internet for security reasons.)

When a visitor accesses your site through a proxy server, the visitor’s computer sends the HTTP
request for a Web page at your site to a proxy server. The proxy server (a computer on the internal
company network that is also connected to the Internet) analyzes the message that the network user
wants to send out onto the Internet. If the message passes the proxy server’s “rules” tests, the proxy
server notes the IP address of the computer sending the request, replaces the IP address in the
REMOTE_ADDR field of the request header with its own, and then sends the HTTP request on
to the Web server.

At the Web server, processing occurs as normal. The Web server (or PHP engine if the visitor
requested a PHP Web page) finds the Web page requested. Then, the Web server sends the page back
to the IP address in the REMOTE_ADDR field of the HTTP request. Thus, when a proxy server
stands between the network user and the Internet, the Web server sends the Web page to the proxy
server as the computer requesting the Web page. After the proxy server receives the Web page,
the server checks the message for viruses and other “illegal” content. If all is okay, the proxy server
sends the HTTP response on to the IP address of the workstation that sent the HTTP request manually.

As far as your site visitor is concerned, everything worked as it normally does, because the proxy
server, acting as a middleman, is transparent to the visitor. (The Web visitor sent a request for a Web
page to the Web server, and the Web server sent the requested page back to the browser.) However,
at the Web server, your PHP script can no longer retrieve the visitor’s (true) IP address from the
REMOTE_ADDR field in the HTTP message header. Remember, the proxy server replaced the
visitor’s IP address in the REMOTE_ADDR field with its own.

Fortunately, the proxy server sends the visitor’s IP address in the HTTP_X_ FORWARDED _FOR
field instead. Therefore, to keep from missing the IP address information from visitors that come to
your site through a proxy server, use the following code to determine the visitor’s true IP address
(which you can then store as visitor_IP in the UsageLog table):

<?

//the proxy server inserts HTTP_X_FORWARDED_FOR data into the

//message header if there is no proxy server, getenv() returns

//either blank or NULL

$visitorIP = getenv("HTTP_X_FORWARDED_FOR");

//if there is no proxy server then retrieve the IP address from

//the REMOTE_ADDR field in the header

if (($visitorIP == null) or ($visitorIP == ""))

$visitorIP = getenv("REMOTE_ADDR");

else

{

//parse the IP address sent as: proxy_IP [,] visitor_IP

list ($proxyIP, $visitorIP) = split('[,]', $visitorIP);

C h a p t e r 1 0 : P H P 4 5 1 5

Tip&Tec / HTML & Web Design Tips & Techniques / Anderson, King, Jamsa / 9394-8 / Chapter 10

P:\010Comp\Tip&Tec\394-8\ch10.vp
Thursday, January 03, 2002 5:59:51 PM

Color profile: Generic CMYK printer profile
Composite Default screen

$visitorIP = ltrim($visitorIP);

}

?>

You can retrieve the PHP source code in the preceding script and the user-defined function
(Chpt10Tip14Insert()) used to store visitor data (including the visitor’s true IP address) by
downloading the file Chpt10Tip14.zip from the Osborne Web site at http://www.osborne.com.

Preventing One Visitor from Assuming
Another Visitor’s PHP Session Identity
When you want to use variables with persistent values (that is, variables that maintain their values
as the visitor moves from page to page on the Web site) you can either use cookies or call the built-in
session_start() function to start (or continue) a PHP session. If you use cookies, the Web browser
stores the cookie values in the site’s cookie file on the visitor’s computer. Conversely, if you start a
PHP session, the PHP processor stores the names and values of session variables in a session file on
the Web server.

The PHP processor creates session files in the folder you specified when you installed the engine.
By default, the PHP installation program sets the session save path to \PHP\SessionData on the same
drive on which you installed PHP. Thus, if you installed PHP on the D drive, the installation program
will, by default, set the session save path to D:\PHP\SessionData. (You can call the PHP built-in
function session_save_path() to display the pathname of the folder in which PHP will create the
session file.)

The name of the session file is sess_<$PHPSESSID>. If a PHP script calls the session_start() function
when the $PHPSESSID variable is undefined, the session_start() function will place a 32-character text
string into $PHPSESSID, append the 32-character string onto sess_ to form the session filename, and
use the session filename to create the session file in the save path folder. Suppose, for example, that the
session_start() function call in a script sets $PHPSESSID to “d06205502d1bb3a0f2553bac4de763ad”. The
PHP processor will create the session file D:\PHP\SessionData\sess_ d06205502d1bb3a0f2553bac4de763ad
in which to store the session variables. (You create session variables by passing the names of the session
variables you want as parameters in a session_register() function call.)

If a PHP script calls the session_start() function when $PHPSESSID already has a 32-character
value, the PHP processor will use the session ID (that is, the value in $PHPSESSID) to locate and
open the existing session file. After opening the session file, the PHP processor will retrieve the
session variable names and values previously stored in the file.

Unfortunately, the PHP processor does nothing to prevent a site visitor from initially setting or
changing the value of the current session ID. Suppose, for example, that I know that the PHP
processor assigned the session ID “d06205502d1bb3a0f2553bac4de763ad” when you retrieved
www.NVBizNet.com/secret.php. I can steal your session by retrieving the same Web page as
http://www.NVBizNet.com/secret.php?PHPSESSID =d06205502d1bb3a0f2553bac4de763ad on
another computer. Moreover, because session files remain on the Web server long after a site visitor

5 1 6 H T M L & W e b D e s i g n T i p s & T e c h n i q u e s

Tip&Tec / HTML & Web Design Tips & Techniques / Anderson, King, Jamsa / 9394-8 / Chapter 10

P:\010Comp\Tip&Tec\394-8\ch10.vp
Friday, January 04, 2002 12:46:25 PM

Color profile: Generic CMYK printer profile
Composite Default screen

moves on to another Web site or closes the Web browser altogether, I can take over your session after
you have left the site—so you would have no idea that I had done so.

To prevent one visitor from assuming another’s “session identity,” remove any session ID arguments
passed as part of the URL by inserting the following script at the start of your PHP Web pages that
use sessions:

<?

if (isset($queryString))

{

//Build a string starting with the first occurrence

//of PHPSESSID passed in the URL arguments.

$sessionIDArgument = strstr($queryString,"PHPSESSID");

if ($sessionIDArgument <> "")

{

//If "PHPSESSID" is indeed one of the URL arguments, build a

//string consisting of the remaining URL arguments. Then, use

//that string to replace the "remaining URL arguments" with ""

//in the sessionIDArgument string

$remainingArguments = strchr($sessionIDArgument,"&");

$sessionIDArgument = str_replace($remainingArguments,"",

$sessionIDArgument);

//replace the session ID argument (PHPSESSID=xxx) with ""

$queryString =

str_replace($sessionIDArgument,"",$queryString);

$newURL = $PHP_SELF . "?" . $queryString;

$newURL = str_replace("?&","?",$newURL);

//Retrieve the current PHP Web page without the PHPSESSID

//argument in the URL

header ("Location: $newURL");

}

}

You can retrieve the PHP source code used in the preceding script by extracting the file
StripSessionIDFromURL.php from the Chpt10Tip15.zip archive file on the Osborne Web site
at http://www.osborne.com.

Using PHP Functions to Create Web Page Templates
When creating a Web site with many Web pages, you will probably have content that you want to
include on (just about) every Web page. For example, on a company Web site, you will often place
the same heading (with the company name and logo) at the top of each page and perhaps some sort of
copyright information at the bottom. Moreover, if you create a site navigation menu, you will want to
include the same set of hyperlinks on any Web page on which you display the menu. By writing PHP

C h a p t e r 1 0 : P H P 4 5 1 7

Tip&Tec / HTML & Web Design Tips & Techniques / Anderson, King, Jamsa / 9394-8 / Chapter 10

P:\010Comp\Tip&Tec\394-8\ch10.vp
Thursday, January 03, 2002 5:59:52 PM

Color profile: Generic CMYK printer profile
Composite Default screen

5 1 8 H T M L & W e b D e s i g n T i p s & T e c h n i q u e s

Tip&Tec / HTML & Web Design Tips & Techniques / Anderson, King, Jamsa / 9394-8 / Chapter 10

functions that produce templates (with the common page header, footer, navigation menu, and so on)
that you can use on multiple PHP Web pages, you can save yourself a lot of time (and typing).

Suppose, for example, that you want all your site’s pages to have the title, background color, and
footer information shown in Figure 10-11.

You could create two PHP functions to generate the templates with the content you want to
display on each page. For example, the following function will display the page heading shown
previously in Figure 10-11:

<?

function startHTML($title, $heading = "")

{

echo '<html>

<head>';

echo "<title>$title</title>";

echo '</head>

<body bgcolor="#ADD8E6">

<h1><center>HTML and Web Design Tips & Techniques</center></h1>

<hr>';

Figure 10-11 Web page on which PHP inserted a common header and footer

P:\010Comp\Tip&Tec\394-8\ch10.vp
Thursday, January 03, 2002 5:59:52 PM

Color profile: Generic CMYK printer profile
Composite Default screen

TE
AM
FL
Y

Team-Fly®

C h a p t e r 1 0 : P H P 4 5 1 9

Tip&Tec / HTML & Web Design Tips & Techniques / Anderson, King, Jamsa / 9394-8 / Chapter 10

if ($heading <> "")

echo "<h2><center>$heading</center></h2>";

return;

}

?>

Similarly, the following function will display a page footer:

<?

function endHTML()

{

echo '<hr>

Created by Konrad King

.

© 2001 -- all rights reserved!';

echo "</BODY>

</HTML>";

return;

}

?>

After saving the functions in this example to files named StartHTML.php and EndHTML.php,
include the following code in your Web page HTML to use the templates when creating the site’s
Web pages:

<?

include ('StartHtml.php');

include ('EndHTML.php');

startHTML("Header and Footer Template Demo","PHP Templates");

?>

**** The content that changes from page to page goes here! ****

<?

endHTML();

?>

Of course, the more complex the template the PHP function generates (and the greater the number
of pages on which you use the template), the more time and effort you save by not having to type the
HTML that the PHP functions generate into multiple Web page documents. Moreover, when you
need to make a site-wide update, such as changing the company phone number in the heading at the
top of the page or the contact information in the page footer, you need only make the change once.
After you change the PHP function that creates the header or footer template you want to update, all
the site’s pages will reflect the change the next time a visitor retrieves any Web page from the site.

P:\010Comp\Tip&Tec\394-8\ch10.vp
Thursday, January 03, 2002 5:59:52 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Using PHP to Add File Upload Functionality
to a Web Page
When you want to transfer files from one computer to another across the Internet, you typically use
an FTP client application to logon to an FTP server. (FTP is short for file transfer protocol, and an
FTP client is a program that implements the client-side functions defined in the FTP specification.)
When you need a simple way to let your site visitors upload (that is, place) files in a folder on your
Web server’s hard drive, FTP servers provide capabilities you may not want your visitor to have. For
example, FTP servers typically let the user upload and download files, list the contents of folders, and
delete, rename, and create both files and folders. If you are developing a Web site for an accounting
office or payroll processing company, for example, you may only want to give your client’s clients
the ability to send files with accounting or payroll data to the Web site.

To let your site visitor upload files (without using an external FTP client program), set the
type attribute in a start <input> tag to “file” as shown in the following form definition:

<form action="Chpt10Tip17Upload.php" method="POST"

ENCTYPE="multipart/form-data">

Select File:<input type="file" name="uploadFile" size="50">

<input type="submit" value="Upload">

</form>

The file form element lets the visitor enter into a single-line textbox on the form the pathname of a
file on a local or network drive that the Web browser is to send to the Web server. Instead of typing
the full pathname of the file the browser is to upload, the visitor can click a browser-supplied Browse
button to the right of the form element and then use the window’s Choose File dialog box to search
for and select the file to send. Both Netscape Navigator (v3.0 and above) and Internet Explorer (v4.0
and above) support the “file” option for the type attribute in a start input tag <input>.

After the visitor clicks the form’s Submit button (labeled “Upload”, in this example), the browser
sends the file specified in the “file” form element to the Web server along with any other form
results. The PHP script specified by the action attribute in the <form> tag (Chpt10tip17Upload.php,
in this example) stores the file in a folder at the Web server. You can retrieve the Web page with the
“file upload” form and the PHP script used to store a file on the Web server by downloading the file
Chpt10Tip17.zip from the Osborne Web site at http://www.osborne.com.

Before a site visitor uses the file upload form, have your PHP script call the opendir() function to
select an existing folder into which to store the file the browser sends to the Web server. (If you do
not explicitly select a target folder, the PHP processor will place the uploaded file(s) in the same folder
as the Web page with the form used to upload the file(s).) Suppose, for example, that you want to
store files the browser sends in a subfolder named upload within the same folder as the Web page
on which you placed the file upload form. The following PHP statements first try to open the upload
folder, and if the folder does not exist, will call the mkdir() function to create the folder before calling
the opendir() function again:

5 2 0 H T M L & W e b D e s i g n T i p s & T e c h n i q u e s

Tip&Tec / HTML & Web Design Tips & Techniques / Anderson, King, Jamsa / 9394-8 / Chapter 10

P:\010Comp\Tip&Tec\394-8\ch10.vp
Thursday, January 03, 2002 5:59:53 PM

Color profile: Generic CMYK printer profile
Composite Default screen

if (!$handle = @opendir("upload"))

{

mkdir ("upload", 0666);

$handle = opendir("upload");

}

(The at sign [@] in front of the first opendir() function call tells the PHP processor to suppress any
warning messages such as “Warning: Folder does not exist”.)

You can use either relative or absolute addressing for the pathnames you supply to the opendir()
and mkdir() functions. In this example, the script uses relative addressing to open (and create, if
necessary) a subfolder named “upload” within the same folder used to store the PHP Web page with
the script being executed by the PHP processor.

A PHP script refers to the contents of a file sent through a form element in the same way the script
refers to text and numbers in the form data results set. Whether working with file contents or scalar
(that is string or numeric) values, the script refers to the data received from a form element as the
variable formed by inserting a dollar sign ($) in front of the form element’s name. In this example,
the name attribute of the form element used to upload files is uploadFile. Therefore, the PHP script
will use the variable $uploadFile to refer to the contents of the file whose pathname the visitor entered
into the uploadFile element on the form.

When submitting a form with an input element of type “file”, the Web browser sends not only the
contents of the file but also the file’s name, type, and size in the form results. The PHP processor, in
turn, automatically stores the uploaded file to a temporary location on the Web server and creates
four variables the PHP script can use when working with the uploaded file. The names of the four
variables all stem from the name of the form element used to upload the file. In the current example,
the name of the form element into which the visitor enters the filename to upload is uploadFile. Thus,
the PHP processor creates the following variables:

• $uploadFile The full pathname to the uploaded file contents on the Web server (for example
/tmp/php098XM0). Use $uploadFile in the script to refer to the uploaded file’s contents.

• $uploadFile_name The original name of the file on the visitor’s computer.

• $uploadFile_type The MIME type of the file, if known.

• $uploadFile_size The size of the file, in bytes.

The PHP built-in move_uploaded_file() function lets a PHP script move a file from one location to
another. Thus, for the current example, you would write the following move_uploaded_file() function
call to move the file the Web browser sent from the Web server’s form results buffer to a file in the
folder whose pathname the script stored in the $dir variable:

move_uploaded_file($uploadFile, $dir/$uploadFile_name);

To inform the visitor of the success or failure of the attempt to move the uploaded file from the
Web server’s temporary form results buffer to the file’s new, permanent location within the folder
given by $dir, call the move_uploaded_file() function within an if statement as follows:

C h a p t e r 1 0 : P H P 4 5 2 1

Tip&Tec / HTML & Web Design Tips & Techniques / Anderson, King, Jamsa / 9394-8 / Chapter 10

P:\010Comp\Tip&Tec\394-8\ch10.vp
Thursday, January 03, 2002 5:59:53 PM

Color profile: Generic CMYK printer profile
Composite Default screen

if (move_uploaded_file ($uploadFile, "$dir/$uploadFile_name"))

echo "OK: File \"$uploadFile_name\" uploaded successfully.";

else

echo "ERROR: File \"$uploadFile_name\" upload unsuccessful!";

� NOTE

When writing a script that lets visitors upload files to a folder on your Web site, make sure that the
script prevents the visitor from uploading files with extensions used to denote files the Web server
will pass on to the PHP, ASP, Perl, or other server-side script processors running at the server. If
you do not, a visitor could do something malicious, such as upload a PHP Web page named
deleteFiles.php to the site, and then retrieve the file with his Web browser. The Web server, having
received an HTTP request for a file with a .php extension, will pass the PHP Web page (with the
script that deletes files on the Web server) to the PHP processor for execution.

5 2 2 H T M L & W e b D e s i g n T i p s & T e c h n i q u e s

Tip&Tec / HTML & Web Design Tips & Techniques / Anderson, King, Jamsa / 9394-8 / Chapter 10

P:\010Comp\Tip&Tec\394-8\ch10.vp
Thursday, January 03, 2002 5:59:53 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Tip&Tec / HTML & Web Design Tips & Techniques / Anderson, King, Jamsa / 9394-8 /
Blind Folio 523

P:\010Comp\Tip&Tec\394-8\ch10.vp
Thursday, January 03, 2002 5:59:53 PM

Color profile: Generic CMYK printer profile
Composite Default screen

CHAPTER 11

Active Server Pages (ASP)

Tip&Tec / HTML & Web Design Tips & Techniques / Anderson, King, Jamsa / 9394-8 / Front Matter

TIPS IN THIS CHAPTER

� Controlling the Flow of Content from Web Server to Web Browser Through the
HTML Output Stream 539

� Preventing the Web Browser from Displaying Stale Active Server Pages 543

� Redirecting the Web Browser to Another Web Page 545

� Maintaining Variable Values Between HTTP Requests with the
Cookies Collection 547

� Retrieving Form Results from the ASP Form Collection 550

� Retrieving Form Results from the ASP QueryString Collection 553

� Retrieving Information from the Server Variables Collection 556

� Connecting to a MySQL DBMS Through the MyODBC Driver 559

� Setting Up Username/Password Access to a Web Site 562

� Starting a Session and Working with Session Variables 565

� Executing SQL Queries and Displaying Query Results Sets Within an
HTML Table 568

� Displaying Banner Ads with the Microsoft Banner Ad Rotator 573

� Tracking Microsoft Banner Ad Rotator Impressions and Click-Throughs 576

� Handling “Status: 404 Not Found” Errors 580

P:\010Comp\Tip&Tec\394-8\ch11.vp
Friday, January 04, 2002 11:18:25 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Copyright 2002 by The McGraw-Hill Companies, Inc. Click Here for Terms of Use.

When you create a Web page using HTML alone, the page is static (that is, unchanging).
Although you might spruce up the page with pictures, animations, and other multimedia

effects, every visitor that requests the page will see the same content—until your next manual update.
To display dynamic (that is, constantly changing) content on a Web page, you need more than just
HTML. For example, to display something as basic as the current date and time using only HTML
requires that you constantly edit the Web page throughout the day—everyday! Even if you display
only the current date on a site’s home page, each time you create a new site, you have yet one more
Web page you must edit at 12:01 A.M. each day.

Active Server Pages let you create dynamic Web pages by combining HTML tags and text content
with instructions written in a scripting language such as VBScript, JScript (the Microsoft version of
JavaScript), PerlScript, Python, or Rexx (to name a few). The HTML tags and text provide the static
(unchanging) portion of the page. Meanwhile, the script generates the dynamic (that is, changing) content
you want the Web server to insert. For example, rather than type (and then have to update) the current
date and time on a Web page manually, you could insert between “<%” and “%>” delimiters in an Active
Server Page the VBScript statements shown in the seventh and eight lines of the following code:

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0//EN">

<html>

<body bgcolor="#ADD8E6">

<h1><center>HTML and Web Design Tips & Techniques</center></h1>

<hr>

Welcome Web Surfer!

In Las Vegas, the current time and date is: <% = time %> on

<% = date %>.

Each time you refresh (or reload) the Web page the time (and

once a day) the date will change.

</body>

</html>

When a Web browser requests an Active Server Page (typically a file with an .asp extension), the
Web server finds the Web page and passes the document to the ASP script host, which within the
Windows environment, resides in the file asp.dll on the Web server. The ASP script host parses the
document and sends script statements it finds enclosed within start script (<%) and end script (%>)
tags to the appropriate script engine for processing. Thus, under Windows, asp.dll passes VBScript
embedded in an Active Server Page file to the VBScript engine, JScript statements to the JScript
engine, and so on.

The script engine, in turn, interprets the script’s statement(s) and returns the output (if any) as a
string of HTML (tags and text) to the asp.dll script host. Then, the script host inserts the script output
in place of the script within the Active Server Page document and passes the updated page to the
Web server. The Web server, in turn, sends the Web page to the browser that requested it, as shown
in Figure 11-1.

If Active Server Pages let you display only a changing date and time on a Web page, they would
hardly be worth the effort involved in creating the technology. Fortunately, using a server-side script

Tip&Tec / HTML & Web Design Tips & Techniques / Anderson, King, Jamsa / 9394-8 /

525

P:\010Comp\Tip&Tec\394-8\ch11.vp
Friday, January 04, 2002 11:18:25 AM

Color profile: Generic CMYK printer profile
Composite Default screen

5 2 6 H T M L & W e b D e s i g n T i p s & T e c h n i q u e s

Tip&Tec / HTML & Web Design Tips & Techniques / Anderson, King, Jamsa / 9394-8 / Chapter 11

to display a date and time on a Web page is only the simplest example of what you can do with
Active Server Pages. As you will learn in this chapter, with the proper scripts, you can customize
Web page content based on who is visiting your Web page, the Web browser he or she is using, and
actions the visitor takes during the visit (or session). Suppose, for example, that you use your bank’s
Active Server Pages to manage your checking, saving, or credit card account(s). Scripts embedded
within the bank’s Web pages generate the HTML and text to display your account information. When
someone else logs onto your bank’s site, that visitor sees his or her account data (and not yours) at the
same Web address.

In addition to displaying dynamic and custom Web page content, designers also use scripts
embedded within Active Server Pages to process form results. Suppose, for example, that you log on
onto your bank’s Web site and fill out an HTML form to transfer money from one account to another.
After you click the form’s Submit button, your Web browser sends the information you entered into
the form (that is, the form results) to the URL given by the action attribute within the form’s <form>
tag. If the URL names an Active Server Page, the Web server passes the Web document (specified
by the URL) along with form results to the ASP script host. The script host passes the amount you

Figure 11-1 Active Server Page processing

P:\010Comp\Tip&Tec\394-8\ch11.vp
Friday, January 04, 2002 11:18:26 AM

Color profile: Generic CMYK printer profile
Composite Default screen

specified and the account selections you made (or entered) on the HTML form to a script engine, which
in turn, executes script statements that update your account information stored in database tables.

Understanding What You Must Have
to Create and View Active Server Pages
To create an Active Server Page, you need only a text editor, such as Notepad, which comes standard
with all versions of Windows. Or, you can use any one of a number of Web page development tools
such as Microsoft’s Visual InterDev or FrontPage, Allaire’s HomeSite, Adobe’s GoLive, or Macromedia’s
Dreamweaver to create Active Server Pages. An Active Server Page is simply an ASCII text file,
typically with an .asp extension. As such, when you use a Web site development tool to create an
Active Server Page, you can edit the page either with the same tool or with any of the other tools or
with a text editor (such as Notepad). Just remember, to be treated as an Active Server Page, your Web
document’s filename must have an extension that associates the file with the asp.dll scripting engine.
(Typically, Active Server Pages have an .asp file extension, because site administrators associate
(designate) files with an .asp extension for processing by the asp.dll application.)

To publish Active Server Pages (that is, to make Active Server Pages available on the Internet or
your company’s Intranet), you need a Web server that supports Active Server Pages. Microsoft developed
the Active Server Page technology. Therefore, it comes as no great surprise that Microsoft’s Web server,
the Internet Information Server (IIS), supports Active Server Pages. If the ISP hosting your Web site
is running Windows NT Server 4.0, he or she may have installed IIS 2.0 (which has Active Server Pages
version 1.0 support). The IIS Web server version 3.0 is part of Windows NT 4.0 Service Pack 3, and
IIS 4.0 is available free as part of the Window NT 4.0 Option Pack. (As of this writing, you can download
Option Pack 4 from the Microsoft Web site at http://www.microsoft.com/ NTServer/downloads/
recommended/NT4OptPk/default.asp.) Both IIS 3 and IIS 4 come with the asp.dll that provides
Active Server Pages version 2.0 support. Windows 2000 includes IIS version 5.0, which supports
Active Server Pages version 3.0.

In addition to IIS (version 2 and later), Microsoft’s Personal Web Server (PWS), which is
available within the Windows NT 4.0 Option Pack mentioned previously, also provides Active Server
Pages support. (By the way, you can run the Personal Web Server on Windows NT Workstation or
Windows 95 and above.) If you publish your Web site on a non-IIS (or PWS) Web server, you may
still be able to use Active Server Pages. Find out if your ISP installed Active Server Page extensions
from a company like Chili!Soft or Halcyon Software. Once installed, Chili!Soft ASP, for example, lets
you run Active Server Pages on Web servers from Apache, Lotus, Netscape, and Microsoft running
on Microsoft, Sun, and IBM platforms.

To view Active Server Pages, you need a Web browser. Because the Web server (and not the Web
browser) executes scripts embedded in Active Server Pages, any Web browser will do. One of the
strengths of server-side script execution (that is, having the Web server rather than the Web browser
execute scripts) is that only the Web server need support the scripting language used to write the
embedded scripts. The script host running on the Web server is responsible for sending the script to
the proper scripting engine and for inserting script output (if any) within the Web page as standard
HTML tags and text the Web browser can understand and display.

C h a p t e r 1 1 : A c t i v e S e r v e r P a g e s (A S P) 5 2 7

Tip&Tec / HTML & Web Design Tips & Techniques / Anderson, King, Jamsa / 9394-8 / Chapter 11

P:\010Comp\Tip&Tec\394-8\ch11.vp
Monday, January 07, 2002 1:32:34 PM

Color profile: Generic CMYK printer profile
Composite Default screen

5 2 8 H T M L & W e b D e s i g n T i p s & T e c h n i q u e s

Tip&Tec / HTML & Web Design Tips & Techniques / Anderson, King, Jamsa / 9394-8 / Chapter 11

Understanding Active Server Page Start and End Tags
As mentioned previously, when the Web browser requests an Active Server Page, the Web server
retrieves the document and passes the Web page to the asp.dll script host. To set server-side script
statements (which the script host sends to the script engine for processing) apart from HTML statements
(which the script host returns verbatim to the Web server), enclose the server-side script statements
between start and end script tags as follows:

<% <VBScript statements> %>

VBScript is the default server-side scripting language for the IIS Web server. As such, when you
use <%” and “%> delimiters to embed VBScript statements you want executed on an IIS Web server,
you need not specify a scripting language. Conversely, if you embed a server-side script written in
another scripting language, you must identify the language by name using the language= @ command.
For example, to embed a script written in JScript within an Active Server Page, you must include the
following language= @ command before the first line of server-side scripting you want the script
host to process:

<% @language = JScript %>

<% <JScript statements> %>

Creating a Simple Active Server Page
To create an Active Server Page with a few statements for the VBScript engine to process, start your
favorite text editor (such as Windows Notepad) and enter the following code:

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0//EN">

<html>

<head>

<title>ASP Server-Side Script Start and End Tags</title>

</head>

<body bgcolor="#ADD8E6">

<h1>

<center>HTML and Web Design Tips & Techniques</center>

</h1>

<hr>

<% @language = VBScript %>

<%

Response.Write "<p>The Web server date and time are: "

Response.Write(now())

%>

</body>

</html>

P:\010Comp\Tip&Tec\394-8\ch11.vp
Friday, January 04, 2002 11:18:27 AM

Color profile: Generic CMYK printer profile
Composite Default screen

TE
AM
FL
Y

Team-Fly®

In this example, the ASP script host adds the first ten HTML statements (starting with the
DOCTYPE declaration and ending with the <hr> tag) to the Web page the script host is building.
Thus, the server-side script in this example starts with the following statement on line 1:

<% @language = VBScript %>

The @language command in this statement tells the host that the script(s) embedded on the Web
page has VBScript statements. As such, the script host will pass the statements between start and end
script tags (<% … %>) (in lines 13 and 14) to the VBScript engine for processing. As the VBScript
engine returns the output from each of the two Response.Write method calls to the script host, the
host adds the text returned to the Web page HTML.

For now, do not worry about the various objects and methods available to your Active Server Page
scripts—you will learn about them later in this chapter. Understand that Response.Write is a method
(that is, a function call) that lets you add text to your Web page HTML. The first call to Response.Write
adds the quoted string you typed in this example, whereas the second call returns the current date and
time for the script host to add to the Web page.

Now, save your Web page to an .asp file (such as ASP_Test1.asp) on the Web server.
Next, open the HTML document in your Web browser to display a page similar to that shown in

Figure 11-2.
Note that you must retrieve the Active Server Page you created through a Web server with Active

Server Page Support (such as Microsoft’s IIS). (If the Web server does not support Active Server

C h a p t e r 1 1 : A c t i v e S e r v e r P a g e s (A S P) 5 2 9

Tip&Tec / HTML & Web Design Tips & Techniques / Anderson, King, Jamsa / 9394-8 / Chapter 11

Figure 11-2 Web page with content generated by a script within an Active Server Page

P:\010Comp\Tip&Tec\394-8\ch11.vp
Friday, January 04, 2002 11:18:27 AM

Color profile: Generic CMYK printer profile
Composite Default screen

5 3 0 H T M L & W e b D e s i g n T i p s & T e c h n i q u e s

Tip&Tec / HTML & Web Design Tips & Techniques / Anderson, King, Jamsa / 9394-8 / Chapter 11

Page files, the server will simply send the requested document to the Web browser as is, and the Web
browser will display the VBScript within the page as text content.) Conversely, a Web server with
Active Server Page support passes the Active Server Page you request (such as ASP_Test1.asp) to the
script host (also running at the Web server). The script host, in turn, calls on a script engine to execute
the statements in the embedded script(s) to create the Web page that Web server eventually sends to
your Web browser for display. For example, to retrieve an Active Server Page such as the one you
created in the preceding example through the NVBizNet2.com Web server, enter http://www
.NVBizNet2.com/HWDTT/ASP_Test1.asp into your Web browser’s Address field.

The Web page the ASP script host passes back to the Web server contains HTML tags and text in
place of the VBScript statements the script host sent to the VBScript engine for processing. You can
view the Web page source the browser received from the Web server by selecting View | Source in
Internet Explorer and View | Page Source in Netscape Navigator.

Adding Comments to an Active Server Page Script
Inserting comments in your Active Server Page scripts is an excellent habit. Though ignored by the
script engine, comments remind you (and tell others) why you wrote certain portions of the script in a
particular way or what you are trying to accomplish with the script in general. In addition, you might
use comments during the development process to figure out exactly where a processor-reported error
occurs. By commenting out a section of code (that is, by telling the script engine to ignore lines of
code as “comments”), you can make an error “go away.” Then, by “uncommenting” one line of code
at a time until the processor reports the error again, you can figure out which line of code produced
the error—usually the last line of code you change from a “comment” back into an executable
statement in the script.

The specific character or sequence of characters you use to denote a comment depends on the
scripting language in which you write the embedded script. In VBScript, for example, you use the
single quote (‘) or “tick mark” to start a comment. You can use a tick mark to place a comment at the
end of a line of code or to make an entire line a comment. However, once you start a comment, the
script engine will treat the remaining text on the line as part of the comment.

For example, the three lines after the start script tag (<%) in the following HTML are comments:

<html>

<head>

<title>Comments within an Active Server Page Script</title>

</head>

<body bgcolor="#ADD8E6">

<h1><center>HTML and Web Design Tips & Techniques</center></h1>

<% @language = VBScript %>

<%

' the following will display text on the Web page and could

' just as easily be written using plain HTML (vs. using the

' Response.Write method)

P:\010Comp\Tip&Tec\394-8\ch11.vp
Friday, January 04, 2002 11:18:27 AM

Color profile: Generic CMYK printer profile
Composite Default screen

C h a p t e r 1 1 : A c t i v e S e r v e r P a g e s (A S P) 5 3 1

Tip&Tec / HTML & Web Design Tips & Techniques / Anderson, King, Jamsa / 9394-8 / Chapter 11

Response.Write "<hr>" 'draw a horizontal line

Response.Write "<p>The Web server date and time are: "

Response.Write(now()) ' call the now() function to get the

' current date and time

%>

</body>

</html>

When processing the embedded script in this example, the VBScript engine ignores the three lines
of comments. Similarly, the script engine processes the following Response.Write method calls to add
an <hr> tag and the current date and time to the Web page HTML, while ignoring the comment text
that follows the tick mark within each statement:

Response.Write "<hr>" 'draw a horizontal line

Response.Write(now()) ' call the now() function to get the

' current date and time

Hiding ASP Source Code from the Web Site Visitor
While surfing the net, you have undoubtedly noticed that you can view the HTML used to define a
Web page in your Web browser (for example, by selecting View | Source if using Internet Explorer
or by selecting View | Page Source if using Netscape Navigator). Bear in mind, when you view a
Web document’s source code in this manner, you see only the client-side HTML—that is, the HTML
previously sent from the Web server to the Web browser.

Viewing the page source in the Web browser does not let a Web surfer view the server-side script
statements embedded within the Active Server Page that generated the HTML. Remember, the Web
server passes a browser requested Active Server Page to the script host (asp.dll). The script host
executes the script (by sending the script to the appropriate scripting engine) and replaces the script’s
statements with HTML and text output from the script. The entire process occurs before the Web
server sends the Active Server Page to the Web browser. As such, server-side scripting hides scripts
from view by the Web surfer. Therefore, to view script statements, you must view the Active Server
Page on the Web server itself and not as presented within the Web browser.

The fact that a site visitor cannot view Active Server Page script statements in the Web browser
has several important and valuable consequences. For example, if you are writing an Active Server
Page that queries a database for information, you need to code connection details within the Web
document. These connection details as well as the query itself may contain sensitive information you
do not want disclosed to the site visitor. Fortunately, executing the connection script and query at the
Web server means that the server sends only the HTML-formatted query results (and not the username,
password, and SQL query used to retrieve the information) to the Web browser. Similarly, if your
Active Server Page executes a script with a proprietary formula used to perform a calculation or
determine a price, running the script at the Web server and sending only the result to the Web browser
lets algorithms remain secret by keeping them away from prying eyes.

P:\010Comp\Tip&Tec\394-8\ch11.vp
Friday, January 04, 2002 11:18:27 AM

Color profile: Generic CMYK printer profile
Composite Default screen

5 3 2 H T M L & W e b D e s i g n T i p s & T e c h n i q u e s

Tip&Tec / HTML & Web Design Tips & Techniques / Anderson, King, Jamsa / 9394-8 / Chapter 11

Understanding the Active Server Page Objects
When someone says the word object in everyday conversation, you think of things like a desk, chair,
book, television, car, and so on. In the “real” world, objects are things you can see, touch, and/or smell.
In programming terms, an object is a conceptual “thing” like a spreadsheet, a Web document, customer
information, a shopping cart used in making online purchases, and so on. Each object has a set of
properties and methods. An object’s properties are attributes that describe the object or its state.
Methods, meanwhile, are actions you can take on the object.

All Active Server Pages have seven built-in objects. As such, any script embedded in an Active
Server Page can use the properties and methods available in the Application, ASPError, ObjectContext,
Request, Response, Server, and Session objects. You need not memorize the object names. You need
to understand only that each object has a set of properties that provide related information and a group
of methods that give your scripts a certain type of functionality. The Session object, for example, lets
you track and manipulate information about a visitor and his or her interactions with the site’s pages
during the course of a single visit. Meanwhile, the Request object lets you access and work with
information (such as form results, the query string, and cookies) that the Web browser sends to the
Web server as part of an HTTP request. Conversely, the Response object lets you create a Web page
in response to a Web browser’s request.

As you learn to use them in the Tips you read later in this chapter, you will become familiar with
the properties and methods found within each of the built-in objects. For now, let’s focus on the Response
object to get a general idea of how a script might use an Active Server Page object and its methods.

Using the Response.Write Method to Send Information to a Web Browser
When the Web server receives an HTTP request from a Web browser, the server responds with the
requested data (that is, by sending a Web page or other file), with a redirect message, or with an error
message. The response message body contains the HTML the Web browser is to display and the message
header contains directives and/or information about the content in the body.

For example, if the Web server receives an HTTP request for an HTML document to which the
server has access, the Web server responds by reading and sending the contents of the Web page to
the Web browser. When responding to an HTTP request for an Active Server Page, however, the
Web server calls on the asp.dll script host to create a Web page using the methods available within
the Response object. After the script host has finished its job, the Web server reads the Response
object data and sends it as an HTML output stream to the Web browser for display.

You can use the Response object’s Write method to insert text (both content and HTML tags)
anywhere within the Web document, or to create the Web page entirely. To insert text on a page,
simply pass the text you want to add within a variable or as a string literal (that is, as text within
quotes) to the Response.Write method as shown here:

<%

Response.Write "<html><body>"

Response.Write _

P:\010Comp\Tip&Tec\394-8\ch11.vp
Friday, January 04, 2002 11:18:28 AM

Color profile: Generic CMYK printer profile
Composite Default screen

C h a p t e r 1 1 : A c t i v e S e r v e r P a g e s (A S P) 5 3 3

Tip&Tec / HTML & Web Design Tips & Techniques / Anderson, King, Jamsa / 9394-8 / Chapter 11

"<p>Both text and HTML tags are fair game as parameters " & _

"for the Response object Write method.</p>"

Response.Write _

"<p>The ampersand(&) is the VBScript string " & _

"concatenation character and the underscore (_) lets " & _

"you continue a single statement across multiple lines.</p>"

Response.Write "</body></html>"

%>

Note that the ampersand (&) is the VBScript string concatenation character and the underscore (_)
is for line continuation. Thus, in this example, the underscore (_) allows the second Response.Write
method call to extend across three lines for formatting purposes. (Text in this manuscript must wrap
at column 64.) The ampersand (&) at the end of the second line tells VBScript to pass the quoted text
on lines two and three as a single (concatenated) text string to the Response.Write method.

As noted by the text in this example, you can pass to the Response.Write method both HMTL tags
to format the Web page content as well as the content itself. Therefore, if you typed the preceding
code into an Active Server Page file such as ASP_Test2.asp, the script host creates the following
Web page HTML when the visitor requests the document from the Web server:

<html>

<body>

<p>Both text and HTML tags are fair game as parameters

for the Response object Write method.</p>

<p>The ampersand(&) is the VBScript string concatenation

character and the underscore (_) lets you continue a

single statement across multiple lines.</p>

</body>

</html>

Writing the Double Quote (“) Character on a Web Page
Sometimes you want to enclose words on a Web page within quotes. Suppose, for example, you want
to enclose “Response.Write” in quotes as shown in this sentence. Because the Response.Write method
requires that you enclose string literals (that is, quoted text) within quotes, you cannot simply type
a double quote (“) character around the text you want to display in quotes on the Web page. For
example, the following code will generate an error:

<%

Response.Write _

"The "Response.Write" method lets you add text content and " & _

"HTML tags to the Web page HTML."

%>

P:\010Comp\Tip&Tec\394-8\ch11.vp
Friday, January 04, 2002 11:18:28 AM

Color profile: Generic CMYK printer profile
Composite Default screen

When the VBScript engine reads the quotation mark (“) that follows “the”, the script engine
expects to see a carriage return and linefeed character combination to end the statement. Instead,
the script engine finds more text and reports the following error:

Microsoft VBScript compilation error '800a0401'

Expected end of statement

VBScript gives you three ways to have the Response.Write method display a double quote (“) on
a Web page: use two sets of double quotes (““), call the chr() function, or pass the HTML escape
syntax ("). For example, the following three lines of code each display “Response.Write” in
quotes on a Web page:

<html>

<body>

<%

Response.Write _

"You can use double, double quotes to display quotation" & _

" marks around ""Response.Write"" on a Web page.
"

Response.Write _

"You can use the Chr() function to display quotation " & _

"marks around " & Chr(34) & "Response.Write" & Chr(34) & _

".
"

Response.Write _

"Or, you can use HTML escape syntax to place quotation " & _

"marks around " Response.Write "."

%>

</body>

</html>

When the Response.Write method detects a set of two double quotes (““), it knows the first quotation
mark is part of the text and not meant to terminate the string literal. Thus, to fix the code in the first
example within this section, you could rewrite the script as follows:

<%

Response.Write _

"The ""Response.Write"" method lets you add text content and " & _

"HTML tags to the Web page HTML."

%>

A second way to display a double quote (“) on a Web page is to have the Response.Write method
insert the output from a chr() function call into the Web page. You used the Response.Write method
to insert function call results earlier in this chapter. At that time you wrote the following code to
display the current date and time (returned by the VBScript now() function) on the Web page:

5 3 4 H T M L & W e b D e s i g n T i p s & T e c h n i q u e s

Tip&Tec / HTML & Web Design Tips & Techniques / Anderson, King, Jamsa / 9394-8 / Chapter 11

P:\010Comp\Tip&Tec\394-8\ch11.vp
Friday, January 04, 2002 11:18:28 AM

Color profile: Generic CMYK printer profile
Composite Default screen

<%

Response.Write(now())

%>

Similar to the VBScript engine passing the value returned by the now() function call to the
Response.Write method, you can have the script engine pass the value returned by the chr()
function to insert a double quote character. Thus, once you know that the double quote (“) has
an ASCII character value of 34, you can display double quotes around “Response.Write” with
the following code:

<%

Response.Write _

"The " & chr(34) "Response.Write" & chr(34) & "method lets" & _

" you add text content and HTML tags to the Web page HTML."

%>

Each chr(34) function call within the script returns a double quote character. The ampersand
(&) character tells the VBScript engine to append the character returned by the chr() function call
onto the portion of the string the script engine already built. As a result, the VBScript engine simply
passes the double quote (“) that the chr() function returns to the Response.Write method as part of
a long string literal.

The third way to display a double quote (“) on a Web page is to insert the HTML escape syntax
that instructs the Web browser to create it. As mentioned previously, you can use Response.Write
to insert not only text but also HTML tags and other codes into the Web page HTML. Although it
tells the Web browser to display a double quote, “"” is simply a six-character string to the
Response.Write method. Therefore, you can display double quotes (“) around “Response.Write”
as follows:

<%

Response.Write _

"The "Response.Write" method lets " & _

"you add text content and HTML tags to the Web page HTML."

%>

Using the With Keyword Shortcut
When working with an Active Server Page object, you often use several properties or call the object’s
methods multiple times. Rather than repeat the object’s name in your code, you can save yourself
some typing by using the With keyword. For example, to create a Web page with an HTML table,
you might create an Active Server Page with the following script:

<%

Response.Write "<html>"

Response.Write "<body bgcolor='#ADD8E6'>"

Response.Write "<h1><center>" & _

C h a p t e r 1 1 : A c t i v e S e r v e r P a g e s (A S P) 5 3 5

Tip&Tec / HTML & Web Design Tips & Techniques / Anderson, King, Jamsa / 9394-8 / Chapter 11

P:\010Comp\Tip&Tec\394-8\ch11.vp
Friday, January 04, 2002 11:18:28 AM

Color profile: Generic CMYK printer profile
Composite Default screen

"HTML and Web Design Tips & Techniques</center></h1><hr>"

Response.Write & _

"<table align='center' width='200' border='1'>"

Response.Write "<tr><td>First Name</td><td>Konrad</td></tr>"

Response.Write "<tr><td>Last Name</td><td>King</td></tr>"

Response.Write "<tr><td>Total Due/td><td>234.25</td></tr>"

Response.Write "</table>"

Response.Write "</body>"

Response.Write "</html>"

%>

Rather than repeatedly type the response object’s name, use the keyword With, as shown here:

<%

With response

.write "<html>"

.write "<body bgcolor='#ADD8E6'>"

.write "<h1><center>" & _

"HTML and Web Design Tips & Techniques</center></h1><hr>"

.write "<table align='center' width='200' border='1'>"

.write "<tr><td>First Name</td><td>Konrad</td></tr>"

.write "<tr><td>Last Name</td><td>King</td></tr>"

.write "<tr><td>Total Due/td><td>234.25</td></tr>"

.write "</table>"

.write "</body>"

.write "</html>"

End With

%>

Although the VBScript in this example uses the With keyword only as a shortcut for the Response
object, you can use the With shorthand with any VBScript object.

Using Response.Write to Display Variables
Variables are items you create to store information in your code. Each variable names a memory
location set aside to hold a value. To make it easy to store and retrieve the data in memory, script
languages let you use a meaningful name to refer to each memory location. VBScript, for example,
requires that each variable start with a letter, but lets you use any combination of up to 255 letters,
underscores (_), and numbers to define a variable name. Therefore, you might store the name the
visitor used to log in to your Web site in a memory location named username. Similarly, to store the
product code of an item the visitor wants to purchase you might use productCode and the variable
totalPurchaseAmount to store the total value of the visitor’s purchases.

To declare a variable in VBScript, use the keyword Dim (which stands for Dimension) followed
by one or more variable names. VBScript has but one data type (called variant), so you do not
specify the type of data a variable will hold when you declare its name. Each time you place a value

5 3 6 H T M L & W e b D e s i g n T i p s & T e c h n i q u e s

Tip&Tec / HTML & Web Design Tips & Techniques / Anderson, King, Jamsa / 9394-8 / Chapter 11

P:\010Comp\Tip&Tec\394-8\ch11.vp
Friday, January 04, 2002 11:18:28 AM

Color profile: Generic CMYK printer profile
Composite Default screen

in a variable, VBScript decides how the value is stored based on the value’s data type. Therefore, you
might make the following variable declarations at the start of your script:

DIM tableStart, tableEnd, tdLeft, tdRight, tdEnd

DIM trStart, trEnd

DIM custName (1) 'creates a 2 item array

DIM totalDue

With the exception of the third statement, which creates an array (custName) that can hold two
values, each variable declared in this example can hold a single string or numeric item. Thus, if you
write the following statement in your script, totalDue will be numeric:

totalDue = 235.45

If you write the following statement in another part of the script, VBScript will make totalDue
a character string instead:

totalDue = "None"

You can use variable names in statements either alone or in combination with numeric or string
literals. Thus, all the Response.Write method calls in the following code are legal:

<%

DIM authors$(1), authorList

authors(0) = "Andy Anderson"

authors(1) = "Konrad King"

authorList = authors(0) + " & " + authors(1)

With response

.write "<html><body>"

.write "<p>The authors are Konrad King & Andy Anderson</p>"

.write "<p>The authors are Konrad King & " & authors(0) & _

"</p>"

.write "<p>The authors are " & authorList & "</p>"

.write "</html></body>"

End With

%>

(Note that the first element in a VBScript array has an index of 0 and not 1.)
As an example of how you might use variables, consider rewriting the code in the previous section

using variables instead of string literals, as in the following example:

<html>

<body bgcolor="#ADD8E6">

<h1><center>HTML and Web Design Tips & Techniques</center></h1>

C h a p t e r 1 1 : A c t i v e S e r v e r P a g e s (A S P) 5 3 7

Tip&Tec / HTML & Web Design Tips & Techniques / Anderson, King, Jamsa / 9394-8 / Chapter 11

P:\010Comp\Tip&Tec\394-8\ch11.vp
Friday, January 04, 2002 11:18:28 AM

Color profile: Generic CMYK printer profile
Composite Default screen

5 3 8 H T M L & W e b D e s i g n T i p s & T e c h n i q u e s

Tip&Tec / HTML & Web Design Tips & Techniques / Anderson, King, Jamsa / 9394-8 / Chapter 11

<hr>

<%

DIM tableStart, tableEnd, tdLeft, tdRight, tdEnd

DIM trStart, trEnd 'will hold string values

DIM custName (1) 'create a two item array

DIM totalDue 'will hold a numeric value

tableStart = "<table align='center' width='200' border='1'>"

tableEnd = "</table>"

tdLeft = "<td width='70' align='left'>"

tdRight = "<td width='130' align='left'>"

tdEnd = "</td>"

trStart = "<tr>"

trEnd = "<trEnd>"

custName(0) = "Konrad"

custName(1) = "King"

totalDue = 234.25

With Response

.Write tableStart

.Write trStart

.Write tdLeft & "First Name" & tdEnd

.Write tdRight & custName(0) & tdEnd & trEnd

.Write trStart

.Write tdLeft & "Last Name" & tdEnd

.Write tdRight & custName(1) & tdEnd & trEnd

.Write trStart

.Write tdLeft & "Total Due" & tdEnd

.Write tdRight & totalDue & tdEnd & trEnd

.Write tableEnd

End With

%>

</body>

</html>

By substituting variable names for table tags, you make it easy to apply styles to rows and/or
columns in a table—without a lot of typing. Suppose, for example, you want to change the alignment
and background color of all the cells in the table’s right-hand column. Rather than change multiple
<td> tags, using a variable (such as tdRight, in this example), you can change the formatting of all the
cells in the column at once by changing a single assignment statement:

tdRight = "<td width='130' align='center' color='white'>"

P:\010Comp\Tip&Tec\394-8\ch11.vp
Friday, January 04, 2002 11:18:28 AM

Color profile: Generic CMYK printer profile
Composite Default screen

TE
AM
FL
Y

Team-Fly®

C h a p t e r 1 1 : A c t i v e S e r v e r P a g e s (A S P) 5 3 9

Tip&Tec / HTML & Web Design Tips & Techniques / Anderson, King, Jamsa / 9394-8 / Chapter 11

Of course, the more rows and columns in a table, the more time and effort you save by making a
single change that affects the format of a column or row throughout the table.)

Controlling the Flow of Content from Web Server to
Web Browser Through the HTML Output Stream
Although Active Server Page scripts may perform many functions, the primary reason for using
Active Server Pages is to create HTML pages for the Web server to send to a site visitor. As you
learned earlier in this chapter, the ASP script host uses the Response.Write method to insert text and
tags into the HTML document the Web server sends to the browser. The HTML output stream is a
queue (or buffer) of information, which the Web server receives from the ASP script host and sends
to the Web browser.

For the most part, the ASP script engine builds each Web page in the same way. The script engine
first clears the temporary storage space (the HTML output stream) in which it will build the Web
page. Next, the script engine starts adding information in the order in which the Web browser expects
to receive it—HTTP header data first, followed by the HTML tags and text that make up the content
the visitor sees onscreen. Thus, the HTML output stream (that is, the buffer in which the script host
builds the Web page), starts out empty. Then, the script host adds static HTML stored in the Active
Server Page document and the output from embedded scripts. After the script host copies the static
HTML and has the script engine execute all the scripts embedded within the Active Server Page, the
script host notifies the Web server that processing is complete. The Web server, in turn, sends the
contents of the HTML output stream to the Web browser.

Normally, waiting until all processing is complete before sending the buffer contents to the Web
browser is fine. However, if the Active Server Page has a script that takes a long time to complete,
you may want to send partial results or at least a status message to let the visitor know the script is
working on his or her request. Otherwise, the visitor might give up, thinking the Web page (or
perhaps the Web server) is “unavailable,” because the server has not sent the page requested. Unless
you instruct it to do otherwise, the Web server sends the output buffer’s contents only after the script
host has finished all processing. The Response object has one property (Response.Buffer) and three
methods (Response.Flush, Response.Clear, and Response.End) you can use to control the way the
script host buffers the HTML output stream.

Use the Response.Buffer property to specify whether the Web server is to buffer the
output created by an Active Server Page. Setting the Response.Buffer property to true

tells the Web server to hold output created until the script host has processed all scripts or until the
script host calls either the Response.Flush or Response.End method (discussed later in this Tip).
Conversely, setting the Response.Buffer property to false lets the Web server control the flow of
output to the Web browser. Rather than waiting for the script host to finish processing, the Web
server checks the output buffer periodically and sends any data the script host has placed in the
HTML output stream.

P:\010Comp\Tip&Tec\394-8\ch11.vp
Friday, January 04, 2002 11:18:29 AM

Color profile: Generic CMYK printer profile
Composite Default screen

5 4 0 H T M L & W e b D e s i g n T i p s & T e c h n i q u e s

Tip&Tec / HTML & Web Design Tips & Techniques / Anderson, King, Jamsa / 9394-8 / Chapter 11

Suppose for example, that your Active Server page has the following script:

<%

CONST oConnection = _

"DRIVER={MySQL};SERVER=NVBizNet2;UID=root;PWD=;DATABASE=hwdtt"

DIM connObj, totalSales

Response.Buffer = true

Response.Write _

"<!DOCTYPE HTML PUBLIC ""-//W3C//DTD HTML 4.0//EN"">"

Response.Write "<html><body>"

Response.Write _

"<p>One moment please. Processing query...</p>"

Set connObj = server.createobject ("adodb.connection")

connObj.ConnectionString = oConnection

connObj.Open

Set totalSales = connObj.execute _

("SELECT SUM(InvoiceTotal) AS TotalSold FROM invoices")

Response.Write "Total sales: " & totalSales("TotalSold")

%>

</body>

</html>

The script host places into the output buffer the <html> and <body> tags followed by the text
“One moment please. Processing query….” However, the Web server sends nothing to the Web
browser until the script host finishes processing the query in the second half of the script. As a result,
the visitor sees the “One moment please” message at the same time he or she receives the query
results. If the query takes 30 seconds to execute, the visitor may give up, because “nothing happened”
after clicking the hyperlink to retrieve the Active Server Page with the total sales figure.

To have the Web browser send the “One moment please…” message immediately, set the
Response.Buffer property to false as shown here:

<%

CONST oConnection = _

"DRIVER={MySQL};SERVER=NVBizNet2;UID=root;PWD=;DATABASE=hwdtt"

DIM connObj, totalSales

Response.Buffer = false

Response.Write _

"<!DOCTYPE HTML PUBLIC ""-//W3C//DTD HTML 4.0//EN"">"

Response.Write "<html><body>"

Response.Write _

"<p>One moment please. Processing query...</p>"

'<connection & query statements ...>

Response.Write "Total sales: " & totalSales

P:\010Comp\Tip&Tec\394-8\ch11.vp
Friday, January 04, 2002 11:18:29 AM

Color profile: Generic CMYK printer profile
Composite Default screen

C h a p t e r 1 1 : A c t i v e S e r v e r P a g e s (A S P) 5 4 1

Tip&Tec / HTML & Web Design Tips & Techniques / Anderson, King, Jamsa / 9394-8 / Chapter 11

%>

</body>

</html>

Note that you can only change the Response.Buffer property’s value while the output buffer is
empty. As such, the statement that sets Response.Buffer to false (or true) must appear within the
Active Server Page before any static HTML (including <html> and <body> tags) and statements
that place data into the output buffer.

In the preceding example, the script host again places the “One moment please” message into the
output buffer. However, this time, the Web server sends the HTML tags and the message to the Web
browser as soon as the server detects them within the HTML output stream. After the script host
executes the query and outputs the total sales figure and the </body> and </html> tags (30 seconds
later, in this example), the Web server sends the data to the Web browser for display, as shown in
Figure 11-3.

The Response.Flush method tells the Web server to send the current contents of the output buffer
to the Web browser immediately, while the script host continues processing the script. You would
flush the output buffer to the client (that is, send its contents to the Web browser) when you want to
display partial results or status messages while the script host finishes script processing. Displaying
interim results may prevent the visitor from growing impatient and moving on rather than waiting for
the results of a complex or multipart query. To use the Response.Flush method, simply insert the
following line in your Active Server Page script:

<% Response.Flush %>

Figure 11-3 The results of displaying nonbuffered HTML output stream contents

P:\010Comp\Tip&Tec\394-8\ch11.vp
Friday, January 04, 2002 11:18:29 AM

Color profile: Generic CMYK printer profile
Composite Default screen

5 4 2 H T M L & W e b D e s i g n T i p s & T e c h n i q u e s

Tip&Tec / HTML & Web Design Tips & Techniques / Anderson, King, Jamsa / 9394-8 / Chapter 11

Suppose, for example, that your script must execute three queries—each of which takes 20 seconds
to complete. To keep the visitor from thinking the system is down during the minute it takes to generate
the final result, you can use code such as the following to display interim totals:

<%

CONST oConnection = _

"DRIVER={MySQL};SERVER=NVBizNet2;UID=root;PWD=;DATABASE=hwdtt"

DIM connObj

DIM office1Sales, office2Sales, office3Sales

Response.Buffer = true

Response.Write _

"<!DOCTYPE HTML PUBLIC ""-//W3C//DTD HTML 4.0//EN"">"

Response.Write "<html><body>"

Response.Write _

"<p>One moment please. Processing query...</p>"

'<connection & query 1 statements ...>

Response.write "Finished 1 of 3. Office 1 sales = " & _

office1Sales & "
"

Response.Flush

'<connection & query 2 statements ...>

Response.write "Finished 2 of 3. Office 2 sales = " & _

office2Sales & "
"

Response.Flush

'<connection & query 3 statements ...>

Response.Write "Finished 3 of 3. Office 3 sales = " & _

office2Sales & "
"

Response.Write "Grand Total sales: " & _

(office1Sales + office2Sales + office3Sales)

%>

</body>

</html>

Call the Response.Flush method only when the Response.Buffer property is set to true. Calling
Response.Flush when Response.Buffer is set to false generates a runtime error. Note that each time
you flush the HTML output buffer, you add to the content already displayed within the Web browser’s
application window. As such, be sure to use Cascading Style Sheet positioning statements to overwrite
existing content or insert
 tags between status messages.

The Response.Clear method erases all but the HTTP response headers from the output buffer.
Therefore, if your Active Server Page has some static HTML and/or the script host has added
some output to the HTML output stream, you can start over with a “blank” Web page by calling
Response.Clear. As was the case with the Response.Flush method, the Response.Buffer property
must be set to true, or calling Response.Clear will generate a runtime error.

You might use Response.Clear after displaying interim results, so that the site visitor sees the final
result on a Web page without status messages or interim totals. For example, you might replace the
final two Response.Write calls in the previous example with the following:

P:\010Comp\Tip&Tec\394-8\ch11.vp
Friday, January 04, 2002 11:18:30 AM

Color profile: Generic CMYK printer profile
Composite Default screen

C h a p t e r 1 1 : A c t i v e S e r v e r P a g e s (A S P) 5 4 3

Tip&Tec / HTML & Web Design Tips & Techniques / Anderson, King, Jamsa / 9394-8 / Chapter 11

Response.Clear

Response.Write _

"<!DOCTYPE HTML PUBLIC ""-//W3C//DTD HTML 4.0//EN"">"

Response.Write "<html><body>"

Response.Write "Per Office and Grand Total Sales</title><body>"

Response.Write "Office1 Sales: " & office1Sales & "
"

Response.Write "Office2 Sales: " & office2Sales & "
"

Response.Write "Office3 Sales: " & office3Sales & "
"

Response.Write "Grand Total sales: " & _

(office1Sales + office2Sales + office3Sales)

If you want to stop all script processing and send the buffered output to the Web browser, use the
Response.End method. When you call Response.End, the script host will neither process more script
statements nor send any remaining static HTML it finds within the Active Server Page. You might
use the Response.End method to abort processing if you discover you cannot complete a multipart
procedure partway through. Suppose for example, that the office 2 sales database is not available, so
you cannot compute the grand total sales. By checking the error return from the database connect
statement, you could abort on error by inserting the following code in your script:

If errorOnConnect

Response.Write "Query Aborted! Office 2 Data not available."

Response.Write "<\body><\html>"

Response.End

End If

Notice the script places <\body> and <\html> tags into the HTML output stream before calling the
Response.End method. Remember, calling Response.End halts further script processing. Moreover,
the script host does not copy any remaining static HTML (such as the </body></html> tags that
follow the script) from the Active Server Page to the output buffer.

Preventing the Web Browser from
Displaying Stale Active Server Pages
You may have noticed that the first time you visit a Web page it often takes longer for the Web
browser to retrieve and display the page completely than on subsequent visits. The reason for the
apparent difference in download speed is often due to Web page caching. The first time you visit a
Web page, your browser must retrieve the page from the Web server. However, after the first visit,
the browser can display the same page from the browser’s Internet content cache on your (local) hard
drive. On a Windows machine, Internet Explorer, for example, caches Web pages you visit along
with graphics, sound, and other multimedia files used on those pages within the C:\Windows \
Temporary Internet Files folder on your hard drive.

P:\010Comp\Tip&Tec\394-8\ch11.vp
Friday, January 04, 2002 11:18:30 AM

Color profile: Generic CMYK printer profile
Composite Default screen

5 4 4 H T M L & W e b D e s i g n T i p s & T e c h n i q u e s

Tip&Tec / HTML & Web Design Tips & Techniques / Anderson, King, Jamsa / 9394-8 / Chapter 11

Caching and serving Web pages from a local hard drive (or from a proxy server’s hard drive when
accessing the Internet through a proxy server) is not a problem when dealing with static Web pages.
However, Active Server Pages are, by nature, dynamic. Unfortunately, as far as the Web browser is
concerned, the Web page generated by the script host is simply an ordinary, static Web document
with an .asp extension. Because the .asp at the end of the filename means nothing special to the Web
browser, the browser caches and subsequently displays from cache, Active Server Pages. As a result,
the Web page the browser displays when you return to a page may not have the same content you
might see if the browser retrieved the page from the Web server rather than the browser’s cache.

The Response.Expires and Response.ExpiresAbsolute properties let you stop Web browsers from
displaying out-of-date content by setting an expiration date and/or time for cached files. Until the
cached page expires, a Web browser displays the cached copy of a Web page rather than requesting
the page from the Web server. After the cached page expires, however, the Web browser must
download a “fresh” copy of the page from the Web server when the visitor returns to the page.

Suppose, for example, that you have an Active Server Page whose content you update
once per month. When making changes on 1/1/2002, you insert the following statement

within the script that generates the Active Server Page content:

<% response.ExpiresAbsolute = #01/31/2002# %>

By setting the cached page expiration to the date (and time) scripts on the page will change the Web
page content, you prevent the visitor from seeing stale, cached information.

The syntax you use to set the Response.ExpiresAbsolute property is as follows:

Response.ExpiresAbsolute = #<expireDate[<expireTime>]>#

Thus, in the preceding example, all cached copies of the Active Server Page you edit on 01/01/2002
will expire at midnight on 01/31/2002. (Omitting the time when setting the Response.ExpiresAbsolute
property causes the cached page to expire at midnight on the expiration date.) If you want the cached
page to expire at 3:15pm in the afternoon on 2/1/2002 instead, you would use:

<% Response.ExpiresAbsolute = #02/01/2002 3:15:00pm# %>

Setting the expiration date to a specific date and/or time requires that you manually edit the script
(to change the expiration date) at the start of each new period. As such, you will find it more convenient
to set a cached page valid for a set number of minutes rather than until a specific date (and time).
Suppose, for example, that you have an Active Server Page that displays stock quotes and your Web
server receives new quote data every 15 minutes. To keep cached content up to date, you would use
the Response.Expires method to specify the number of minutes until a cached page expires by using
the following syntax:

Response.Expires = <minutes>

Thus, to force the Web browser to reretrieve the Active Server Page from the Web server
whenever cached data is more than 15 minutes old, add the following statement to the script that
generates the Active Server Page content:

P:\010Comp\Tip&Tec\394-8\ch11.vp
Friday, January 04, 2002 11:18:30 AM

Color profile: Generic CMYK printer profile
Composite Default screen

C h a p t e r 1 1 : A c t i v e S e r v e r P a g e s (A S P) 5 4 5

Tip&Tec / HTML & Web Design Tips & Techniques / Anderson, King, Jamsa / 9394-8 / Chapter 11

<% Response.Expires = 15 %>

On a final note, to prevent Web browsers from displaying stale Active Server Page content, you
must also make allowances for those proxy servers that do not honor page expiration dates (and
times). When a Web visitor accesses the Internet through a proxy server, the proxy server (like the
Web browser) stores a copy of Web pages retrieved within a cache folder on the proxy server’s local
hard drive. When the Web browser requests a Web page already in the proxy server’s cache, the
proxy server sends to the Web browser the page from the cache rather than retrieving the page from
the Web server again. Thus, the Web browser will request a new page from the Web server after the
page in the browser’s cache folder expires. However, if the proxy server ignores cached page
expirations, the proxy server may send the Web browser a page with stale content from the proxy
server cache.

To prevent proxy servers from sending stale Active Server Pages, set the Response.CacheControl
property to “Private”. When you leave the Response.CacheControl property set to the default,
“Public”, the proxy server will cache the page in a folder on the proxy server’s hard drive. Conversely,
when you set the Response.CacheControl to “Private”, the proxy server will not. Therefore, to ensure
that the proxy server will retrieve a Web page from the Web server each time, include the following
statement either just before or after you set the page expiration date or time:

<% Response.CacheControl = "Private" %>

Redirecting the Web Browser to Another Web Page
As visitors surf the Web they often bookmark (that is, add to their lists of favorites) Web pages to
which they want to return. Although repeat traffic is normally a good thing, you must sometimes
prevent visitors from jumping directly to specific pages within your site. Suppose, for example, that
you want your visitors to log in or register before viewing the site’s content. If a visitor bypasses the
login process by using a bookmark to jump directly to a content page, you need a way to redirect that
visitor to the Web page with the login/registration form automatically. The Response.Redirect method
lets you move a site visitor onto a Web page other than the one he or she requested.

In addition to redirecting a visitor to a different page as part of a login security scheme,
you might also do so in order to balance the load among servers in a Web server farm,

or if you move a Web site from one .com address to another. Suppose, for example that you run two
Web servers, NVBizNet.com and NVBizNet2.com, and want to balance their workloads to speed
things up. As a result, you move some Web sites hosted on NVBizNet.com to NVBizNet2.com.
Unfortunately, previous visitors may have bookmarked site home pages on the original server
(NVBizNet.com). To move visitors that reach NVBizNet.com looking for sites that are now on
NVBizNet2.com, insert the following code at the start of Active Server Pages on NVBizNet.com:

<% Response.Redirect "http://www.NVBizNet2.com/default.asp" %>

When the script engine executes the Response.Redirect method, the command takes effect
immediately. The script host processes no more statements within the current Active Server Page.

P:\010Comp\Tip&Tec\394-8\ch11.vp
Friday, January 04, 2002 11:18:30 AM

Color profile: Generic CMYK printer profile
Composite Default screen

5 4 6 H T M L & W e b D e s i g n T i p s & T e c h n i q u e s

Tip&Tec / HTML & Web Design Tips & Techniques / Anderson, King, Jamsa / 9394-8 / Chapter 11

Instead, the Web server sends a message to the Web browser, which tells the browser to request
another Web page. Thus, in this example, the Web browser first sent a message to NVBizNet.com
requesting an Active Server Page. Rather than send the page (now served by another Web server) to
browser, the NVBizNet.com Web server sends a redirect message, which tells the browser to request
default.asp from NVBizNet2.com. The Web browser, in turn, requests and displays the default.asp
home page from NVBizNet2.com.

In addition to sending a visitor to a site on another Web server or to a different Web site on the same
Web server, you can use the Response.Redirect method to move the visitor from one page to another
within a single Web site. When the new page you want the Web browser to retrieve is within the current
Web site, drop the “http://” and the .com address from the URL you provide to the Response.Redirect
method. Supply the relative address of the new page to the method instead. Suppose, for example, you
want to prevent visitors from linking directly to Active Server Pages within a members-only area—
bypassing your site’s login form. Insert code similar to the following at the start of each Active Server
Page you want to secure:

<%

DIM referer, wwwReferer

wwwReferer = Left(Request.ServerVariables("HTTP_REFERER"),31)

referer = Left(Request.ServerVariables("HTTP_REFERER"),27)

If ucase(wwwReferer) <> "HTTP://WWW.NVBIZNET2.COM/HWDTT/" And _

ucase(referer) <> "HTTP://NVBIZNET2.COM/HWDTT/"

Response.Redirect "/loginScreen.asp" Then

End If

%>

If a visitor enters the URL of a Web page into the browser’s Address field or selects a page from
a list of favorites (or bookmarks), the “HTTP_REFERER” value within the HTTP request the Web
browser sends is blank. Conversely, when a visitor clicks a hyperlink, the Web browser sends the
URL of the Web page with the hyperlink as the “HTTP_REFERER” value HTTP request the browser
sends to the Web server. Thus, in the preceding example, when a visitor retrieves a Web page after
logging on (through the login screen) or by clicking a hyperlink on any other page within the /hwdtt
folder on NVBizNet2.com, calling the Request.ServerVariables method, as follows, returns a string
that starts http://www.NVBizNet2.com/hwdtt/ or http://NVBizNet2.com/hwdtt/:

Request.ServerVariables("HTTP_REFERER")

The statement in this example retrieves the value of “HTTP_REFERER” which the Web browser
placed in the HTTP request sent to the Web server.

To use the preceding script on your Web pages, test for your site’s .com address and the pathname
of the folder in which you store the site’s members-only content within the if statement. In addition,
replace the URL passed to the Response.Redirect method with the URL of your site’s login page in
the next-to-last line of the script.

Because the Response.Redirect method uses the HTTP message header to tell the Web browser
to retrieve another Web page, a script can only call the Response.Redirect method when the HTML

P:\010Comp\Tip&Tec\394-8\ch11.vp
Friday, January 04, 2002 11:18:31 AM

Color profile: Generic CMYK printer profile
Composite Default screen

C h a p t e r 1 1 : A c t i v e S e r v e r P a g e s (A S P) 5 4 7

Tip&Tec / HTML & Web Design Tips & Techniques / Anderson, King, Jamsa / 9394-8 / Chapter 11

output buffer is empty (or contains only HTTP header data). If you want to redirect the Web browser
to a new page after the script has already generated some Web page HTML, use the Response.Clear
method to clear the output buffer first. Then, call the Response.Redirect method to tell the Web browser
to move onto another page.

Maintaining Variable Values Between
HTTP Requests with the Cookies Collection
As mentioned previously in this book, the client-server relationship between Web browser and Web
server is “stateless.” The Web server maintains no information about the client from one request to
the next. In general, the server waits for a Web browser (any Web browser) to send an HTTP request.
After receiving a request, the Web server responds with no memory of previous connections (if any)
between itself and the Web browser that sent the request. Unfortunately, if you have a members-only
Web site or an e-commerce site, you need some way to keep track of the visitor as he or she moves
from page to page. Otherwise, the visitor must log in repeatedly, because a Web page request
provides no way to let the Web server know that the visitor has already logged in.

A cookie is a small amount of text the Web server tells the Web browser to write within the Web
site’s “cookie file” on the visitor’s computer. Many visitors see cookies as an intrusion on their privacy
and turn off the browser’s ability to store cookies, or at least force the browser to ask permission
before saving cookie data. However, a cookie can only store data the visitor voluntarily provides or
general information about the visitor’s connection (found within the HTTP header of a Web page
request). Moreover, a browser sends to the Web server only those cookies the Web server previously
sent to the Web browser for storage. Thus, if you visit www.NVBizNet.com and www.yahoo.com,
your browser will not send to the Yahoo.com Web server any cookie information the browser stored
when you visited the NVBizNet.com Web site, and vice versa.

Use the Response.Cookies collection to set cookie values and the Request.Cookies
collection to retrieve them. For example, to create a single-session cookie—that is, a

cookie that remains on the visitor’s system only until he or she exits the Web browser—your script
need only provide the cookie’s name and value using the following syntax:

Response.Cookies("<cookieName>") = "<cookieValue>"

Thus, to set single-session cookies named firstName and lastName to “Konrad” and “King”,
respectively, insert the following code within an Active Server Page Script:

<%

Response.Cookies("firstName") = "Konrad"

Response.Cookies("lastName") = "King"

%>

P:\010Comp\Tip&Tec\394-8\ch11.vp
Friday, January 04, 2002 11:18:31 AM

Color profile: Generic CMYK printer profile
Composite Default screen

5 4 8 H T M L & W e b D e s i g n T i p s & T e c h n i q u e s

Tip&Tec / HTML & Web Design Tips & Techniques / Anderson, King, Jamsa / 9394-8 / Chapter 11

If you want to make a cookie’s value persistent (that is, remain valid past the end of the current
session), set the cookie’s Expires property either to a specific date or to a length of time. After the
cookie expires, the Web browser will no longer send the cookie name/value pair to the Web server
when making an HTTP request. For example, to set a cookie named userName to expire on January
5, 2003, use the following:

<% Response.Cookies("userName").Expires = "January 5, 2003" %>

Similarly, to set the userName to expire in 30 days from today, use the built-in VBScript Date()
function as follows:

<% Response.Cookies("userName").Expires = Date + 30 %>

Suppose, for example, that your site had a visitor registration form similar to that shown in Figure
11-4 in which the text element names are firstName, lastName, streetAddress1, streetAddress2, city,
state, zipCode, and eMailAddress.

Figure 11-4 Registration form that stores name, street address, and e-mail address in a
cookies file

P:\010Comp\Tip&Tec\394-8\ch11.vp
Friday, January 04, 2002 11:18:31 AM

Color profile: Generic CMYK printer profile
Composite Default screen

TE
AM
FL
Y

Team-Fly®

C h a p t e r 1 1 : A c t i v e S e r v e r P a g e s (A S P) 5 4 9

Tip&Tec / HTML & Web Design Tips & Techniques / Anderson, King, Jamsa / 9394-8 / Chapter 11

By calling the following subroutine within your site’s login script, you could store the visitor’s
name, address, and e-mail address in the site’s cookie file until the date specified by expDate:

<%

'Subroutine "StoreCookie" stores a cookie value

Sub StoreCookie(cookieName, cookieValue, expDate)

Response.Cookies(cookieName) = cookieValue

Response.Cookies(cookieName).Expires = expDate

end sub

'store the name, street address, and e-mail address in

'cookies for later use

StoreCookie "firstName",Request.Form("firstName"), Date + 30

StoreCookie "lastName",Request.Form("lastName"), Date + 30

StoreCookie "streetAddress1",Request.Form("streetAddress1"), _

Date + 30

StoreCookie "streetAddress2",Request.Form("streetAddress2"), _

Date + 30

StoreCookie "city",Request.Form("city"), Date + 30

StoreCookie "state",Request.Form("state"), Date + 30

StoreCookie "zipCode",Request.Form("zipCode"), Date + 30

StoreCookie "eMailAddress",Request.Form("eMailAddress"), _

Date + 30

%>

If the visitor returns to the site before a cookie’s expiration date, you can use the Request.Cookies
method to load the cookie value into its element within the registration form as shown here:

<form name="RegistrationForm" action="RegisterVisitor.asp"

method="POST">

<%

With Response

.Write "First Name: <input type='text' name='firstName'" & _

"size='40' value='" & request.Cookies("firstName") & _

"'>
"

.Write "Last Name: <input type='text' name='lastName'" & _

"size='40' value='" & request.Cookies("lastName") & _

"'>
"

.Write "Address 1: <input type='text' " & _

"name='streetAddress1' size='40' value='" & _

request.Cookies("streetAddress1") &"'>
"

.Write "Address 2: <input type='text' " & _

P:\010Comp\Tip&Tec\394-8\ch11.vp
Friday, January 04, 2002 11:18:32 AM

Color profile: Generic CMYK printer profile
Composite Default screen

5 5 0 H T M L & W e b D e s i g n T i p s & T e c h n i q u e s

Tip&Tec / HTML & Web Design Tips & Techniques / Anderson, King, Jamsa / 9394-8 / Chapter 11

"name='streetAddress2' size='40' value='" & _

request.Cookies("streetAddress2") &"'>
"

.Write "City: <input type='text' name='city'" & _

"size='40' value='" & request.Cookies("city") &"'>
"

.Write "State: <input type='text' name='state'" & _

"size='4' value='" & request.Cookies("state") & _

"'> "

.Write "Zip Code: <input type='text' name='zipCode'" & _

"size='10' value='" & request.Cookies("zipCode") &"'>
"

.Write "E-Mail Address: <input type='text' " & _

"name='eMailAddress' size='40' value='" & _

request.Cookies("eMailAddress") & "'>

"

End With

%>

<input type="submit" value="Save">

<input type="reset">

</form>

To delete a cookie, set its value to an empty string, or set the cookie’s Expires property to a date
(or time) in the past. For example, either of the following statements will delete the cookie named
userName from the Web site’s cookie file:

<% Response.Cookies("userName") = "" %>

<% Response.Cookies("userName").Expires = Date – 1000 %>

Retrieving Form Results from the ASP Form Collection
Retrieving input from HTML form elements lets your Active Server Page scripts customize page
content to the needs and desires of your site visitors. True, even without visitor input, server-side
scripts can insert dynamic information such as the current date and time, stock quotes, weather
information, and so on. However, the current time and temperature in Las Vegas is likely of little
interest to a resident of Juneau, Alaska. Similarly, a current price quotation for stocks with the
symbols MSFT, INTU, BAC, and GM would be of limited use to someone who owns other stocks
and may be of no interest to a bond investor. To be useful, server-side scripts that generate content
must first find out what a visitor wants to see and then supply the information requested. Fortunately,
the Web server makes HTML form data available to your scripts as a collection of name/value pairs
within the Active Server Page Request object.

After a visitor fills in a form’s text elements, makes radio button and checkbox selections, and
then clicks on the form’s Submit button, the Web browser sends the form results to the Web server.
The action and method attributes within the <form> tag tell the Web server where to send the data
and how the browser “packaged” it. When the action attribute in a <form> tag is set to the URL of
an Active Server Page, the Web server passes the page named by the attribute to the ASP script host.
Depending on the method attribute’s value (either GET or POST), the Web server places the form
results in either the QueryString or the Form collection within the Request object.

P:\010Comp\Tip&Tec\394-8\ch11.vp
Friday, January 04, 2002 11:18:32 AM

Color profile: Generic CMYK printer profile
Composite Default screen

When the <form> tag’s method is GET, the Web browser appends the form results onto the URL,
and the Web server places the form data in the Request.QueryString collection. Similarly, when the
method attribute’s value is POST, the Web browser sends the form results within the HTTP message
body, and the Web server passes the form data to the script as the Request.Form collection.

Suppose, for example, that your Web page has the following HTML form definition:

<form action="http://www.NVBizNet2.com/HWDTT/FormResults.asp"

method="POST">

First Name: <input type="text" name="firstName" size="20">

Last Name: <input type="text" name="lastName" size="20">

E-Mail: <input type="text" name="eMailAddr" size="30">

<input type="submit" value="Submit">

<input type="reset" value="Reset">

</form>

After the visitor clicks the form’s Submit button, the Web browser will send the form results to the
Web server using the POST method. As such, the Web server will retrieve the form name/value pairs
the Web browser sends from the HTTP message body and place them in the Active Server Page
Request.Form collection.

An Active Server Page collection is an array of values a script can retrieve by numeric
index or keyword. Conveniently, a script can use a form element’s name as the keyword

to retrieve the element’s value from the Request.Form collection. Thus, for the form defined in the
previous example, you can use the following script to retrieve the form results:

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0//EN">

<html>

<body>

<%

DIM firstName, lastName, eMailAddr

'retrieve the form results

firstName = Request.Form("firstName")

lastName = Request.Form("lastName")

eMailAddress = Request.Form("eMailAddr")

'display the form results

With Response

.write "First Name: " & firstName & "
"

.write "Last Name: " & lastName & "
"

.write "E-mail Address: " & eMailAddress & "
"

End With

%>

</body>

</html>

C h a p t e r 1 1 : A c t i v e S e r v e r P a g e s (A S P) 5 5 1

Tip&Tec / HTML & Web Design Tips & Techniques / Anderson, King, Jamsa / 9394-8 / Chapter 11

P:\010Comp\Tip&Tec\394-8\ch11.vp
Friday, January 04, 2002 11:18:32 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Although the script in this example simply retrieves and then displays the form data values in the
Request.Form collection, your script can do anything you need with values submitted through an
HTML form. The important thing to understand is that you can retrieve a form element value from
the Request.Form collection.

If you retrieve form results by index rather than keyword, you can create a reusable confirmation
that displays form element names and the values entered or selected. To retrieve form results by
name, you must know the form element names when you write the script. The advantage in creating
a reusable confirmation page is that you can write a single script that will display form results from
forms with different element counts and names. For example, you can embed the following script in
an Active Server Page to display form element names and values from any form that “posts” its
results set:

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0//EN">

<html>

<body>

<%

DIM i

'display element names and form results

With Response

For i = 1 To Request.Form.Count

.Write "" & Request.Form.Key(i) & " : " & _

Request.Form(i) & "
"

Next

End With

%>

</body>

</html>

The Request.Form collection has one property (Count) and two methods (Item and Key). When
adding items (values) and keys (names) to a collection, the Web server stores the number of items it
adds within the collection’s Count property. Thus, in this example, the Request.Form.Count property
holds the number of name/value pairs the Web browser passed to the Web server as form results. To
work with the “names” (that is, with the “keys”) in a collection, use the Request.Form.Key method,
which lets you retrieve the “name” portion of the name/value pairs within the collection. Similarly, to
work with the values stored in the collection, use the Request.Form.Item method, which retrieves the
“value” portion of a form results name/value pair.

Note that you can avoid unnecessary typing by omitting the Item when retrieving form element
values from a collection, as shown here:

Response.Write "" & Request.Form.Key(1) & " : " & _

Request.Form.Item(1) & "
"

Response.Write "" & Request.Form.Key(1) & " : " & _

Request.Form(1) & "
"

Both statements in this example produce the same result.

5 5 2 H T M L & W e b D e s i g n T i p s & T e c h n i q u e s

Tip&Tec / HTML & Web Design Tips & Techniques / Anderson, King, Jamsa / 9394-8 / Chapter 11

P:\010Comp\Tip&Tec\394-8\ch11.vp
Friday, January 04, 2002 11:18:32 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Retrieving Form Results from
the ASP QueryString Collection
HTML forms let you retrieve information from site visitors. On an e-commerce site, visitors select
products, enter payment details, and provide delivery instructions through forms. Prior to making
a purchase, the visitors may use forms to log in to their accounts on the Web site or to search for
product data or installation and use instructions about items for sale. Noncommerce sites also use
forms that let members log in to execute transactions (such as transferring money between accounts
or making stock purchases), or to retrieve information (such as stock quotes, weather reports, or
perhaps a list of movies playing at local theatres). In short, forms let a site visitor specify content that
an Active Server Page script running at the Web server is to provide or work the script it is to perform.

To keep form results private, you set the method attribute in the <form> tag to POST, so that the
Web browser sends the form results within an HTTP message body. You might use the POST
method to submit order details or a visitor’s name, address, and phone number. Moreover, if the form
includes highly sensitive information, such as a credit card number, username/password, or account
numbers, you would also establish a secure connection between Web browser and Web server. When
using the POST method to send form results across a secure connection, the form results travel across
the Internet encrypted within the HTTP message body.

Conversely, when you want to record the form results in the Web server’s log file for later analysis
or want to let visitors create bookmarks (or favorites) they can use to resubmit the same form results
without filling out the form again, set the <form> tag’s method attribute to “GET”. When using the
GET method to submit form results, the Web browser still sends the name and value from each form
element to the URL specified by the <form> tag’s action attribute. However, instead of “hiding” the
form results within the HTTP message body (as it does when using the POST method), when using
the GET method, the Web browser appends the string of name/value pairs as part of the URL to
which the browser submits the form results.

Suppose for example, that you create a Web page with the following form definition:

<form action="http://www.NVBizNet2.com/HWDTT/StockQuotes.asp"

method="GET">

<table>

<tr><th colspan="3">Stocks to Watch</th></tr>

<tr><td><input type="text" name="s1" size="6"></td>

<td><input type="text" name="s2" size="6"></td>

<td><input type="text" name="s3" size="6"></td></tr>

<tr><td><input type="text" name="s4" size="6"></td>

<td><input type="text" name="s5" size="6"></td>

<td><input type="text" name="s6" size="6"></td></tr>

</table>

<p><input type="submit" value="Submit">

<input type="reset" value="Reset"></p>

</form>

Tip&Tec / HTML & Web Design Tips & Techniques / Anderson, King, Jamsa / 9394-8 / Chapter 11

C h a p t e r 1 1 : A c t i v e S e r v e r P a g e s (A S P) 5 5 3

P:\010Comp\Tip&Tec\394-8\ch11.vp
Friday, January 04, 2002 11:18:32 AM

Color profile: Generic CMYK printer profile
Composite Default screen

5 5 4 H T M L & W e b D e s i g n T i p s & T e c h n i q u e s

Tip&Tec / HTML & Web Design Tips & Techniques / Anderson, King, Jamsa / 9394-8 / Chapter 11

After the visitor clicks the form’s Submit button, the Web browser sends the form results to the
Web server using the GET method. The GET method tells the Web browser to append the form
results onto the URL specified by the <form> tag’s action attribute. Thus, in this example, the
browser appends the form results onto the URL http://www.NVBizNet2.com/HWDTT/Quotes.asp,
as shown in the Address field of the Web browser application window in Figure 11-5.

When the HTTP message with the form results reaches the Web server, the server copies
the name/value pairs from the URL into the Active Server Page Request.QueryString

collection. An Active Server Page collection is an array of values a script can retrieve by either numeric
index or by name. Conveniently, form element names are the “keywords” a script must use to retrieve
form element values from the Request.QueryString collection by name. Thus, for the form defined in
the previous example, you might use the statements in the first half of the following script to retrieve
form results:

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0//EN">

<html>

<body>

<%

DIM symbol(6), i

'retrieve the form results

symbol(1) = Request.QueryString("s1")

symbol(2) = Request.QueryString("s2")

symbol(3) = Request.QueryString("s3")

symbol(4) = Request.QueryString("s4")

symbol(5) = Request.QueryString("s5")

symbol(6) = Request.QueryString("s6")

'display the form results

With Response

For i = 1 To Request.QueryString.Count

.Write "Symbol " & i & ": " & symbol(i) & "
"

Next

End With

%>

</body>

</html>

The script in this example first retrieves form element values by name from the Request.QueryString
collection and assigns the values to elements within an array named symbol. Then, the script calls on
the Response.Write method to display each value submitted on the Web page. Your script will, of
course, do something more with values submitted. However, the important thing to understand is that
you retrieve the values entered on forms submitted using the GET method from the Request.QueryString
collection. Moreover, you can retrieve each element’s value from the collection by name.

In fact, you normally retrieve form element values by name—so long as the form element’s names
are meaningful. In the preceding example, however, the form element’s names do nothing to describe

P:\010Comp\Tip&Tec\394-8\ch11.vp
Friday, January 04, 2002 11:18:33 AM

Color profile: Generic CMYK printer profile
Composite Default screen

the element values. Therefore, in this instance, it is more convenient to retrieve form element values
from the Request.QueryString collection by numeric index rather than by name as shown here:

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0//EN">

<html>

<body>

<%

DIM i

'retrieve & display the form results both values and names

With Response

For i = 1 To Request.QueryString.Count

.Write "" & Request.QueryString.Key(i) & " : " & _

Request.QueryString(i) & "
"

Next

End With

%>

</body>

</html>

As is true for all Active Server Page collections, the Request.QueryString collection has one
property (Count) and two methods (Item and Key). When adding items (values) and keys names) to a
collection, the Web server stores the number of items it added to the collection within the collection’s
Count property. Therefore, in this case, the Web server sets the Request.QueryString.Count property

C h a p t e r 1 1 : A c t i v e S e r v e r P a g e s (A S P) 5 5 5

Tip&Tec / HTML & Web Design Tips & Techniques / Anderson, King, Jamsa / 9394-8 / Chapter 11

Figure 11-5 Web browser Address field with form results sent using the GET method

P:\010Comp\Tip&Tec\394-8\ch11.vp
Friday, January 04, 2002 11:18:33 AM

Color profile: Generic CMYK printer profile
Composite Default screen

5 5 6 H T M L & W e b D e s i g n T i p s & T e c h n i q u e s

Tip&Tec / HTML & Web Design Tips & Techniques / Anderson, King, Jamsa / 9394-8 / Chapter 11

to the number of name/value pairs it found within the form results. The Request.QueryString.Key
method lets you retrieve the “name” portion of the form result’s name/value pairs, and the
Request.QueryString.Item method lets you retrieve the “value.” Note that when you refer to a
collection item by index or key value, the Item method call is implied. Therefore, in this example
where “s1” is the key (that is, the name) of the first item in the Request.QueryString collection, the
following statements are equivalent:

Response.Write Request.QueryString.Item(1)

Response.Write Request.QueryString(1)

Response.Write Request.QueryString.Item("s1")

Response.Write Request.QueryString.("s1")

To avoid unnecessary typing, you normally omit Item when retrieving form element values from
a collection, as shown by the second and fourth statements in this example.

Retrieving Information from the
Server Variables Collection
With each Web page request, a browser sends some information about itself and its Internet connection.
An Active Server Page script can use the information a browser sends to limit site access based on IP
address, customize page content to take advantage of features supported only by certain browsers,
track who referred a visitor to the site, warn the visitor before sending sensitive data over nonsecure
connections, and so on.

The Web server stores the HTTP header data and other information the Web browser sends
within the Request.ServerVariables collection. Like other Active Server Page collections, the
Request.ServerVariables collection consists of a list of names, called “keys”, and their associated
values. To get data from the collection, you simply specify the key whose value you want to
retrieve. For example, to retrieve and display the visitor’s IP address, your script might use the
REMOTE_ ADDR key as shown in the following code:

<% DIM visitorIPAddress

visitorIPAddress = Request.ServerVariables("REMOTE_ADDR")

Response.Write _

"<p>Thank you for visiting from IP Address: " & _

visitorIPAddress & "
To combat unauthorized " & _

"credit card use, we store your IP address with each " & _

" transaction processed.</p>"

'<... other script statements ... >

%>

P:\010Comp\Tip&Tec\394-8\ch11.vp
Friday, January 04, 2002 11:18:33 AM

Color profile: Generic CMYK printer profile
Composite Default screen

C h a p t e r 1 1 : A c t i v e S e r v e r P a g e s (A S P) 5 5 7

Tip&Tec / HTML & Web Design Tips & Techniques / Anderson, King, Jamsa / 9394-8 / Chapter 11

As mentioned previously, the Request.ServerVariables collection contains information
the Web browser sends with each HTTP request that it sends to the Web server. The

Request.ServerVariables collection contains such things as HTTP headers, cookies, the visitor’s
IP address, the query string, and the URLs of the current and referring Web pages. To get a list of all
the names and values available within the Request.ServerVariables collection (similar to that shown
in Figure 11-6), you can use the following code:

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0//EN">

<html>

<head>

<title>Request.ServerVariables Items & Associated Values

</title>

</head>

<body>

<% DIM itemName

For Each itemName In Request.ServerVariables

Response.Write "" & itemName & " = " & _

Request.ServerVariables(itemName) & "
"

Next

%>

</body>

</html>

As the VBScript For-Each loop iterates through the Request.ServerVariables collection, the script
engine places into the variable itemName the key (that is, the name) associated with each value within
the collection. The Response.Write method then displays the collection item’s name and value on the
Web page.

You can use an item in the Request.ServerVariables collection item to make some Active Server
Pages available only to visitors from workstations on your company’s intranet. Given that your ISP
allocated to your company the 256 IP addresses within the range 24.234.31.000–24.234.31.255, you
can limit access to company computers only, by placing the following script at the start of the Active
Server Page file:

<% DIM visitorIPAddress

visitorIPAddress = Request.ServerVariables("REMOTE_ADDR")

If Left(visitorIPAddress,10) <> "24.234.31." Then

Response.Redirect("/")

End If

%>

P:\010Comp\Tip&Tec\394-8\ch11.vp
Friday, January 04, 2002 11:18:34 AM

Color profile: Generic CMYK printer profile
Composite Default screen

5 5 8 H T M L & W e b D e s i g n T i p s & T e c h n i q u e s

Tip&Tec / HTML & Web Design Tips & Techniques / Anderson, King, Jamsa / 9394-8 / Chapter 11

The VBScript If-Then statement in this example checks to ensure that the visitor’s IP address is
within the acceptable range of IP addresses. If the IP address is not one of the 256 allowed to view
the page, the Response.Redirect method call instructs the Web browser to load the Web site’s default
index page.

Figure 11-6 List of Request.ServerVariables collection item names and values

P:\010Comp\Tip&Tec\394-8\ch11.vp
Friday, January 04, 2002 11:18:34 AM

Color profile: Generic CMYK printer profile
Composite Default screen

TE
AM
FL
Y

Team-Fly®

Tip&Tec / HTML & Web Design Tips & Techniques / Anderson, King, Jamsa / 9394-8 / Chapter 11

C h a p t e r 1 1 : A c t i v e S e r v e r P a g e s (A S P) 5 5 9

Connecting to a MySQL DBMS
Through the MyODBC Driver
One of the most powerful (and often used) features of Active Server Page scripts is their ability to
retrieve and display data from an SQL database. Much of the content visitors want when they visit a
Web site is stored within database tables. Banks keep account balances, transaction data, and other
financial information on customers within tables. Brokerage houses use tables to store such things as
securities transactions, deposits, withdrawals, transfers of money, and information about publicly
traded companies. Stores take orders, monitor inventory, and manage charge card accounts—all by
executing SQL statements that act on database table data. In fact, when you (like your site visitors) go
online to access account information, make a purchase, or check the status of an order chances are
great that you are working with an SQL database. Behind the scenes, server-side scripts retrieve data
from database tables to generate the Web page content you see. In addition, scripts update the data
within the database when directed to do so by instructions you enter and send to the Web server
through HTML forms.

Before it can submit queries and other SQL statements for processing, an Active Server Page
script must establish a connection with the database management system (DBMS). To connect with
the MySQL DBMS, for example, an Active Server Page script must have an open database connectivity
(ODBC) driver to act as a go-between. The script passes a string (with connection/login instructions
or an SQL statement) to the ODBC driver. The ODBC driver, in turn, puts the string into a format the
DBMS (such as MySQL) understands and sends the connection/command string to the DBMS for
processing. The ODBC driver then formats output (such as a query results set) produced by the DBMS
and passes the statement’s results to the Active Server Page script.

As of this writing, the MyODBC driver an Active Server Page script must have to
communicate with the MySQL DBMS does not come bundled with the MySQL application.

You can download the MyODBC driver from http://www.MySQL.com/Downloads/. (Click on the
MyODBC hyperlink within the APIs section of the Web page, and follow the download instructions
for your operating system.) Retrieve the MyODBC.zip (archive) file from the Web site and store it
within a folder (such as C:\My Download Files) on the computer with the MySQL DBMS. Next,
extract the files in the archive to a folder such as C:\My Download Files\MyODBC. Finally, perform
the following steps to complete the installation process:

1. Find Setup.exe within the folder in which you extracted the files within the MyODBC
archive file.

2. Double-click Setup.exe to start the installation program. Setup.exe, in turn, will display the
Microsoft ODBC Setup message box.

3. Click Continue. The installation program, in turn, will display the Install Drivers dialog box.

4. Click MySQL in the Available ODBC Drivers list box and then click OK. The installation
program, in turn, will display the Data Sources dialog box.

P:\010Comp\Tip&Tec\394-8\ch11.vp
Friday, January 04, 2002 11:18:34 AM

Color profile: Generic CMYK printer profile
Composite Default screen

5. Click Close and then click OK at the bottom of the Microsoft ODBC Setup message box to
exit the installation program.

When you click Close in Step 5, the installation program installs the MyODBC driver on your
system and displays the Microsoft ODBC Setup Complete message box. Click OK in the message
box to exit the installation program and return to the Windows desktop.

After you install the ODBC driver for the MySQL DBMS (MyODBC), your ASP scripts can
connect to the DBMS using a connection string with the following syntax:

DRIVER={MySQL};SERVER=<Web server computer name>;

UID=<username>;PWD=<password>;DATABASE=<database name>

Suppose, for example, that your Web server is on a computer named NVBizNet2 and you want
to connect with a database named hwdtt. (The database name comes from the first letter in each word
of this book’s title—HTML & Web Design Tips & Techniques.) You would use a connection string
such as the following:

DRIVER={MySQL};SERVER=NVBizNet2;UID=root;PWD=;DATABASE=hwdtt

In this example, the Active Server Page script logs in as username root with no password. Thus,
to display the results of a query within an HTML table on a Web page, your active Server Page script
might call a subroutine similar to the following:

<%

Sub SubmitQuery (queryString)

Const cMySQLConStr = _

"DRIVER={MySQL};SERVER=NVBizNet2;UID=root;PWD=;DATABASE=hwdtt"

Dim objMySQLCon, objResultsSet

Dim field

'Create DBMS connection object

Set objMySQLCon = Server.CreateObject("ADODB.Connection")

With objMySQLCon

'open the connection to the MySQL DBMS, submit the query

'and store the query results set in a VBScript object

.ConnectionString = cMySQLConStr

.Open

Set objResultsSet = .Execute (queryString)

'display the query on the Web page

Response.Write "<center><p>Results Set for: " & _

queryString & "</p></center><hr>"

5 6 0 H T M L & W e b D e s i g n T i p s & T e c h n i q u e s

Tip&Tec / HTML & Web Design Tips & Techniques / Anderson, King, Jamsa / 9394-8 / Chapter 11

P:\010Comp\Tip&Tec\394-8\ch11.vp
Friday, January 04, 2002 11:18:35 AM

Color profile: Generic CMYK printer profile
Composite Default screen

C h a p t e r 1 1 : A c t i v e S e r v e r P a g e s (A S P) 5 6 1

Tip&Tec / HTML & Web Design Tips & Techniques / Anderson, King, Jamsa / 9394-8 / Chapter 11

'display column names and query results within an HTML table

Response.Write _

"<center><table border='1' cellpadding='5'>"

'display SQL Table column names in the HTML table header row

Response.Write "<tr>"

For Each field In objResultsSet.Fields

Response.Write "<th>" & field.Name & "</th>"

Next

Response.Write "</tr>"

'display SQL Table column names in the HTML table header row

Do While Not objResultsSet.EOF

Response.Write "<tr>"

For Each field In objResultsSet.Fields

Response.Write "<td>" & field & "</td>"

Next

Response.Write "</tr>"

'move the rowpointer to the next row in the results set

objResultsSet.MoveNext

Loop

Response.Write "</table></center>"

End With

End Sub

%>

As shown in this example, the following script statements use the connection object (objMySQLCon)
Open method to open a connection to with a MySQL database:

objMySQLCon.ConnectionString = cMySQLConStr

objMySQLCon.Open

The script then uses the Set statement shown here to submit the query in queryString to the DBMS
and transfer the query results to the object objResultSet:

Set objResultsSet = objMySQLCon.Execute (queryString)

VBScript stores the query results as the Fields collection within the results set (or record set)
object objResultsSet, in this example. As such, query results are stored as key/item (that is, name/
value) pairs within the objResultsSet object. You can work with both the item name (or key) and its
value. In this example, the script first inserts the keys (the column names from the SQL table), as a
heading row across the top of an HTML table. Then, the script works its way through the results set
one row at a time, displaying the item value in each results set row beneath its corresponding heading
in the HTML table.

P:\010Comp\Tip&Tec\394-8\ch11.vp
Friday, January 04, 2002 11:18:35 AM

Color profile: Generic CMYK printer profile
Composite Default screen

5 6 2 H T M L & W e b D e s i g n T i p s & T e c h n i q u e s

Tip&Tec / HTML & Web Design Tips & Techniques / Anderson, King, Jamsa / 9394-8 / Chapter 11

Setting Up Username/Password Access to a Web Site
To set up a Web site that has members-only content, you must provide a way to ensure that only
authorized visitors (that is, “members”) can retrieve the site’s restricted pages. Typically, sites with
restricted content will have both public and private (restricted) areas. The site’s public area consists
of Web pages with content available to all who visit. Meanwhile, the Web server lets only those
visitors with established accounts retrieve pages within the restricted, members-only area.

Each member account has a username and password the visitor must supply for access to
restricted content. To let authorized visitors log in to the site, create an HTML form that

prompts the visitor for an account username and password. For example, you might save the following
form definition in a Web page document named Login.htm:

<form action="http://www.NVBizNet2.com/HWDTT/authenticate.asp"

method="POST">

Username: <input type="text" name="username" size="20">

Password: <input type="password" name="password" size="20">

<input type="submit" value="Login">

<input type="reset" value="Reset">

</form>

Set the action attribute within the <form> tag to the URL of the Active Server Page with the site’s
authentication/login script. In this example, the action attribute specifies the Active Server Page
authenticate.asp. Thus, after the visitor enters his or her username and password into the form and
clicks on the form’s Submit button, the Web browser will send the form results to the script embedded
within the Web page authenticate.asp. If the username and password entered match a username/
password pair on file, the script lets the visitor proceed to a page within the members-only area.

You can store site member username/password pairs in a disk file or within an SQL database
table. The Active Server Page script that authenticates the visitor login searches the list of username/
password pairs for a set that matches the pair entered into the HTML form on the site’s login page. If
the script finds a matching username/password pair, the script moves the visitor from the login page
to a Web page within the members-only area. Conversely, if the username/password typed into the
form has no match in the site’s username/password (access) list, the script denies access to the site
and returns the visitor on the login page to try again.

When you store usernames and passwords within an SQL table, each row in the table contains
a valid username/password pair—with the username in one column and the associated password
in another. To create such a table, first tell the SQL database management system (DBMS) which
database you want to use and then execute an SQL CREATE TABLE statement as follows:

USE hwdtt;

CREATE TABLE siteAccessList

(username VARCHAR(20) NOT NULL,

password VARCHAR(20) NOT NULL);

P:\010Comp\Tip&Tec\394-8\ch11.vp
Friday, January 04, 2002 11:18:35 AM

Color profile: Generic CMYK printer profile
Composite Default screen

C h a p t e r 1 1 : A c t i v e S e r v e r P a g e s (A S P) 5 6 3

Tip&Tec / HTML & Web Design Tips & Techniques / Anderson, King, Jamsa / 9394-8 / Chapter 11

The first statement in this example tells the DBMS to use the hwdtt database. (The database name
comes from the first letter in each word of this book’s title—HTML & Web Design Tips & Techniques.)
The syntax of an SQL CREATE TABLE statement is as follows:

CREATE TABLE <table name>

(<column name> <column type> [<column attribute list>],

...

<last column name><last column type> [<last attribute list>]);

To be useful, your SQL table needs a list of usernames and passwords, which you can add by using
SQL INSERT statements. For example, to insert data into the siteAccessList table, you would execute
an INSERT statement such as the following:

INSERT INTO siteAccessList VALUES ("Kris", "mfe2275");

INSERT INTO siteAccessList VALUES ("Andy", "687fc");

The syntax of an SQL INSERT statement is as follows:

INSERT INTO <table name> (<column1, column2, ..., columnN)

VALUES (value1, value2 ..., valueN);

(As shown in this example, if the INSERT statement provides the values of all columns in a row, you
can omit the columns list that follows the <table name> in the statement.)

Next, to use the table in this example during the login process, the Active Server Page script must
connect with the DBMS and submit a query in the form of an SQL SELECT statement. For example,
to display the usernames and passwords in the table you would execute the SQL SELECT statement:

SELECT username, password FROM siteAccessList;

To test if a visitor entered a valid username/password pair, add a WHERE clause that tells the
DBMS to return only those rows in which the username and password matched the values the visitor
typed into the form on the login page. For example, if the visitor entered “Andy” into the username
element and “pass1454” into the password element of the login form, your query would be as follows:

SELECT COUNT(*) FROM siteAccessList

WHERE username="Andy" AND password="pass1454"

If the query returns “1”, the visitor entered a valid username/password, because the username and
password entered is an entry within the site’s members list. Conversely, if the visitor submitted a
username/password pair not in the table (as is the case in this example) the query returns “0” to
indicate no account has the username and password combination submitted.

Before submitting its query, the Active Server Page script must establish a connection with the
database that has the table of account usernames and passwords. The Server.CreateObject method
in the following code creates a database connection object.

P:\010Comp\Tip&Tec\394-8\ch11.vp
Friday, January 04, 2002 11:18:35 AM

Color profile: Generic CMYK printer profile
Composite Default screen

<% Set objMySQLCon = Server.CreateObject("ADODB.Connection")

objMySQLCon.ConnectionString = _

"DRIVER={MySQL};SERVER=NVBizNet2;UID=root;PWD=;DATABASE=hwdtt"

objMySQLCon.Open

%>

The connection object’s ConnectionString property contains the values necessary for the script
to log in to the DBMS. In this example, the objMySQLCon.Open method uses the MySQL ODBC
driver to connect with the MySQL DBMS on the NT server named NVBizNet2. The connection logs
in under the username (UID) root, which has no password, and elects to use the hwdtt database.

After establishing a connection with the DBMS, use the connection object’s Execute method to
submit a query as shown here:

<%

queryString = _

"SELECT COUNT(*) Count FROM siteAccessList" & _

" WHERE username = '" & Request.Form("username") & "'" & _

" AND password = '" & Request.Form("password") & "'"

Set objResultsSet = objMySQLCon.Execute (queryString)

If objResultsSet.Fields("Count") = 1 Then

Response.Redirect "/hwdtt/MemberWelcome.asp"

End If

%>

In this example, the script uses the connection object (objMySQLCon) Execute method
(objMySQLCon.Execute) to submit a query string (queryString) to the MySQL DBMS. The DBMS,
in turn, executes the query and returns the rows of columns that match the search criteria (that is, the
query’s results set) within the objResultsSet object.

The query in this example will always return a single row of results in a column named Count.
[Count(*) in the query submitted is an SQL aggregate function that returns the count of table rows
that satisfy the search condition(s) in the query’s WHERE clause.] If the DBMS finds a matching
username/password pair in the siteAccessList table, the DBMS sets the Count field to “1”, and the
script redirects the Web browser to the Welcome page within the site’s members-only area. Conversely,
if either the username or the password typed into the login form is invalid, the DBMS returns zero (0)
in the Count field. The script then moves on to HTML tags and text (not shown here), which prompts
the visitor to log in again.

You can retrieve the Web page with the login form and the Active Server Page with the login
authentication script described in this Tip by downloading the file Chpt11Tip09.zip from the Osborne
Web site at http://www.osborne.com.

Note that setting a form element’s type attribute to “password” obscures text the visitor enters into
the element from view. (The Web browser displays an asterisk [*] in place of each character the
visitor types into the element.) However, after the visitor clicks the Submit button, the Web browser
sends all form data (including text typed into a password element) as unencrypted ASCII text. As
such, a hacker could tap into the Internet and read (as plain text) the body of the HTTP message in
which the Web browser placed the username and password it sent to the Web server.

5 6 4 H T M L & W e b D e s i g n T i p s & T e c h n i q u e s

Tip&Tec / HTML & Web Design Tips & Techniques / Anderson, King, Jamsa / 9394-8 / Chapter 11

P:\010Comp\Tip&Tec\394-8\ch11.vp
Friday, January 04, 2002 11:18:36 AM

Color profile: Generic CMYK printer profile
Composite Default screen

To safeguard sensitive information (such as usernames and passwords), ask the ISP hosting your
site to set up the Secure Socket Layer (SSL) protocol. The ISP must first obtain a security certificate
for your Web site from a certificate authority such as VeriSign Corporation (http://www.versign.com),
Thawte Consulting (http://www.thawte.com), or Entrust (http://www.entrust.com). After the ISP installs
the security certificate for your site on the Web server, the Web server and Web browser will encrypt
the HTTP messages before sending them across the Internet. Having the Web browser and server encrypt
their transmissions protects your form results (and other message content) from unauthorized access,
because a hacker viewing an encrypted HTTP message body sees only an unintelligible jumble of
characters, numbers, and special symbols.

SSL encryption and decryption occur outside the scope of your Active Server Page scripts—
meaning you can use the same login (or other) script whether communicating across a secure or
nonsecure connection. The only difference you will notice is that your secure URLs will start with
https:// instead of the standard (nonsecure) http://. Thus, to use a secure connection when sending
form results to an Active Server Page script, you would use a URL like https://www.NVBizNet2
.com/hwdtt/authenticate.asp in place of a URL like http://www.NVBizNet2.com/hwdtt /authenticate.asp.

After receiving an encrypted HTTP request for an Active Server Page, the Web server decrypts the
message and passes decrypted data (such as form results) along with the Web page requested to the
ASP script host. The script host, in turn, calls on a script engine to execute the Active Server Page
script(s) embedded within the Web page and sends the script output back to the Web server. The Web
server, in turn, places the script-generated page into the body of an HTTP response, which the server
then encrypts and sends to the Web browser. Upon receipt of the HTTP response (that is, the Web
page requested from the Web server) the Web browser decrypts the message and renders the page.

Starting a Session and Working with Session Variables
An Active Server Page session is a continuous period during which a visitor interacts with a Web
site. A session might consist of a single or a series of transactions and the visitor might retrieve one
or several Web pages during the course of a single session. For example, during a session, a visitor
might check the weather on a local news site. Or, the visitor might log in to a bank’s Web site to
check account balances, pay bills online, and transfer money between accounts. In short, an Active
Server Page session begins when a visitor requests the first Active Server Page from a site and ends
when the visitor leaves the site, when a script abandons the session, at the expiration of a timeout
interval, or (immediately) if the visitor’s browser refuses the session cookie.

Sessions are an important Web site design tool because they let Active Server Pages scripts use
variables that maintain their state (that is, variables that keep their values) throughout the visitor’s
stay on the Web site. As a visitor moves from page to page on a site, you can use session variables to
keep track of the visitor’s personal data (such as name, address, and phone number), items the visitor
puts into an online shopping cart, selections he or she makes on multipage forms, and so on. Although
you could create persistent variables with cookies and hidden form elements, by using session
variables, you reduce the amount of data that must pass between the Web server and browser with
each HTTP request.

The Web server sends only one “key” value, the session ID, to the Web browser at the start of the
session. The session ID is a cookie named ASPSESSIONID (or ASPSESSIONIDXXXXXXXX on

C h a p t e r 1 1 : A c t i v e S e r v e r P a g e s (A S P) 5 6 5

Tip&Tec / HTML & Web Design Tips & Techniques / Anderson, King, Jamsa / 9394-8 / Chapter 11

P:\010Comp\Tip&Tec\394-8\ch11.vp
Friday, January 04, 2002 11:18:36 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Internet Information Server [IIS] version 4 and later). Then, instead of several cookie values or
hidden form elements, the Web browser passes only the session ID cookie to the Web server with
each Web page request. The Web server, in turn, uses the cookie to identify the file (on the Web
server’s hard drive) that contains the persistent data values (that is, the session variables) the server
makes available to scripts through the Active Server Page Session object. A typical session ID cookie
looks something like one of the following (depending on the version of IIS):

ASPSESSIONID=908JIJFAOI83UKNOINGUHDNE

ASPSESSIONIDPPFFFEER=908JIJFAOI83UKNOINGUHDNE

On a Web server, each session ID cookie is a unique, pseudo-random series of letters and numbers
used to identify the visitor to the Web server. Thus, session ID cookies are like ID cards the Web
server hands out to each site visitor. When a Web browser asks for an Active Server Page, the Web
server checks if the browser passed a session ID cookie (that is, if the browser presented the visitor’s
ID card). If the browser failed to present an ID, the Web server sends a session ID cookie to the Web
browser along with the Active Server Page the visitor requested. Conversely, if the Web browser sent
a session ID cookie along with the Active Server Page request, the Web server uses the ID to retrieve
information the server previously stored during the course of the visitor’s session. The Web server
makes the information available through session variables within the Active Server Page Session object.

Thus, your Active Server Page scripts need take no special action to start a session—the
Web server does so for you automatically. When the browser requests an Active Server

Page without sending a session ID cookie, the Web servers starts a new session and sends the session
ID cookie to the Web browser. If the Web browser accepts the cookie, the browser will return the
cookie with all subsequent Web page requests the visitor makes during the session. When the Web
browser sends the ASPSESSIONID (or ASPSESSIONIDXXXXXXXX) cookie, the Web server matches
the cookie value with a server-side list. After it finds a match, the Web server opens the browser’s
session file on the server’s hard drive and makes session variables available through the Session object.

The Web server stores session variables as a collection within the Active Server Page Session
object. Thus, each session variable, like items in other Active Server Page collections, consists of a
key (that is, a name) and an associated value. To create a new session variable, you simply assign a
value to a new key as shown here:

Session("firstName") = "Konrad"

Session("lastName") = "King"

To change the value of a session variable, assign the new value to an existing key. For example,
given the two session variables created in the preceding example, the following code will display
“Konrad King is now Konrad Kingsly” on a Web page:

Response.write(Session("firstName") & " " & _

Session("lastName") & " is now "

Session("lastName") = "Kingsly"

Response.write(Session("firstName") & " " & _

Session("lastName")

5 6 6 H T M L & W e b D e s i g n T i p s & T e c h n i q u e s

Tip&Tec / HTML & Web Design Tips & Techniques / Anderson, King, Jamsa / 9394-8 / Chapter 11

P:\010Comp\Tip&Tec\394-8\ch11.vp
Friday, January 04, 2002 11:18:36 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Notice that you can use session variables in expressions and as function or method parameters.
Simply insert the object name (such as the name of the collection) and the key (that is, the name
of the session variable) you want to use within the expression or in the function or method call
parameter list.

Remember, session variables use memory resources on the Web server during the session. When
the visitor requests a Web page, the server retrieves session variables (and their values) from disk
and stores them in memory within an in-memory Session object. Therefore, be sure to delete session
variables you no longer need during the course of a session. To remove a session variable from the
collection, set the variable’s value to “Empty” as shown here:

Session("orderTotal") = Empty

Bear in mind that setting a session variable’s value to a null string (“”) or setting the value to
“Nothing” as follows is not the same as setting the value to “Empty”:

Session("productCode1") = ""

Session("procuctQty1") = Nothing

Null-valued items are still items (with a null value) within the Session variable collection.
Paradoxically, in VBScript, Nothing is an object, which is not empty. As such, both null and Nothing
session variables take up Web server memory during the session. To free memory resources, you
must set the session variable’s value to “Empty” so the Web server will remove it from the collection.

In addition to persistent values, a Web server also creates a timer for each session. When it starts
the session, the Web server sets the timer’s Session.Timeout property at twenty minutes in IIS version 4
(ten minutes in IIS version 5). The timer starts at its initial default value and counts down to zero (0).
When the timer reaches zero (0), the Web server ends the Active Server Page session and abandons all
information associated with the session. You can set the Session.Timeout property at any point during
a session with a script statement such as this:

Session.Timeout = 1

The statement in this example sets the session timeout to one (1) minute. (You cannot set the
Session.Timeout property to fractions of minutes.)

Each time it receives a request from the browser associated with a session, the ASP script host
resets a session’s timer to the initial default. Therefore, as long as the visitor continues to request
pages, the session remains active. When the visitor stops interacting with the Web site, the ASP
script host stops resetting the Session.Timeout property, which then reaches zero (0) and causes
the Web server to end the session.

The primary purpose of the session timer is to prevent the Web server from storing session data
indefinitely—thereby using up memory resources and disk space unnecessarily. Ideally, the Web
browser would send a “logoff” message to the Web server when the visitor moves on to another Web
site or exits the browser altogether. Unfortunately, due to the stateless nature of HTTP, that does not
happen. Instead, the browser just stops sending requests to the Web server. Of course, “timing-out”
a visitors session leads to a conflict when the visitor lets the browser “sit” on a Web page without
making a request during the timeout period, and then interacts with the page again.

C h a p t e r 1 1 : A c t i v e S e r v e r P a g e s (A S P) 5 6 7

Tip&Tec / HTML & Web Design Tips & Techniques / Anderson, King, Jamsa / 9394-8 / Chapter 11

P:\010Comp\Tip&Tec\394-8\ch11.vp
Friday, January 04, 2002 11:18:36 AM

Color profile: Generic CMYK printer profile
Composite Default screen

When a Web browser presents a session ID cookie for a session the Web browser has already
abandoned, the Web server no longer has the session’s data in memory (or on disk). As such, the Web
server treats the session ID cookie as invalid. To avoid expending resources involved in generating a
new cookie, the Web server lets the browser keep the same cookie value but creates a new Session
object it associates with the session ID cookie. Therefore, your Active Server Page scripts
should use the isEmpty() function to make sure that session variables they use still exist when scripts
use variables they do not create themselves. For example, the following script checks for session
variables it needs (username and password) and redirects the visitor to the site’s login page if either
is no longer present within the session variables collection:

If isEmpty(Session("username")) Then

Response.Redirect "/hwdtt/Chapter11/Tip10-Login.htm"

End If

If isEmpty(Session("password")) Then

Response.Redirect "/hwdtt/Chapter11/Tip10-Login.htm"

End If

Note that if you set a timeout value after which a page is no longer accessible, be sure to let the
visitor know the timeout period somewhere on the Web page. It can be very frustrating to be in the
middle of filling out a long form, get interrupted by a phone call, and then return to form data entry
only to find the timeout expired and you have to start over.

Executing SQL Queries and Displaying
Query Results Sets Within an HTML Table
A typical static Web page consists of text and graphics images. Even if you add an animation or two,
every visitor still sees the same content, albeit in an enjoyable and perhaps more memorable form. To
be truly dynamic, a Web page must vary its content based on the data a visitor requests. The challenge
for you as a Web page author is that you cannot anticipate every possible data query your visitors might
make. Fortunately, you can use Active Server Page scripts to let visitors submit queries directly to a
database and the Response.Write method to display the query results.

To retrieve and display data from an SQL database on a Web page, a script needs three
objects—a Connection object, an object to hold the query’s results set, and the Active

Server Page Response object. The Server.CreateObject method lets you create a database connection
object as shown in the following code:

Dim objMySQLCon

Set objMySQLCon = Server.CreateObject("ADODB.Connection")

objMySQLCon.ConnectionString = _

"DRIVER={MySQL};SERVER=NVBizNet2;UID=root;PWD=;DATABASE=hwdtt"

objMySQLCon.Open

%>

5 6 8 H T M L & W e b D e s i g n T i p s & T e c h n i q u e s

Tip&Tec / HTML & Web Design Tips & Techniques / Anderson, King, Jamsa / 9394-8 / Chapter 11

P:\010Comp\Tip&Tec\394-8\ch11.vp
Friday, January 04, 2002 11:18:37 AM

Color profile: Generic CMYK printer profile
Composite Default screen

TE
AM
FL
Y

Team-Fly®

Set the connection object (objMySQLCon, in this example) ConnectionString property to the
values necessary to log in to the DBMS. Then, use the connection object Open method to open a
connection to the DBMS. In this example, objMySQLCon uses the MySQL ODBC driver to open
a connection with the MySQL DBMS on a computer named NVBizNet2. The script logs on as the
username (UID) root, which has no password, and elects to use the hwdtt database. After executing
the connection object’s Open method, the script can submit statements to the DBMS.

Although you could let visitors type queries into an HTML form element, most sites have the
visitor execute predefined queries or stored procedures. Suppose, for example, that you have an
Active Server Page named GetOrderNumber.asp with the following script:

<%

If Not IsEmpty (Request.Form("Status")) Then

Dim objMySQLCon, rsOrderDetail

Set objMySQLCon = Server.CreateObject("ADODB.Connection")

objMySQLCon.ConnectionString = _

"DRIVER={MySQL};SERVER=NVBizNet2;UID=root;PWD=;DATABASE=hwdtt"

objMySQLCon.Open

SET rsOrderDetail = objMySQLCon.Execute(_

"SELECT orderNum FROM orders WHERE orderNum = '" & _

Request.Form("orderNum") & "'")

If Not rsOrderDetail.EOF Then

Response.Redirect("ShowOrderStatus.asp?OrderNum=" & _

Request.Form("orderNum"))

End If

End If

%>

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0//EN">

<html>

<body bgcolor="#ADD8E6">

<!-- Web Page Text and Form Definition -->

</body>

</html>

Note that the script in this example resides above the Web page HTML within the Active Server
Page GetOrderNumber.asp shown in Figure 11-7.

The script first checks the Form collection’s Status item to see if the visitor clicked on the form’s
Status button to retrieve the Active Server Page. If the visitor has not yet clicked the Status button,
the ASP script engine displays the order number entry form as defined here:

<form method="post" action="GetOrderNumber.asp"

name=OrderNumEntry>

<%

If Not IsEmpty (Request.Form("Status")) Then

Response.Write _

"The order number you entered was not found. " & _

C h a p t e r 1 1 : A c t i v e S e r v e r P a g e s (A S P) 5 6 9

Tip&Tec / HTML & Web Design Tips & Techniques / Anderson, King, Jamsa / 9394-8 / Chapter 11

P:\010Comp\Tip&Tec\394-8\ch11.vp
Friday, January 04, 2002 11:18:37 AM

Color profile: Generic CMYK printer profile
Composite Default screen

5 7 0 H T M L & W e b D e s i g n T i p s & T e c h n i q u e s

Tip&Tec / HTML & Web Design Tips & Techniques / Anderson, King, Jamsa / 9394-8 / Chapter 11

"Please try again.
"

Else

Response.Write _

"Please enter your order number and then click " & _

"on the ""Status"" button.
"

End If

%>

<input type="text" name="orderNum" size=20">

<input type="submit" name="Status" value="Status">

<input type="reset" value="Reset">

</form>

(Note that the action attribute in the <form> tag instructs the Web browser to retrieve
GetOrderNumber.asp—the same Active Server Page into which visitors enter the order number.)

If the Web browser retrieved the Active Server Page GetOrderNumber.asp after the visitor clicked
the form’s Status button, the Status item in the Request.Form collection will not be “empty,” and the
ASP script host will execute the script. To determine if the order number entered is valid, the script

Figure 11-7 Active Server Page with an order number entry form

P:\010Comp\Tip&Tec\394-8\ch11.vp
Friday, January 04, 2002 11:18:37 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Tip&Tec / HTML & Web Design Tips & Techniques / Anderson, King, Jamsa / 9394-8 / Chapter 11

C h a p t e r 1 1 : A c t i v e S e r v e r P a g e s (A S P) 5 7 1

calls the Connection object’s Execute method to submit a query to the SQL orders table as
shown here:

SET rsOrderDetail = objMySQLCon.Execute(_

"SELECT orderNum FROM orders WHERE orderNum = '" & _

Request.Form("orderNum") & "'")

If Not rsOrderDetail.EOF Then

Response.Redirect("ShowOrderStatus.asp?OrderNum=" & _

Request.Form("orderNum"))

End If

The results set object’s “end of file” property (rsOrderDetail.EOF, in this example) is true
immediately after the script executes a query only if the query returns no rows. In this example, if
rsOrderDetail.EOF is true immediately after executing the query, the order number is not on file
within the SQL orders table. Conversely, if the order number is on file, the rsOrderDetail.EOF will
be false, and the script will direct the browser to retrieve the Active Server Page ShowOrderStatus.asp.
(ShowOrderStatus.asp has a script that displays the header, item detail, and status of the order.)

Each time you call the Connection object’s Execute method to submit a query, the DBMS returns
zero, one, or several rows of query results. In this example, the script embedded within the Active Server
Page ShowOrderStatus .asp creates three variables as follows to hold the results sets of the three
queries the script performs:

DIM rsOrderDetail, rsOrderItems, rsOrderStatus

Objects in which scripts store DBMS query results start as ordinary VBScript variant data type
variables. When you assign the results set returned by Connection.Execute method calls, as shown
here, the variables become objects:

With objMySQLCon

Set rsOrderDetail = .Execute(_

"SELECT orderDate FROM orders " & _

"WHERE orderNum = '" & orderNum & "'")

Set rsOrderItems = .Execute(_

"SELECT orderItems.itemNum 'Item Number', " & _

"description Product, units Quantity " & _

"FROM orderItems, itemMast " & _

"WHERE orderNum = '" & orderNum & "' " & _

"AND itemMast.itemNum = orderItems.itemNum " & _

"ORDER BY itemMast.itemNum")

Set rsOrderStatus = .Execute(_

"SELECT Description Stage, dateStarted Started, " & _

"dateCompleted Completed " & _

"FROM orderStatus " & _

"WHERE orderNum = '" & orderNum & "' " & _

"ORDER BY stepNumber")

End With

P:\010Comp\Tip&Tec\394-8\ch11.vp
Friday, January 04, 2002 11:18:37 AM

Color profile: Generic CMYK printer profile
Composite Default screen

The conversion from VBScript variant variable to results set object is important. As objects, each
of the three results sets (rsOrderDetail, rsOrderItems, and rsOrderStatus) has methods and properties
you can use to display the rows and columns (fields) within the results set.

For example, the rsOrderInfo object has only one row, because the query by order number returns
the header information for a single order. As such, you can display order header information using
the Response.Write method to place values within the row’s columns on the Web page as follows:

Response.Write "Order Number: " & orderNum & "
" & _

"Order Date: " & rsOrderDetail.Fields("orderDate")

Unlike rsOrderInfo, both rsOrderItems and rsOrderStatus might have more than one row of query
results. As such, you will use the VBScript Do-Until loop to display each row of query results in these
objects as shown here:

With Response

.Write "<table border='1' cellpadding='5'>"

'display SQL Table column names in the HTML table header row

.Write "<tr>"

For Each field In rsOrderItems.Fields

.Write "<th>" & field.Name & "</th>"

Next

.Write "</tr>"

'display SQL Table column names in the HTML table header row

Do While Not rsOrderItems.EOF

.Write "<tr>"

For Each field In rsOrderItems.Fields

If field <> "" Then

.Write "<td>" & field & "</td>"

Else

.Write "<td> </td>"

End If

Next

.Write "</tr>"

'move the row pointer to the next row in the results set

rsOrderItems.MoveNext

Loop

.Write "</table>"

End With

In this example, the script calls the Response.Write method repeatedly (until the property
rsOrderItems.EOF is set to true) to add rows from the results set (in rsOrderItems) to an HTML
table on the Web page. The EOF property stands for “End of File” and is set to true when the
rsOrderItems.MoveNext method moves the row pointer past the last row of query results.

5 7 2 H T M L & W e b D e s i g n T i p s & T e c h n i q u e s

Tip&Tec / HTML & Web Design Tips & Techniques / Anderson, King, Jamsa / 9394-8 / Chapter 11

P:\010Comp\Tip&Tec\394-8\ch11.vp
Friday, January 04, 2002 11:18:38 AM

Color profile: Generic CMYK printer profile
Composite Default screen

C h a p t e r 1 1 : A c t i v e S e r v e r P a g e s (A S P) 5 7 3

Tip&Tec / HTML & Web Design Tips & Techniques / Anderson, King, Jamsa / 9394-8 / Chapter 11

You can retrieve the Active Server Pages with the scripts described in this Tip by downloading the
file Chpt11Tip11.zip from the Osborne Web site at http://www.osborne.com.

Displaying Banner Ads with the
Microsoft Banner Ad Rotator
Since the Internet’s inception, Web site developers have followed the commercial television model—
free programming/content paid for by commercials/banner ads. As you create Web sites, you will no
doubt be asked to include a banner ad campaign of some sort in your designs. On an online store,
banner ads will likely advertise the store’s products and special sale items. Nonstore sites that present
information or provide software, graphics, or other multimedia content for download sell banner ad
space to third parties. These companies, in turn, advertise products site visitors may want to purchase.

Typically, a site will have more than one sponsor or advertise several products. As such, you will
normally display multiple banner ads within the same “billboard” area on the Web page. To do so,
you need a banner ad rotation system that randomly (or sequentially) selects and displays banner ads
one at a time from a list of ads. Microsoft provides a free software application called the Ad Rotator
you can use. When you install the Personal Web Server (PWS), Internet Information Server (IIS)
version 4, or IIS version 5, the installation program installs the Ad Rotator as part of the default
installation process.

To use the Ad Rotator, you must create a rotator schedule file and a redirection file.
Within the rotator schedule file you list the banner ad graphics images you want the Ad

Rotator to display. The redirection file, meanwhile, is an Active Server Page with an embedded script
that generates a “click-through” by sending the Web browser on to a target page when the visitor
clicks on the banner ad. We discuss the rotator schedule file first and then the redirection file near the
end of the Tip.

The rotator schedule file has the following format:

REDIRECT redirectionFileURL

WIDTH bannerWidthInPixels

HEIGHT bannerHeightInPixels

BORDER imageBorderWidthInPixels

*

bannerImageURL1

bannerRedirectionURL1

bannerImageAltAttribute1

bannerWeight1

bannerImageURL2

bannerRedirectionURL2

bannerImageAltAttribute2

bannerWeight2

< ... additional banner descriptions ... >

P:\010Comp\Tip&Tec\394-8\ch11.vp
Friday, January 04, 2002 11:18:38 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Though not required, name your Ad Rotator schedule file something like AdRotatorSchedule.asp
and store it within a folder such as BannerAds on the Web site. Although neither the filename nor the
folder name suggested here is mandatory, using meaningful names for files and folders will make
things easier to find as you maintain the site over time.

The first four lines of the rotator schedule file contain information that applies to all banner ads
displayed during the banner ad rotation. Each line starts with a keyword: REDIRECT, WIDTH,
HEIGHT, or BORDER. The following list describes the information you place after the keyword
on each of the first four lines in the file:

• REDIRECT Followed by the URL of the redirection file. When a visitor clicks on a banner
ad, the ad’s hyperlink directs the Web browser to retrieve the redirection file. The redirection
file, in turn, is an Active Server Page with a script that sends the visitor to the banner ad’s
target Web page. If you save the redirection file as AdRedirect.asp within the BannerAds folder
on the NVBizNet2.com Web site, for example, the first line in the schedule file would read:
REDIRECT http://www.NVBizNet2.com/hwdtt/BannerAds/AdRedirect.asp
Or, you might use the redirection file’s full virtual path, which is
/hwdtt/BannerAds/AdRedirect.asp in this example.

• WIDTH Followed by the width of the banner ads in pixels.

• HEIGHT Followed by the height of the banner ads in pixels.

• BORDER Followed by the width of the border the Web browser is to display around each
ad in pixels.

Following the first four lines in the schedule file is a line with only an asterisk (*). This line
separates the global information applicable to all banners from the groups of four-line descriptions
that apply to individual banner ads. The format of each four-line banner description is as follows:

• bannerImageURL The URL or full virtual path of the image to be displayed as a banner ad.
For example, to display a banner ad graphic named SomeBanner.gif stored within the
BannerAds folder on the NVBizNet2.com Web site, replace bannerImageURL with
http://www.NVBizNet2.com/BannderAds/SomeBanner.gif or
/hwdtt/BannerAds/SomeBanner.gif.

• bannerRedirectionURL The URL of the banner ad’s target Web page, that is, the Web page
to which the visitor is sent if he or she clicks on the banner ad.

• bannerImageAltAttribute The alt attribute within the banner ad graphic’s tag. The
Web browser displays the alt attribute text while loading the banner ad graphics image or if the
visitor disabled images or is using a text-only Web browser.

• bannerWeight How often the Ad Rotator is to display a banner ad relative to other banner
ads listed within the rotator schedule file. Suppose, for example, the rotation schedule has two
banner ads—one with a bannerWeight of 10 and the other with a bannerWeight of 5. The Ad
Rotator will display the banner ad with the bannerWeight of 10 twice as often as the banner ad
with the bannerWeight of 5.

5 7 4 H T M L & W e b D e s i g n T i p s & T e c h n i q u e s

Tip&Tec / HTML & Web Design Tips & Techniques / Anderson, King, Jamsa / 9394-8 / Chapter 11

P:\010Comp\Tip&Tec\394-8\ch11.vp
Friday, January 04, 2002 11:18:38 AM

Color profile: Generic CMYK printer profile
Composite Default screen

C h a p t e r 1 1 : A c t i v e S e r v e r P a g e s (A S P) 5 7 5

Tip&Tec / HTML & Web Design Tips & Techniques / Anderson, King, Jamsa / 9394-8 / Chapter 11

To display a banner ad, use the Server.CreateObject method to create an Ad Rotator object and
then call the object’s GetAdvertisement method. For example, to display a banner ad at the top of a
site’s home page (that is, its index page) save the following VBScript within the file Index.asp in the
site’s root folder:

<% Option Explicit

DIM adRotatorObj

SET adRotatorObj = Server.CreateObject("MSWC.AdRotator")

%>

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0//EN">

<html>

<body>

<!-- Display the Banner Ad -->

<center>

<%

Response.Write _

adRotatorObj.GetAdvertisement(_

"/hwdtt/BannerAds/AdRotatorSchedule.asp")

%>

</center>

<h1>HTML & Web Design Tips and Techniques</h1>

<p>*** Homepage Content ***</p>

</body>

</html>

<!-- Destroy/delete the Ad Rotator object -->

<% Set adRotatorObject = Nothing %>

In this example, the third line of the script calls the Server.CreateObject method to create the Ad
Rotator object (adRotatorobj). The Response.Write method near the center of the Active Server Page
inserts output similar to the following returned by the GetAdvertisement method call:

<a href="http://www.NVBizNet2.com/hwdtt/BannerAds/AdRedirect.asp?

URL=http://www.NVBizNet.com/default.htm&

image=/BannerAds/NVBizNet.GIF">

<img src="/BannerAds/NVBizNet.GIF"

alt="Visit NVBizNet for Web Page Design Tips"

width="400" height="60" border="1">

Therefore, after clicking on the banner ad displayed at the top of the Web page, the Web
browser retrieves the Ad Rotator redirection file (http://www.NVBizNet2.com/hwdtt/BannerAds/
AdRedirect.asp, in this example). As mentioned earlier in this Tip, it is up to the script within the
redirection file to move the Web browser on to the banner ad’s target page. (Remember, a banner
ad’s purpose is to get the visitor to go to a Web page on the advertiser’s site by clicking on the ad

P:\010Comp\Tip&Tec\394-8\ch11.vp
Friday, January 04, 2002 11:18:38 AM

Color profile: Generic CMYK printer profile
Composite Default screen

5 7 6 H T M L & W e b D e s i g n T i p s & T e c h n i q u e s

Tip&Tec / HTML & Web Design Tips & Techniques / Anderson, King, Jamsa / 9394-8 / Chapter 11

graphic.) By moving the Web browser to a redirection file first, you can execute code within the
redirection file to track click-throughs (as you will learn to do in the next Tip).

Note that the hyperlink generated by the Ad Rotator passes the target URL and banner image
pathname to the script within the redirection file through a query string. (In the preceding example,
the query string was: “URL=http://www.NVBizNet.com/default.htm&image=/hwdtt/BannerAds/
NVBizNet.GIF”.) Thus, the redirection file (AdRedirect.asp, in the preceding example) must have
at least the following code:

<% Response.Redirect Request.QueryString("URL") %>

After the visitor clicks the banner ad in the previous example, the Web browser retrieves the
Active Server Page AdRedirect.asp. The script embedded within AdRedirect.asp, in turn, retrieves
the Web address of the banner ad’s target page from the URL query string argument and redirects
the browser to http://www.NVBizNet.com/default.htm, in this example.

You can retrieve the Ad Rotator Schedule file, the Ad Rotator Redirection file, and the Active
Server Page with the script that uses the Ad Rotator to select a banner ad to display by downloading
the file Chpt11Tip12.zip from the Osborne Web site at http://www.osborne.com.

Tracking Microsoft Banner Ad
Rotator Impressions and Click-Throughs
To defray development costs and provide site content free of charge, many Web sites sell banner ad
space to companies with products or services for sale. In addition to enticing visitors to go to other
Web sites, banner ads are often used to advertise products or specials available on the current site.
Amazon.com, for example, might display banners that advertise books on their best-sellers list or
new releases from popular authors. Whether a banner ad is geared to sell the site’s products or to
attract visitors to make purchases at other sites, advertisers are concerned with two things—
impressions and click-throughs.

Impressions are the number of times visitors see a particular banner ad. The more impressions, the
more likely the ad will present itself to a visitor that wants to buy the product advertised. Impressions
are a function of both the number of times a banner ad rotator displays the banner graphic on a Web
page and how often visitors retrieve the page. A banner ad on a page retrieved 100 times per hour,
for example, generates fewer impressions than a banner ad on a page that averages 1,000 visitors
during the same period. The more visitors that see an ad and the more often the ad rotator displays
the banner, the higher the likelihood that visitors will click the banner ad and purchase the product
advertised.

Click-throughs are even more important than impressions. A click-through occurs whenever a
visitor clicks the banner ad to retrieve the Web page for the product or service advertised. Think of
television commercials. Getting a viewer to watch an advertisement is one thing; getting the viewer
to go out and make a purchase is another (more important thing, from the advertiser’s standpoint).

P:\010Comp\Tip&Tec\394-8\ch11.vp
Friday, January 04, 2002 11:18:39 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Whereas television advertisers must rely on marketing studies to determine how many times a
television commercial led to a purchase, you can track a visitor’s reaction to a banner ad much more
closely. With Active Server Page scripts, you can count and store in a database the number of times
the ad rotator displays a Web page (that is, the number of impressions) and how often visitors click
the banner to get more information (that is, the number of click-throughs). Advertisers use impression
and click-through statistics to determine the effectiveness of a banner ad campaign. Web site owners,
meanwhile, use the same statistics to set advertising rates—the higher the average impression and
click-through counts, the more advertisers are willing to pay to place a banner ad on a Web page.

To accumulate impression and click-through data for later analysis, execute SQL
statements such as the following to create an SQL table within a database:

USE hwdtt;

CREATE TABLE bannerAdStats

(targetURL VARCHAR(60) NOT NULL,

imageURL VARCHAR(60) NOT NULL,

impressionCount INTEGER,

clickThroughCount INTEGER);

The first statement in this example tells the DBMS to use the hwdtt database. (The database name
comes from the first letter in each word of this book’s title—HTML & Web Design Tips & Techniques.)
The second statement creates the SQL table (bannerAdStats) in which Active Server Page scripts will
store impression and click-through counts.

The Microsoft Banner Ad Rotator (which comes standard with Personal Web Server (PWS),
Internet Information Server (IIS) version 4 and IIS version 5) selects a banner ad from a list of ads
within a “rotator schedule” file and displays the ad on a Web page. To use the Ad Rotator to display
a banner ad, you insert lines of VBScript similar to the following within an Active Server Page:

<%

SET adRotatorObj = Server.CreateObject("MSWC.AdRotator")

Response.Write _

adRotatorObject.GetAdvertisement(_

"/hwdtt/BannerAds/AdRotatorSchedule.asp")

%>

While the first line of the script creates an Ad Rotator object (adRotatorObj), the Response.Write
method call (which starts on the script’s second line) displays the banner ad returned by the
adRotatorObject.GetAdvertisement method call.

To track the number of impressions, that is, the number of times the GetAdvertisement method
selects a particular banner ad, insert the following function at the start of the Active Server Page on
which you display the banner ad:

<%

Function DisplayRotatorAd(adRotatorObj,rotatorScheduleFile)

Dim objMySQLCon

C h a p t e r 1 1 : A c t i v e S e r v e r P a g e s (A S P) 5 7 7

Tip&Tec / HTML & Web Design Tips & Techniques / Anderson, King, Jamsa / 9394-8 / Chapter 11

P:\010Comp\Tip&Tec\394-8\ch11.vp
Friday, January 04, 2002 11:18:39 AM

Color profile: Generic CMYK printer profile
Composite Default screen

DIM strAdRotatorHTML, intImageStart, strImageURL

'have the Ad Rotator generate HTML to display banner ad

strAdRotatorHTML = adRotatorObj.GetAdvertisement(_

rotatorScheduleFile)

'find the graphics image URL in the HTML the Rotator Ad returns

intImageStart = InStr(1, strAdRotatorHTML, "image=") + 6

strImageURL = Mid(strAdRotatorHTML, intImageStart, _

InStr(intImageStart, strAdRotatorHTML, """") - intImageStart)

'Connect to the DBMS and update the impression count

Set objMySQLCon = Server.CreateObject("ADODB.Connection")

With objMySQLCon

.ConnectionString = _

"DRIVER={MySQL};SERVER=NVBizNet2;UID=root;PWD=;DATABASE=hwdtt"

.Open

.Execute "UPDATE bannerAdStats " & _

"SET impressionCount = impressionCount + 1 " & _

"WHERE imageURL = '" & strImageURL & "'"

.Close

End With

DisplayRotatorAd = strAdRotatorHTML

End Function

%>

Statements in the first half of the script call the Ad Rotator object GetAdvertisement method to
generate the HTML that will display the banner ad as a hyperlink on the Web page. The script parses
the HTML returned by the Ad Rotator and extracts the URL of the image used in the banner ad. Next,
the statements in the script’s second half connect with a MySQL DBMS and update the graphic’s
impression count in the SQL bannerAdStats table.

Note the DisplayRotatorAd() function returns the output of the adRotatorObject.GetAdvertisment
method call. Therefore, you must replace the GetAdvertisement method call in this Tip’s first example
script with the DisplayRotatorAd() function call as shown here:

<%

SET adRotatorObj = Server.CreateObject("MSWC.AdRotator")

Response.Write _

DisplayRotatorAd(adRotatorObj, _

"/hwdtt/BannerAds/AdRotatorSchedule.asp")

%>

If you read the Tip that precedes this one, you already know the GetAdvertisement method call
generates HTML similar to the following:

5 7 8 H T M L & W e b D e s i g n T i p s & T e c h n i q u e s

Tip&Tec / HTML & Web Design Tips & Techniques / Anderson, King, Jamsa / 9394-8 / Chapter 11

P:\010Comp\Tip&Tec\394-8\ch11.vp
Friday, January 04, 2002 11:18:39 AM

Color profile: Generic CMYK printer profile
Composite Default screen

TE
AM
FL
Y

Team-Fly®

<a href="http://www.NVBizNet2.com/hwdtt/BannerAds/AdRedirect.asp?

URL=http://www.NVBizNet.com/default.htm&

image=/hwdtt/BannerAds/NVBizNet.GIF">

<img src="/hwdtt/BannerAds/NVBizNet.GIF"

alt="Visit NVBizNet for Web Page Design Tips"

width="400" height="60" border="1">

The specific HTML returned by the GetAdvertisement method call in your script will depend on
the banner descriptions in your rotator schedule file. However, the href attribute within the <a> tag
created will always point to the Ad Rotator redirection file. (You specify the URL of the Ad Rotator
redirection file after the keyword REDIRECT in the first line within the Ad Rotator Schedule file.)

When the visitor clicks on the banner ad, the Web browser passes to the script within the redirection
file a query string that names the banner ad’s target page and the ad’s image file pathname. In this
example, the banner ad’s target Web page is http://www.NVBizNet2.com/hwdtt/BannerAds/
AdRedirect.asp, and the query string passed to the Active Server Page redirection file is
URL=http://www.NVBizNet.com/default.htm&image=/hwdtt/BannerAds/NVBizNet.GIF.

A script within the rotator redirection file (AdRedirect.asp, in this example) is responsible for
redirecting the Web browser to the banner ad’s target page. Therefore, the redirection file is also a
good place in which to update a banner ad’s click-through statistic. To increment the click-through
count for the banner ad that the visitor clicked, use code similar to the following within the Ad
Rotator redirection file:

<%

Dim objMySQLCon, strImageURL, strTargetURL

'parse the query string into two variables

strImageURL = Request.QueryString("image")

strTargetURL = Request.QueryString("URL")

'open a connection to the DBMS and increment the click-through

'count

Set objMySQLCon = Server.CreateObject("ADODB.Connection")

With objMySQLCon

.ConnectionString = _

"DRIVER={MySQL};SERVER=NVBizNet2;UID=root;PWD=;DATABASE=hwdtt"

.Open

.Execute "UPDATE bannerAdStats " & _

"SET clickThroughCount = clickThroughCount + 1 " & _

"WHERE imageURL = '" & strImageURL & "' " & _

"AND targetURL = '" & strTargetURL & "' "

.Close

End With

Response.Redirect Request.QueryString("URL")

%>

C h a p t e r 1 1 : A c t i v e S e r v e r P a g e s (A S P) 5 7 9

Tip&Tec / HTML & Web Design Tips & Techniques / Anderson, King, Jamsa / 9394-8 / Chapter 11

P:\010Comp\Tip&Tec\394-8\ch11.vp
Friday, January 04, 2002 11:18:39 AM

Color profile: Generic CMYK printer profile
Composite Default screen

5 8 0 H T M L & W e b D e s i g n T i p s & T e c h n i q u e s

Tip&Tec / HTML & Web Design Tips & Techniques / Anderson, King, Jamsa / 9394-8 / Chapter 11

The script in this example retrieves the banner ad target and graphics image URLs from the query
string passed to the Active Server Page (AdRedirect.asp) in which the script resides. After updating the
bannerAdStats table, the script closes the database connection and then calls the Response.Redirect
method to redirect the Web browser to the banner ad’s target.

� NOTE

In order for the SQL UPDATE statements in the scripts shown within this Tip to work, you must
insert both the banner ad image URL and the ad’s target URL into the SQL table in which you track
the banner ad impressions and click-throughs (bannerAdStats, in this example). Therefore, each time
you add a banner description to the Ad Rotator schedule file, execute INSERT statements such as the
following within the DBMS:

INSERT INTO bannerAdStats VALUES

(bannerRedirectionURL, bannerImageURL, 0, 0);

Substitute the name of your banner statistics table for bannerAdStats and replace
bannerRedirectionURL with the URL of the banner ad’s target Web page and bannerImageURL
with the URL of the graphics image used for the banner ad.

For a description of the Ad Rotator schedule and redirection files, please read the Tip that
precedes this one. You can retrieve the Active Server Page that displays the banner ad, the rotator
schedule file, and the rotator redirection file used in the examples described within this Tip by
downloading the file Chpt11Tip13.zip from the Osborne Web site at http://www.osborne.com.

Handling “Status: 404 Not Found” Errors
The Web server includes a status code within the header of each HTTP response it sends to a Web
browser. The status code indicates the success or failure of the Web browser’s request. Status codes
in the range 200–299 indicate success; status codes in the range 400–499 indicate failure due to some
error in the Web browser’s request. For example, the Web server sends the status code “200” in the
HTTP header when the browser’s GET request (that is, the browser’s Web page retrieval request)
was successful. On the other hand, the Web server sends a status “404” in the HTTP message header
to indicate the Web browser’s GET request failed, because the Web server was unable to find the
Web page the browser requested.

In addition to the status code 404, a Web server normally sends a generic and largely unhelpful
Web page titled “HTTP 404 Not Found” when a site visitor mistypes a Web address or clicks on a
hyperlink that targets a page or resource no longer available on the Web server. The default status
404 error page is not helpful because it is a dead-end. Text on the page tells the visitor the desired
Web page was not found. However, the generic error page does not provide a search form or
hyperlinks that help the visitor find and navigate to other resources on the Web site. Fortunately,
developers are starting to customize Web server “Status: 404 Not Found” Web pages to make them
more visitor-friendly.

P:\010Comp\Tip&Tec\394-8\ch11.vp
Friday, January 04, 2002 11:18:40 AM

Color profile: Generic CMYK printer profile
Composite Default screen

A good error page (if there is such a thing as a “good” error) has the following characteristics:

• The page acknowledges that an error has occurred and explains the problem in terms the visitor
can understand.

• The page includes an apology that the error occurred—even when the error is due to a visitor
mistyping a Web address.

• The page includes links to the site’s search page and links to the site’s most popular resources.

For examples of custom error pages currently available on the Web, visit the following Web
addresses to display status 404 error pages with the following features:

• http://www.microsoft.com/InvalidURL A site map, drop-down selection lists of hyperlinks
to product, support, and general information areas on the Web site, and a search form

• http://www.yahoo.com/InvalidURL Links to the site’s roster of products, buttons on which
a visitor can click to move to popular areas (such as auctions, messenger, e-mail, and so on),
and a search form

• http://www.4guysfromrolla.com/InvalidURL A site index, links to the site’s resources
(organized by section, columnist, and type of information), links to the site’s most viewed
pages, a search form, and even a link to a Web page that tells you how to create your own
custom status 404 error page

To replace the generic status 404 “The page cannot be found” error page, you must do
two things: create a custom error page and instruct the Web server to send your page

rather than the Web server’s default error page. For example, you might use an Active Server Page
such as the following to display a custom status 404 error page like the one shown in Figure 11-8:

<% Option Explicit

Function BadUrl()

Dim objEMail, strBadURL

strBadURL = _

Right(Request.QueryString, Len(Request.QueryString) - 4)

Set objEMail = Server.CreateObject("CDONTS.NewMail")

objEmail.To = "kki@NVBizNet.com"

objEmail.From = "Error404.asp@NVBizNet2.com"

objEmail.Subject = "Error 404 Occurred on NVBizNet2.com"

objEmail.Body = _

"An Error 404 (File Not Found) Error Occurred at " & _

Now() & ". The missing page is: " & strBadURL & ". " & _

"The visitor used a hyperlink on -->" & _

Request.ServerVariables("HTTP_REFERRER") & _

"<-- to retrieve the page."

objEMail.Send

BadURL = strBadURL

C h a p t e r 1 1 : A c t i v e S e r v e r P a g e s (A S P) 5 8 1

Tip&Tec / HTML & Web Design Tips & Techniques / Anderson, King, Jamsa / 9394-8 / Chapter 11

P:\010Comp\Tip&Tec\394-8\ch11.vp
Friday, January 04, 2002 11:18:40 AM

Color profile: Generic CMYK printer profile
Composite Default screen

End Function

%>

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0//EN">

<html>

<head><title>NVBizNet2 - Web Page Not Found</title></head>

<body bgcolor="#ADD8E6">

<h1><center>HTML and Web Design Tips & Techniques</center>

</h1><hr><center><h2>Web Page Not Found</h2></center>

<%

Response.write "<p>Sorry, the document you requested " & _

"(" & BadURL & ") was not found on NVBizNet2.com.
"

%>

Perhaps you typed the address incorrectly, or the page you

want was moved to a new location.</p>

<p>When you reached this page, the Webmaster

<a title="Send an E-Mail Message to the Webmaster"

href="mailto:kki@NVBizNet.com?

subject=Status 404 - Page Not Found on NVBizNet2.com">

(Konrad King - kki@NVBizNet.com) was sent an automated

e-mail to let him know the site has a missing document. He

will correct the situation shortly.</p>

<p>Perhaps one of the following links can assist you in

finding the document you want or take you to another page you

will find useful:

NVBizNet.com

NVBizNet2.com (Homepage)

Site Map

<!-- links to other pages of interest -->

</p>

<p>Or... enter one or more keywords to search the site for

the page you want:

<form method="POST" action="\Search\SearchPage.asp">

<input type="submit" value="Search" name="Search">

<input type="text" name="keywords" size="30">

</form></p>

</body>

</html>

In addition to providing content for the site visitor, the BadURL() function at the beginning of the
Active Server Page in this example sends an e-mail message to the site’s Web master. The BadURL()
function uses the CDONTS e-mail component (which comes with the Internet Information Server
[IIS]) to send a message that indicates when the error occurred, the URL the visitor was trying to

5 8 2 H T M L & W e b D e s i g n T i p s & T e c h n i q u e s

Tip&Tec / HTML & Web Design Tips & Techniques / Anderson, King, Jamsa / 9394-8 / Chapter 11

P:\010Comp\Tip&Tec\394-8\ch11.vp
Friday, January 04, 2002 11:18:40 AM

Color profile: Generic CMYK printer profile
Composite Default screen

retrieve, and the URL of the Web page with the hyperlink that referred the visitor to the “missing”
page. After creating the Active Server Page with the code in the previous example, save the new error
page to a filename such as Error404.asp either within the Web site’s root folder or within a subfolder.

Next, modify the Web server’s setup to have the Web server send your Active Server Page to the
Web browser when the server detects a status 404 error. For example, to have IIS version 4 or version 5
send a custom status 404 error page, perform the following steps:

1. Choose Start | Programs | Microsoft Internet Information Server | Internet Service Manager.
Windows NT, in turn, will display the IIS Management Console.

C h a p t e r 1 1 : A c t i v e S e r v e r P a g e s (A S P) 5 8 3

Tip&Tec / HTML & Web Design Tips & Techniques / Anderson, King, Jamsa / 9394-8 / Chapter 11

Figure 11-8 Custom status 404 error page

P:\010Comp\Tip&Tec\394-8\ch11.vp
Monday, January 07, 2002 1:33:12 PM

Color profile: Generic CMYK printer profile
Composite Default screen

5 8 4 H T M L & W e b D e s i g n T i p s & T e c h n i q u e s

Tip&Tec / HTML & Web Design Tips & Techniques / Anderson, King, Jamsa / 9394-8 / Chapter 11

2. In the IIS Management Console’s right-hand pane, right-click the Default Web Site icon, and
select Properties from the pop-up menu. The Management Console, in turn, will display the
Default Web Site Properties dialog box.

3. Click the Custom Errors tab to display a list of Web pages the Web server sends in response
to various error statuses.

4. Use the vertical scroll bar to scroll the list of error pages until you see 404 in the HTTP Error
column. Then, click 404 to select the status 404 error page.

5. Click Edit Properties. Windows, in turn, will display an Error Mapping Properties dialog box
similar to that shown in Figure 11-9.

Figure 11-9 The Internet Information Server (IIS) Error Mapping Properties dialog box

P:\010Comp\Tip&Tec\394-8\ch11.vp
Friday, January 04, 2002 11:18:41 AM

Color profile: Generic CMYK printer profile
Composite Default screen

C h a p t e r 1 1 : A c t i v e S e r v e r P a g e s (A S P) 5 8 5

Tip&Tec / HTML & Web Design Tips & Techniques / Anderson, King, Jamsa / 9394-8 / Chapter 11

6. Click the drop-down list button to the right of the Message Type field and select URL.
Windows, in turn, will change the label of the field below Message Type from File to URL.

7. Into the URL field, type the full relative address of the custom status 404 error page you
want the Web server to use. For example, if you saved the error page you created earlier in
this Tip to the file Error404.asp in the Web site’s root directory, type /Error404.asp into the
URL field.

8. Click OK at the bottom of the Error Mapping Properties dialog box. Windows, in turn,
will save your changes, close the dialog box, and return to the Default Web Site Properties
dialog box.

9. Click OK at the bottom of the Default Web Site Properties dialog box. Windows, in turn,
will return to the IIS Management Console application window.

After you complete Step 9, click the Close button in the upper right-hand corner of the IIS
Management Console application window to exit (close) the application and return to the
Windows desktop.

P:\010Comp\Tip&Tec\394-8\ch11.vp
Friday, January 04, 2002 11:18:41 AM

Color profile: Generic CMYK printer profile
Composite Default screen

CHAPTER 12

Security and Performance

Tip&Tec / HTML & Web Design Tips & Techniques / Anderson, King, Jamsa / 9394-8 / Front Matter

TIPS IN THIS CHAPTER

� Downloading and Installing a Public Key, Digital Signature, and Server ID 600

� Creating a Secure Web Page Under IIS 601

� Installing a Software-Based Firewall 603

� Fine-Tuning a Firewall’s Port Assignments 605

� Reducing Your Site’s Exposure to Viruses 607

� Improving Performance and Security by Disabling Printer and File Sharing 610

� Using Client Certificates to Restrict User Access 612

� Auditing System Events to Detect Intruders 614

� Exploiting the NTFS File System 617

� Disabling Remote Services 620

� Analyzing Your System’s Vulnerability 623

� Processing Credit Card Data 625

� Taking a Close Look at Web Site’s Performance Chain 625

� Creating a Web Farm 631

� Monitoring Server Performance 631

P:\010Comp\Tip&Tec\394-8\ch12.vp
Friday, January 04, 2002 4:26:45 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Copyright 2002 by The McGraw-Hill Companies, Inc. Click Here for Terms of Use.

Tip&Tec / HTML & Web Design Tips & Techniques / Anderson, King, Jamsa / 9394-8 /

Throughout this book, you have examined a wide variety of tools you can use to create powerful
Web sites. In this chapter, you will first focus on protecting your Web site. Specifically, you will

learn steps you can perform to defend your site against the most common hacker attacks and how to
protect user transactions using secure pages. You will learn, for example, how to create secure pages,
which direct a browser and server to exchange encrypted messages using the secure sockets layer. You
will also learn how to install and configure a firewall that filters the network messages that can enter
your site. Further, you will learn how to use audit trails and intrusion detection to discover potential
hacker attacks.

Then you will look at ways you can improve your Web site’s performance by eliminating bottlenecks
that slow down the operations your site performs. You will examine a Web server’s performance
chain, which begins with the server’s connection to the Web and continues through the server’s use
of random access memory (RAM), fast disk drives, caching, and more. In short, this chapter shows
you how to put the finishing touches on a professional-quality Web site.

Understanding Hacker Threats
After your site is up and running, hackers may attack it in numerous ways:

• By intercepting, viewing, and possibly modifying the HTTP-based messages your server
exchanges with client browsers.

• By accessing files that reside on your server that may contain sensitive information such
as customer credit card data.

• By launching thousands of requests at your server that consume your site’s resources and
prevent your site from responding to other visitors.

• By infecting your files, disks, or e-mail messages that enter your site with a computer virus.

• By breaking CGI-based scripts to gain access to your server.

This chapter examines specific ways you can reduce your site’s risks to each of these types of attack.

Understanding How Hackers Intercept and
Possibly Change Network Messages
When programs send information across the Internet to a remote computer, the messages do not
simply travel directly from the sending computer to the message recipient. Instead, as shown in
Figure 12-1, to reach a remote computer, a message passes through numerous sites on the Net.

587

P:\010Comp\Tip&Tec\394-8\ch12.vp
Friday, January 04, 2002 4:26:45 PM

Color profile: Generic CMYK printer profile
Composite Default screen

5 8 8 H T M L & W e b D e s i g n T i p s & T e c h n i q u e s

Tip&Tec / HTML & Web Design Tips & Techniques / Anderson, King, Jamsa / 9394-8 / Chapter 12

To better understand how messages hop from one system to another as they travel across the Net,
issue the tracert command (the command’s name is an abbreviation for trace route), which displays
a list of the sites through which a message travels as it makes its way to a remote site. The following
output, for example, illustrates the path a message traveled from the author’s PC to reach yahoo.com:

C:\> tracert yahoo.com <Enter>

Tracing route to yahoo.com [216.115.108.243]
over a maximum of 30 hops:

1 179ms 200ms 200ms arc-4a.hou.mindspring.net [207.69.219.84]
2 170ms 190ms 200ms cisco-f0-1-0.hou.mindspring.net [207.69.219.65]
3 190ms 200ms 200ms 206.181.103.185
4 199ms 180ms 180ms iah2-core1-s3-1.atlas.icix.net [165.117.64.250]
5 169ms 200ms 190ms dfw3-core3-pos4-3.atlas.icix.net [165.117.50.85]
6 179ms 178ms 197ms 165.117.52.198
7 295ms 189ms 199ms so-4-1-0.mp2.Dallas1.Level3.net [209.247.10.109]

Figure 12-1 A message travels through many sites as it makes its way across the Net

P:\010Comp\Tip&Tec\394-8\ch12.vp
Friday, January 04, 2002 4:26:47 PM

Color profile: Generic CMYK printer profile
Composite Default screen

TE
AM
FL
Y

Team-Fly®

C h a p t e r 1 2 : S e c u r i t y a n d P e r f o r m a n c e 5 8 9

Tip&Tec / HTML & Web Design Tips & Techniques / Anderson, King, Jamsa / 9394-8 / Chapter 12

8 205ms 210ms 239ms so-2-0-0.mp1.SanJose1.Level3.net [209.247.9.114]
9 239ms 210ms 240ms gige9-2.ipcolo4.SanJose1.Level3.net [64.159.2.138]
10 232ms 210ms 240ms ge-3-3-0.msr1.pao.yahoo.com [216.115.101.42]
11 229ms 239ms 220ms vlan29.bas2-m.snv.yahoo.com [216.115.100.126]
12 210ms 250ms 250ms yahoo.com [216.115.108.243]

Trace complete.

In this case, to reach yahoo.com, a message had to pass through 11 intermediate sites. Each time a
message arrives at a site, that system’s network software examines the message to determine whether
the message is destined for that site. If so, the network software sends the message to the appropriate
program, such as an e-mail application or Web server. If the message is not destined for that site, the
network software forwards the message to another host that puts the message closer to its destination.

At any point during a message’s travels, a hacker whose system the message travels past can read
and change the message contents. Assume, for example, that the message contains credit card information.
As the message flows through the hacker’s system, the hacker can read and store (steal) the credit card
data, as shown in Figure 12-2.

In Chapter 3, when you examined HTML-based forms, you learned that when a user submits a
form’s contents, behind the scenes the browser sends the form’s data to the server using the HTTP
protocol. Unfortunately, HTTP passes messages using plain text, which means that it is very easy
for a hacker to view a message’s contents. To better understand how a hacker can intercept and view
message packets, download and install the CommView program from http://www.webattack.com/
get/commview.shtml. Using CommView, you can view the contents of a wide range of message types
that enter your system. Figure 12-3, for example, illustrates the contents of an HTTP message within
the CommView utility.

Figure 12-2 By intercepting messages, hackers can steal sensitive information

P:\010Comp\Tip&Tec\394-8\ch12.vp
Friday, January 04, 2002 4:26:47 PM

Color profile: Generic CMYK printer profile
Composite Default screen

A hacker can use a program similar to CommView to monitor the messages that arrive at his or
her computer. Because the number of messages passing through the hacker’s system can be quite large,
a sophisticated hacker might use a program that scans the messages for data that takes the form of a
credit card number, expiration date, and so on.

In addition to viewing the information a message contains, a hacker can change the contents of the
messages he or she intercepts. For example, assume that a hacker intercepts a message that contains
a purchase order. The hacker might, as shown in Figure 12-4, change the order quantity and ship-to
address, so that he or she also receives goods as a part of your order.

To protect your site’s messages from interception and modification by a hacker in this way, you
can use encryption and secure Web pages, as discussed later in the section “Understanding How
Encryption Protects Messages You Send Across the Net.”

5 9 0 H T M L & W e b D e s i g n T i p s & T e c h n i q u e s

Tip&Tec / HTML & Web Design Tips & Techniques / Anderson, King, Jamsa / 9394-8 / Chapter 12

Figure 12-3 Using the CommView program to view HTTP messages

P:\010Comp\Tip&Tec\394-8\ch12.vp
Friday, January 04, 2002 4:26:48 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Understanding How Hackers Break into a System
Across the Internet, many systems let users log into the network from remote locations. A company
might, for example, let its salespeople log onto the company’s network when they travel, so they can
view, create, or update order information or simply access their e-mail. Likewise, a system might let
programmers, Web developers, and other users connect from remote locations to upload or download
files. Depending on the system’s configuration, users may, as shown in Figure 12-5, gain remote access
to the system using a dial-up modem or the Internet. When a system is available for remote access,
hackers may exploit the remote access programs and services to break into the network.

To break into a network using remote access, a hacker normally must specify a valid username and
password. Unfortunately, a hacker may gain access to valid usernames and passwords using a number
of techniques:

• Using a password cracking program that attacks the system’s password file.

• Targeting common default accounts for which the network administrators have not changed
the password.

• Simply asking a user who has a valid account for his or her username and password.

C h a p t e r 1 2 : S e c u r i t y a n d P e r f o r m a n c e 5 9 1

Tip&Tec / HTML & Web Design Tips & Techniques / Anderson, King, Jamsa / 9394-8 / Chapter 12

Figure 12-4 Hackers can change the contents of the messages they intercept

P:\010Comp\Tip&Tec\394-8\ch12.vp
Friday, January 04, 2002 4:26:50 PM

Color profile: Generic CMYK printer profile
Composite Default screen

5 9 2 H T M L & W e b D e s i g n T i p s & T e c h n i q u e s

Tip&Tec / HTML & Web Design Tips & Techniques / Anderson, King, Jamsa / 9394-8 / Chapter 12

If your site does not require remote access, you should disable the remote services as discussed in
this chapter’s Tip, “Disabling Remote Services.”

Understanding Password Cracking Software
Password cracking is a technique hackers use to gain access to systems that are protected by usernames
and passwords. Television shows and movies often portray hackers as magnificent guessers who can
quickly break into a system simply by guessing a username and password. Fortunately, the process is
not quite that easy. Today, many operating systems have the ability to lock out an account after a user
fails to give a correct username/password pair a specific number of tries. For example, assume that a
hacker learns your username and tries to log into the system by guessing your password. If the hacker
guesses five incorrect passwords, the operating system would likely lock your account, so that neither
you nor the hacker can use your account until your system administrator unlocks it. Although being
locked out of your own account in this way can be inconvenient, it will make you aware of the fact
that someone is trying to gain access to your account.

Years ago, before operating systems disabled accounts after a number of failed logins, hackers
would run special programs called password crackers that repeatedly entered username and password

Figure 12-5 Remote access provides users (and hackers) who are not physically connected to the
network a way to access network resources

P:\010Comp\Tip&Tec\394-8\ch12.vp
Friday, January 04, 2002 4:26:51 PM

Color profile: Generic CMYK printer profile
Composite Default screen

C h a p t e r 1 2 : S e c u r i t y a n d P e r f o r m a n c e 5 9 3

Tip&Tec / HTML & Web Design Tips & Techniques / Anderson, King, Jamsa / 9394-8 / Chapter 12

combinations. Using the password cracker, the hacker could try thousands of different username/password
combinations in a matter of minutes.

Most operating systems store user account information (which includes usernames and passwords)
within a file. To prevent users from viewing the password information, the operating system normally
encrypts the file. Unfortunately, on the Web you can download a variety of programs that decrypt and
display passwords within a Unix/Linux system, a Windows NT system, and even Windows 2000. The
best way to protect these files is to protect the administrator accounts on your system.

Normally, a hacker will first try to access a site’s administrator accounts. To make it more difficult
for hackers to attack the administrator accounts, many sites assign less meaningful names to the accounts,
rather than using usernames such as NetworkAdmin and RemoteAdmin. This means that the hacker
will need to search harder to obtain access to the key accounts, which may, in and of itself, be enough
to convince the hacker to move on to an easier site.

Protecting Default Accounts
When you first install an operating system or large application program (such as a database management
system), the software normally provides several default accounts that you can use to perform the
installation, test system settings, and so on. Unfortunately, many users fail to disable these default
accounts after installing the application. Many hackers break into systems across the Internet simply
by using default accounts that have not been disabled.

If you are a system administrator, take time now to examine your site’s list of accounts. Make sure
to change the password for all default accounts and, better yet, disable the default accounts you do
not need. As you examine the list of accounts, make sure you can readily identify each account’s
purpose. Further, you can often improve your site’s security by restricting many user accounts to
access during working hours only.

Understanding Social-Engineering Attacks
One of the easiest ways for hackers to gain access to a system is simply for the hacker to ask a user
for his or her username and password. Network administrators refer to such hacker attacks as social-
engineering attacks. Often, the hacker may call an unsuspecting user and use a dialog similar to the
following to gain access to a site:

Hacker: Good morning. This is Konrad in the data processing department. Later today, you will
receive an e-mail message that states that as a part of our network security initiative, we want all
users to change their passwords tomorrow morning at 8:30.

User: Okay.
Hacker: To monitor the process, I need to record your current username and password.
User: Okay.
Hacker: Let me have your username first.
User: Smith.
Hacker: Can you spell out your password for me?

P:\010Comp\Tip&Tec\394-8\ch12.vp
Friday, January 04, 2002 4:26:51 PM

Color profile: Generic CMYK printer profile
Composite Default screen

5 9 4 H T M L & W e b D e s i g n T i p s & T e c h n i q u e s

Tip&Tec / HTML & Web Design Tips & Techniques / Anderson, King, Jamsa / 9394-8 / Chapter 12

User: Yes. It is t-o-o-b-u-s-y.
Hacker: Great. Make a note to change your password tomorrow morning.
After the hacker gains access to a username and password, the hacker can access the system. To protect

your site from such attacks, you must train your users never to divulge their account information. Let
them know that your data processing department will never ask them for such information, and that they
should never tell another individual, even an employee, their username and password.

Understanding How Hackers Deny Access to Your System
When a hacker is unable to break into your site, the hacker may try to prevent others from accessing
your system by performing a denial-of-service attack, which consumes your system’s resources, either
in part (which slows down your site) or in total (which prevents visitor access). A few years ago, for
example, hackers shut down the Whitehouse e-mail services by bombarding the e-mail address with
tens of thousands of large e-mail messages. Although the hackers themselves were not able to break
into the Whitehouse site, their actions denied the site’s service to others.

The following simple HTML file, ReloadForever.html, uses a <meta> tag to direct the browser to
download a large graphics file from the site www.SomeVictim.com every 30 seconds. By disabling
caching, the HTML file forces the Web server to send the requested Web page content every 30 seconds.
While the server is responding to this request, it cannot service others. A hacker might, for example,
open 10 or more browser windows within which he or she loads the ReloadForever.html page. The
greater the number of windows in which the hacker opens this simple file, the more the hacker reduces
the server’s ability to serve others.

<html>

<meta http-equiv="Refresh" content="30" />

</html>

To protect your site from such denial-of-service attacks, you can use a firewall, which watches for
repetitive HTTP requests or similar repeated requests. Additionally, you can examine your site’s log
files. In this chapter’s Tips, you will learn how to install and configure a firewall and how to enable
and monitor your system’s log files.

Understanding How Hackers Attack CGI Scripts
In Chapter 3, you learned how to create HTML-based forms that visitors can complete and submit to
an application that runs on the Web server. Normally, programmers create the applications the server
runs to process the forms using a programming language such as Perl or PHP. For years, hackers have
targeted CGI scripts to break into Web sites. That’s because often the script programs that run on the
Web server have the ability to access data stored on the server’s hard drive. Depending on the processing

P:\010Comp\Tip&Tec\394-8\ch12.vp
Friday, January 04, 2002 4:26:51 PM

Color profile: Generic CMYK printer profile
Composite Default screen

C h a p t e r 1 2 : S e c u r i t y a n d P e r f o r m a n c e 5 9 5

Tip&Tec / HTML & Web Design Tips & Techniques / Anderson, King, Jamsa / 9394-8 / Chapter 12

a script performs, a hacker may be able to (mis)use the script by running it with values that the hacker
assigns from outside the form submission process. Further, if the hacker can access the Web server’s
hard drive, the hacker may be able to replace the script file with one of his or her own. Depending on
the processing the hacker’s new script performs, it could take considerable time for the site’s administrators
to detect the change. The hacker’s script, for example, might simply add a line that e-mails a copy of
all credit card information to the hacker’s e-mail account.

As you read about hacker threats, you will encounter discussions of buffer overflow attacks, which
let the hacker break out of the script to gain access to the server in such a way that the hacker can then
run any program installed on the server! In Chapter 3, when you created HTML-based forms, you
created text fields, for example, that let the user type a specific number of characters. A buffer overflow
occurs when a user (not necessarily a hacker) submits more data than the script expects to store. For
example, assume that an HTML form lets a user submit a street address that contains up to 128 characters.
However, due to a programming error, the script provides space for only 64 characters for the street
address. Because most street addresses visitors enter require less than 64 characters, the script may
run for a long time, with no problems. However, when a visitor eventually enters more than 64 characters,
the script will cause a buffer overflow error.

The problem with buffer overflow errors is that some scripting languages (normally a compiled
program) cause the script processor (that is, the program that executes the script’s statements on the
server) to fail. Depending on the operating system the server is running, such errors can provide the
hacker with access to the server and the files it contains. To exploit buffer overflow errors, a hacker
first causes the script processor to fail. Then, after the hacker gains access to the server, the hacker
can copy or delete files or run other programs that reside on the server.

As you have learned, as messages travel across the Internet, a hacker can intercept and possibly
change the message contents. If the hacker is aware that a server is running an operating system and
script processor that is susceptible to buffer overflow errors, the hacker might intercept a valid message
destined for the site and then change the message contents so that the data causes a buffer overflow error.

Over the years, operating system developers, script processor developers, and programmers who
create Web scripts have become aware of the risks of buffer overflow errors. Most newer applications,
therefore, do not fail after a buffer overflow error in such a way that a hacker can gain control of
the server. To better understand the dangers of buffer overflow errors, visit the CERT Web site at
http://www.cert.org and search for known buffer overflow vulnerabilities (see Figure 12-6). Using
the CERT Web site, you can also search for known vulnerabilities on other software you use, such
as PHP, ActiveX, Active Server Pages, IIS, and more.

Understanding How Firewalls Protect Your Site
To protect a network from hacker attacks, many network administrators place a firewall between the
Internet and the network. The firewall filters the network messages that pass from the Internet into
the network. Do not confuse network messages with e-mail messages. Network messages correspond
to the data that programs such as Web browsers and chat programs send from one computer to another.

P:\010Comp\Tip&Tec\394-8\ch12.vp
Friday, January 04, 2002 4:26:51 PM

Color profile: Generic CMYK printer profile
Composite Default screen

5 9 6 H T M L & W e b D e s i g n T i p s & T e c h n i q u e s

Tip&Tec / HTML & Web Design Tips & Techniques / Anderson, King, Jamsa / 9394-8 / Chapter 12

A firewall can be a special hardware box or a PC running firewall software. Figure 12-7 shows how
a firewall filters the messages that arrive at a network.

Figure 12-6 Using the CERT Web site to view software vulnerabilities

P:\010Comp\Tip&Tec\394-8\ch12.vp
Friday, January 04, 2002 4:26:52 PM

Color profile: Generic CMYK printer profile
Composite Default screen

C h a p t e r 1 2 : S e c u r i t y a n d P e r f o r m a n c e 5 9 7

Tip&Tec / HTML & Web Design Tips & Techniques / Anderson, King, Jamsa / 9394-8 / Chapter 12

In this case, the firewall allows only HTTP-based messages sent from a remote browser to enter
the network. The firewall prevents messages from applications such as chat programs or file transfer
programs (like FTP) from entering the network. In the Tip “Installing a Software-Based Firewall,”
you will learn how to install and configure a firewall to secure your Web site.

Understanding How Encryption Protects
Messages You Send Across the Net
As you have learned, when messages travel across the Net, a hacker can intercept, view, and possibly
change their contents. Unfortunately, it is impossible to prevent hackers from intercepting messages
that travel past the hacker’s computer. However, by encrypting the messages that you send, you prevent
the hacker from viewing information within the messages and from being able to change the messages
in a meaningful way.

To exchange encrypted messages, two programs, such as the browser and the server programs, must
first agree on the encryption algorithm they will use to encrypt the messages. Assume, for example,
that the browser and server encrypt data by increasing or decreasing letters by one letter. For example,
the programs might encrypt the letters ABC as BCD by increasing each letter by one, or the letters
ZYX would become YXW by decreasing each letter by one. After the browser and server determine

Figure 12-7 A firewall filters the messages that enter a network

P:\010Comp\Tip&Tec\394-8\ch12.vp
Friday, January 04, 2002 4:26:53 PM

Color profile: Generic CMYK printer profile
Composite Default screen

5 9 8 H T M L & W e b D e s i g n T i p s & T e c h n i q u e s

Tip&Tec / HTML & Web Design Tips & Techniques / Anderson, King, Jamsa / 9394-8 / Chapter 12

which method they will use (in this case, increasing or decreasing letters), they must agree on the
count by which they will increase or decrease the characters. You can think of the count they agree
on as the encryption key. For example, the browser and server might decide to use the method that
increases letters and then decide to increase each letter by 2, so that the letters ABC become CDE.

Obviously, encryption algorithms on the Web involve much more than simply shifting letters up
or down. However, the process the programs use to determine the algorithm and choose a key is similar
to that just discussed. When a Web browser initiates a secure transaction on the Web, the browser
first sends the server a list of the encryption algorithms that the browser supports. The server, in turn,
examines the list and selects an algorithm that both it and the browser support and then sends a message
to the browser that specifies the selected algorithm. However, before the two programs can use the
algorithm to encrypt messages, the programs must agree on an encryption key.

Assume, for example, that the server, when it sends the message that contains the encryption algorithm
the programs will use, also includes the key that the two will use to encrypt and decrypt messages.
Because the server cannot encrypt the message until the browser knows the encryption key, the server
would need to send the message in the clear—that is, unencrypted. If a hacker intercepts the message,
the hacker will know not only the encryption algorithm, but also the encryption key, which means
that the hacker could later intercept and decrypt the encrypted messages that the browser and server
exchange. To prevent the hacker from intercepting the encryption key and algorithm, the server uses
a special encryption key—the server’s public encryption key—to encrypt the key value that browser
and server will later use when encrypting messages they exchange during the secure session. This
means that before a client and server can start a secure session, the Web server must have a public
key (as discussed in the next session) that it can send to the Web browser.

Understanding Public Key Encryption
Today, to send encrypted e-mail messages or to establish secure Web site connections, users make
extensive use of public key encryption. To receive encrypted messages, a user gets two special keys:
a private key that the user protects and a public key that the user can freely distribute to everyone in
the world.

Assume, for example, that you want to send an encrypted e-mail message to George Bush. To do
so, you must know his public key, which he may have sent to you in a previous message, or which he
may have placed on a public key server (which is accessible to any user). Using George Bush’s public
key, you would encrypt your message. Later, when he receives your message, he would decrypt it using
his private key. In other words, to send you an encrypted message, a user encrypts the message using
your public key. When you receive the message, you decrypt it using your private key.

The public key encryption scheme is unique in that anyone can have your public key. The only thing
a user can do with your public key is encrypt messages that you can later decrypt using your private
key. Your public key is different from your private key. A user, for example, cannot use your public
key to decrypt messages that other users send to you.

P:\010Comp\Tip&Tec\394-8\ch12.vp
Friday, January 04, 2002 4:26:53 PM

Color profile: Generic CMYK printer profile
Composite Default screen

TE
AM
FL
Y

Team-Fly®

C h a p t e r 1 2 : S e c u r i t y a n d P e r f o r m a n c e 5 9 9

Tip&Tec / HTML & Web Design Tips & Techniques / Anderson, King, Jamsa / 9394-8 / Chapter 12

Finding a User’s Public Key
In the Tip “Downloading and Installing a Public Key, Digital Signature, and Server ID” you will learn
how to download and install your own encryption keys and digital signature. A digital signature is
a unique value that you can attach, for example, to your e-mail messages to authenticate you to the
recipient (so that the recipient knows that you actually sent the message) and validate that a hacker
has not intercepted the message and changed its contents as it made its way across the Net.

Normally, after you receive your own public key, you send it to your associates, friends, and family
via an e-mail message, so they can use the key to encrypt the messages they send to you. In addition,
you can post your public key on a public key ring that resides on the Web. When a user to whom you
have not sent your public key needs to encrypt a message to send to you, the user can search the public
key servers for your key. Figure 12-8 shows a public key server at MIT that you can use to search for
a user’s public key.

After the user locates your key, the user can use it to the encrypt messages he or she sends to you.

Figure 12-8 Using a public key ring to locate a user’s public key

P:\010Comp\Tip&Tec\394-8\ch12.vp
Friday, January 04, 2002 4:26:53 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Downloading and Installing a Public Key,
Digital Signature, and Server ID
Before a user can send you encrypted e-mail, you must get your own public and private encryption keys.
There are several ways for you to get your own public and private encryption keys. The VeriSign
Web site, http://www.verisign.com, lets you download a trial set (valid for 60 days) of public and
private keys, or you can simply purchase the encryption keys from the site. The download instructions
you receive from VeriSign list the steps you must follow to begin using your keys. In addition, from
the M.I.T. Web site at http://web.mit.edu/network/pgp.html, you can download software for free if
you plan to use PGP (Pretty Good Privacy) encryption. Using either key type, users can use your
public key to send you encrypted messages that you can later decrypt using your private key. Both
Web sites provide instructions that walk you through the steps for sending and receiving encrypted
e-mail messages.

Similarly, before your Web server can perform secure operations, you must install a digital certificate
(also called a secure server ID) for use by your Web server software. After you enable the certificate
and your site’s secure communications, users can request secure pages from your site by preceding
your site’s Web address with the https:// prefix (note the s in the prefix, which indicates a secure
connection).

Several companies, which users refer to as Certification Authorities, offer Web server IDs over the
Internet. In general, after investigating your company, the Certification Authority issues a server ID
that vouches for your right to use your company name and Web address. Normally, before a Certification
Authority issues a server ID, it reviews your company’s credentials, such as your Dun & Bradstreet
number and articles of incorporation. After the Certification Authority authenticates your company, it
issues you a server ID that you can use to enable secure transactions on your Web site. Depending on
the level of investigation that the Certification Authority performs, it can take several weeks (or more)
for you to receive a server ID for your organization.

Normally, when you connect to a secure Web page, you can view the site’s server ID (certificate)
from within your browser, as shown in Figure 12-9.

Across the Web, you can download a digital certificate from several different Certification Authorities.
Before you purchase a server ID, make sure that the certificate type is compatible with your server
software. Most server ID certificates support the secure socket layer (SSL), which is the protocol most
Web servers use to implement secure operations.

To get you started, VeriSign offers a trial server ID that you can download, install,
and use for a 14-day period. You can use the trial server ID to prepare your software

as you wait for the Certification Authority to issue your company’s permanent server ID, or if you
are simply interested in learning how to create secure Web sites, you can download and install the
trial server ID and use it for 14 days. Further, VeriSign will tell you how to set up the server ID
for use with your particular server software. To download the trial server ID, visit VeriSign at
http://www.verisign.com.

6 0 0 H T M L & W e b D e s i g n T i p s & T e c h n i q u e s

Tip&Tec / HTML & Web Design Tips & Techniques / Anderson, King, Jamsa / 9394-8 / Chapter 12

P:\010Comp\Tip&Tec\394-8\ch12.vp
Friday, January 04, 2002 4:26:54 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Creating a Secure Web Page Under IIS
When you download and install a server ID, as discussed in the preceding Tips, you normally will
receive step-by-step instructions you must follow to use the ID with your particular server type. To
help you better understand the process, this Tip examines the steps you must perform to use a server
ID with IIS.

After you download a server ID from a Certification Authority, you must install the ID on
your server and then enable the secure communication capabilities built into IIS. To start,

you will use the Web Server Certificate Wizard to install the server certificate file for use on your Web
site. To run the Web Server Certificate Wizard, perform these steps:

1. Choose Start | Settings | Control Panel. Windows will display the Control Panel.

2. Within the Control Panel, double-click the Administrative Tools icon. Windows will open
the Administrative Tools window.

C h a p t e r 1 2 : S e c u r i t y a n d P e r f o r m a n c e 6 0 1

Tip&Tec / HTML & Web Design Tips & Techniques / Anderson, King, Jamsa / 9394-8 / Chapter 12

Figure 12-9 Viewing a site’s digital certificate within a Web browser

P:\010Comp\Tip&Tec\394-8\ch12.vp
Friday, January 04, 2002 4:26:54 PM

Color profile: Generic CMYK printer profile
Composite Default screen

3. Within the Administrative Tools window, double-click the Internet Services Manager.

4. Within the Internet Services Manager, right-click the Web site you want to secure. Internet
Services Manager will display a pop-up menu.

5. Within the menu, select the Properties option. Internet Services Manager will display the site’s
Properties dialog box.

6. Within the Properties dialog box, select the Directory Security tab. Windows will display the
Directory Security sheet.

7. Within the Server Communications section of the Directory Security sheet, click the Server
Certificate button. Internet Services Manager will start the Web Server Certificate Wizard.

After you install the certificate, you must enable your server’s secure communication capabilities
by performing these steps:

1. Choose Start | Settings | Control Panel. Windows will display the Control Panel.

2. Within the Control Panel, double-click the Administrative Tools icon. Windows will open
the Administrative Tools window.

3. Within the Administrative Tools window, double-click the Internet Services Manager.

4. Within the Internet Information Services snap-in, right-click the icon for the Web site you
want to secure. Windows will display a pop-up menu.

5. Within the menu, select the Properties option. Windows will display the site’s Properties
dialog box.

6. Within the Properties dialog box, click the Advanced button. Windows will display the Advanced
Multiple Web Site Configuration dialog box.

7. Within the Advanced Multiple Web Site Configuration dialog box, make sure that the Multiple
SSL Identities of This Web Site pane contains the port value 443.

8. Click the Directory Security tab. Windows will display the Directory Security Sheet.

9. Within the Directory Security sheet, click the Secure Communications Edit button. Windows
will display the Secure Communications dialog box, shown in Figure 12-10.

10. Within the Secure Communications dialog box, configure your Web server to require a secure
channel by selecting the Require Secure Channel (SSL) check box. Optionally, select the Require
128-Bit Encryption check box to force the secure connection to use 128-bit encryption. (Not all
browsers support 128-bit encryption. If you do not select 128-bit encryption, your server will
use 40-bit.)

6 0 2 H T M L & W e b D e s i g n T i p s & T e c h n i q u e s

Tip&Tec / HTML & Web Design Tips & Techniques / Anderson, King, Jamsa / 9394-8 / Chapter 12

P:\010Comp\Tip&Tec\394-8\ch12.vp
Friday, January 04, 2002 4:26:54 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Installing a Software-Based Firewall
A firewall protects a site by sitting between the site and the rest of the Internet. All network messages
destined for the site must first pass through the firewall. By configuring the firewall’s message filters,
you can control which messages can and cannot enter the site. A firewall can be hardware or software
based. On the Web, several companies offer trial firewall software that you can download and try for
free; normally, the trial software lets you use the firewall for a 30-day period:

McAfee http://www.mcafee.com

Network Ice http://www.networkice.com

Symantec http://www.symantec.com

Tiny Software http://www.tinysoftware.com

Zone Labs http://www.zonelabs.com

If you are the administrator for a professional site that does not yet use a firewall, you should
immediately download and install several different trial versions to better understand the features you

C h a p t e r 1 2 : S e c u r i t y a n d P e r f o r m a n c e 6 0 3

Tip&Tec / HTML & Web Design Tips & Techniques / Anderson, King, Jamsa / 9394-8 / Chapter 12

Figure 12-10 The Secure Communications dialog box

P:\010Comp\Tip&Tec\394-8\ch12.vp
Friday, January 04, 2002 4:26:55 PM

Color profile: Generic CMYK printer profile
Composite Default screen

need and how to use them. Take time to experiment with the firewall. For example, you might want
to use the firewall to disable incoming FTP packets that a remote user generates by running an FTP
program to upload or download files to or from your site. However, if you disable FTP packets and
then try using FTP to connect to your site, the FTP command will fail.

Many network administrators install and configure firewalls on the Web sites they manage
and leave their home PC exposed to hackers. Recently many software companies have

begun to offer personal firewalls for home users. Using a personal firewall, you can close up potential
holes a hacker can exploit as you visit remote sites on the Web. Several sites that sell personal firewalls
on the Web will let you run software that examines your PC for vulnerabilities. For example, Figure 12-11
shows the output generated by the Symantec Security Check program, which you can run from the
Symantec Web site.

6 0 4 H T M L & W e b D e s i g n T i p s & T e c h n i q u e s

Tip&Tec / HTML & Web Design Tips & Techniques / Anderson, King, Jamsa / 9394-8 / Chapter 12

Figure 12-11 Testing your system vulnerabilities from the Symantec Web site

P:\010Comp\Tip&Tec\394-8\ch12.vp
Friday, January 04, 2002 4:26:55 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Using a personal firewall, such as Norton Personal Firewall, you can protect your system against Java
applets, ActiveX controls, and attempts by programs to access unused application ports. Figure 12-12
(above) shows a screen from Norton Personal Firewall.

As you experiment with the trial versions of the firewall software, you should download and install
a personal firewall from one company and then run the vulnerability test from another company’s Web
site to determine the effectiveness of each trial firewall program.

Fine-Tuning a Firewall’s Port Assignments
To communicate over a network, the sending program must specify the address of the remote computer.
In addition, the sending program must identify the application on the remote computer to which it is
sending the message. For example, when a browser sends a Web page (HTTP) request to a Web server,
the sending program (that is, the Web browser) must specify the Internet protocol address of the remote
site and the fact that the message is for the Web server application that is running at the site.

Network programs specify remote applications using a number that programmers refer to as
the application’s port number. For example, to send a message to a Web server, a browser sends a
message to port 80 (which corresponds to the HTTP protocol). Periodically, as you surf the Web, you
may encounter a URL that includes port number 80, such as www.SomeSite.com:80/Filename.html.
Across the Internet, various protocols correspond to specific port numbers. Programmers refer to

C h a p t e r 1 2 : S e c u r i t y a n d P e r f o r m a n c e 6 0 5

Tip&Tec / HTML & Web Design Tips & Techniques / Anderson, King, Jamsa / 9394-8 / Chapter 12

Figure 12-12 Using Norton Personal Firewall to protect a home PC

P:\010Comp\Tip&Tec\394-8\ch12.vp
Friday, January 04, 2002 4:26:56 PM

Color profile: Generic CMYK printer profile
Composite Default screen

the first 1,024 port numbers as well-known ports. The following list shows the port numbers that
correspond to several common applications:

Port Number Application

21 File transfer protocol (FTP)

23 Telnet

25 Simple mail transport protocol (SMTP)

80 Hypertext transport protocol (HTTP)

139 NetBIOS session service

Most firewalls let you control the flow of messages into your network by preventing messages
bound for specific ports from entering your network, as shown in Figure 12-13.

As you configure your firewall, you may find it easier to first disable messages to all
ports and then turn on access to only those specific ports you require. Depending on the

firewall you are using, the steps you must perform to restrict or allow port use will differ. Figure 12-14,
for example, shows how to filter specific ports within Norton Personal Firewall.

Internet programs can use up to 65,536 different port numbers. As you configure ports within a
firewall, you should refer to the list of port assignments at http://www.iana.org/assignments/port-numbers.

6 0 6 H T M L & W e b D e s i g n T i p s & T e c h n i q u e s

Tip&Tec / HTML & Web Design Tips & Techniques / Anderson, King, Jamsa / 9394-8 / Chapter 12

Figure 12-13 Firewalls can filter network messages based on the message’s application port number

P:\010Comp\Tip&Tec\394-8\ch12.vp
Friday, January 04, 2002 4:26:57 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Reducing Your Site’s Exposure to Viruses
In 2001, computer viruses cost businesses over $11 billion in lost time, damaged files, and more. Leading
the way was the Code Red virus, which cost businesses over $3 billion dollars—which, by the way,
fell far short of the nearly $10 billion cost of the Love Bug virus in 2000. Computer viruses are a threat
to any PC that connects to the Net.

Simply put, if you have computers and users connected to a network (particularly the Internet),
your network and each of its PCs are exposed to computer viruses.

Years ago, to infect a PC with a virus, a user had to run an infected program. Prior to the Internet,
users typically received an infected program via a floppy disk given to them by another user. With
the advent of computer bulletin board systems, with users downloading programs to their computers,
the virus threat increased; however, the user still had to run a program to infect his or her system.

Today, many application programs, such as Microsoft Word, Excel, and even PowerPoint, possess
macro capabilities that let users automate specific tasks. Using an Excel macro for example, a user
might automatically calculate the interest rates and monthly payments for a mortgage. Likewise, within

C h a p t e r 1 2 : S e c u r i t y a n d P e r f o r m a n c e 6 0 7

Tip&Tec / HTML & Web Design Tips & Techniques / Anderson, King, Jamsa / 9394-8 / Chapter 12

Figure 12-14 Using Norton Personal Firewall to filter messages based on port numbers

P:\010Comp\Tip&Tec\394-8\ch12.vp
Friday, January 04, 2002 4:26:57 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Microsoft Word, a user might use a macro to spell check a document and to add a header and footer
automatically before printing the document’s contents. Although macros let users extend an application’s
capabilities in powerful ways, macros are programs, and malicious users can exploit them to spread
viruses. As a result, users can now infect their systems with a virus simply by opening a Word or
Excel document that contains a macro-based virus.

To reduce the risk of a virus infection on your network, every system within your
network—the servers as well as the workstations—must be running current virus-

detection software. If you are using a firewall to protect your site (and you should be), your firewall
may also support virus detection, which you should use as a front-line defense (see Figure 12-15).

6 0 8 H T M L & W e b D e s i g n T i p s & T e c h n i q u e s

Tip&Tec / HTML & Web Design Tips & Techniques / Anderson, King, Jamsa / 9394-8 / Chapter 12

Figure 12-15 To protect your network, every computer should run virus-detection software

P:\010Comp\Tip&Tec\394-8\ch12.vp
Friday, January 04, 2002 4:26:59 PM

Color profile: Generic CMYK printer profile
Composite Default screen

TE
AM
FL
Y

Team-Fly®

C h a p t e r 1 2 : S e c u r i t y a n d P e r f o r m a n c e 6 0 9

Tip&Tec / HTML & Web Design Tips & Techniques / Anderson, King, Jamsa / 9394-8 / Chapter 12

If you are not currently running virus-detection software, several sites on the Web offer free trial
software you can download and use for a 30-day period:

AVG 6.0 Anti-Virus System http://www.grisoft.com

Norton AntiVirus http://www.symantec.com

PC-cillin http://www.trendmicro.com

VirusScan http://www.mcafee.com

One of the keys to reducing the threat of viruses is to train users never to run programs they download
from the Web (many companies include directives within their employee manuals that state that
employees must not install or download any programs without prior written approval). You must
instill in your users the understanding that they should never open a document, program, or e-mail
attachment that they receive from a user they do not know, and that they should never open any file
without first using virus-detection software to scan the file for viruses.

After you install virus-detection software, it is very important that you keep the software current.
Each day, hackers and other malicious programmers work on new virus programs. Thus, for your
virus-detection software to be effective, you must update the software’s list of known viruses on a
regular basis (at least once a month). Normally, after you purchase virus-detection software, you can
update the virus list for a year or more for free. After that, you can subscribe to the company’s virus
data file update service for a nominal fee.

In Chapter 9, you examined ActiveX objects, which users can download as they browse the Web.
To protect your network, you must instruct your users to treat ActiveX objects as programs, which
means that users should not download and install objects without permission. Moreover, users should
download and install only signed objects that have a digital certificate that authenticates the developer
and verifies that a hacker did not intercept the object and attach a virus to it as it made its way across
the Net. Further, users should not download and install an ActiveX object until they have examined
the object using their virus-detection software.

Finally, to better defend your system against virus infections, you should study and be aware of
the current threats. Several Web sites maintain listings of the current virus threats. One of the best
sites for both hacker and virus information is CERT, at http://www.cert.org, shown in Figure 12-16.

P:\010Comp\Tip&Tec\394-8\ch12.vp
Friday, January 04, 2002 4:26:59 PM

Color profile: Generic CMYK printer profile
Composite Default screen

6 1 0 H T M L & W e b D e s i g n T i p s & T e c h n i q u e s

Tip&Tec / HTML & Web Design Tips & Techniques / Anderson, King, Jamsa / 9394-8 / Chapter 12

Improving Performance and Security by
Disabling Printer and File Sharing
If you are running Windows software within your network, the Client for Microsoft Networks software
lets you share files and printers with other users. If, for example, you double-click the Network
Neighborhood icon (which resides on the Windows desktop), the Client for Microsoft Networks
software lists the PCs, workgroups, and printers that exist in your network. The Client for Microsoft
Networks software runs on top of your network software, meaning, within most networks, that it sits
on top of the TCP/IP protocol.

Figure 12-16 Viewing information on recent hacker attacks and virus threats at the CERT Web site

P:\010Comp\Tip&Tec\394-8\ch12.vp
Friday, January 04, 2002 4:27:00 PM

Color profile: Generic CMYK printer profile
Composite Default screen

If the workstations on your network do not share files and printers (printers that connect
to a users’ PCs as opposed to a printer that attaches directly to the network), you should

remove support for the Client for Microsoft Networks from each user’s system by performing these steps:

1. Select Start | Settings | Control Panel. Windows will open the Control Panel window.

2. Within the Control Panel, double-click the Network icon. Windows will display the
Network dialog box, shown in Figure 12-17.

3. On the Configuration tab of the Network dialog box is a list of installed components.
Select the Client for Microsoft Networks entry and then click Remove.

If you are using a cable-modem connection, you essentially are working on a network
that consists of your PC and the cable company. If, for some reason, your system must

support Client for Microsoft Networks, turn off printer and file sharing. Otherwise, you may leave
your system exposed to a hacker who gains access to your cable company’s computer system. To
turn off file and printer sharing within Windows, perform these steps:

1. Select Start | Settings | Control Panel. Windows will open the Control Panel window.

2. Within the Control Panel, double-click the Network icon. Windows will display the
Network dialog box, shown in Figure 12-17.

C h a p t e r 1 2 : S e c u r i t y a n d P e r f o r m a n c e 6 1 1

Tip&Tec / HTML & Web Design Tips & Techniques / Anderson, King, Jamsa / 9394-8 / Chapter 12

Figure 12-17 The Network dialog box

P:\010Comp\Tip&Tec\394-8\ch12.vp
Friday, January 04, 2002 4:27:01 PM

Color profile: Generic CMYK printer profile
Composite Default screen

6 1 2 H T M L & W e b D e s i g n T i p s & T e c h n i q u e s

Tip&Tec / HTML & Web Design Tips & Techniques / Anderson, King, Jamsa / 9394-8 / Chapter 12

3. Within the Network dialog box, click the File and Print Sharing button. Windows will display
the File and Print Sharing dialog box.

4. Within the File and Print Sharing dialog box, click each check box to remove the check marks
and then click OK.

Using Client Certificates to Restrict User Access
To access a secure Web site, a browser and server use the secure sockets layer (SSL) to encrypt the
HTTP-based messages they exchange. To use SSL, a client does not have to have a public key. Instead,
the server must have a digital certificate (which contains the server’s public key). That explains why,
for example, you can connect to secure Web sites across the Web despite the fact that you may not
have a public key. Behind the scenes, when your browser connects to a secure site, your browser and
site’s Web server exchange messages that contain information about the encryption techniques each
supports. Then the server sends your browser a message that contains the server’s public key. The
Web server does not encrypt the message in which it sends its public key. Your browser, in turn, will
use the server’s public key to encrypt a message that contains numbers that each can use to generate
a session key that both the server and browser can then use to encrypt and decrypt the messages
they exchange.

If your Web site contains applications that access sensitive data (such as corporate human resources
information or sales data), you may want to restrict the users who can run the applications to those
who can authenticate themselves using a digital certificate (a client certificate). In some cases, you
may require only that a user accessing a resource have a certificate, meaning that any certificate will
do. In other cases, you may require a specific certificate, which means that you will likely map the
certificate to an account you create on your system for the user. Before you can use client certificates
within Internet Information Server (IIS), you must first assign a certificate to the server.

To enable client certificates within IIS, perform these steps:

1. Select Start | Settings | Control Panel. Windows will display the Control Panel window.

2. Within the Control Panel window, double-click the Administrative Tools icon. Windows will
open the Administrative Tools window.

3. Within the Administrative Tools window, double-click the Internet Services Manager icon.
Windows will display the IIS snap-in.

4. Within the IIS snap-in, right-click the Web site (or page) you desire. Windows will display a
pop-up menu.

5. Within the pop-up menu, select Properties. Windows will display the item’s Properties dialog box.

6. Within the Properties dialog box, click the Directory Security tab. Windows will display the
Directory Security sheet, shown in Figure 12-18.

P:\010Comp\Tip&Tec\394-8\ch12.vp
Friday, January 04, 2002 4:27:02 PM

Color profile: Generic CMYK printer profile
Composite Default screen

C h a p t e r 1 2 : S e c u r i t y a n d P e r f o r m a n c e 6 1 3

Tip&Tec / HTML & Web Design Tips & Techniques / Anderson, King, Jamsa / 9394-8 / Chapter 12

7. Within the Secure Communications section, click Edit. Windows will display the Secure
Communications dialog box. Next, select the Require secure channel (SSL) check box, placing
a check mark in the box. To connect to the page in the future, the user must use a secure connection.

8. Within the Client Certificates field, select the setting you desire and then click OK. Table 12-1
briefly describes the settings you can use.

Figure 12-18 Using the IIS Secure Communications sheet to control the use of client certificates

Setting Purpose

Accept Client Certificates The server will accept, but will not require, a client certificate.

Require Client Certificates The server will require a client certificate before the user can connect to the resource.

Ignore Client Certificates The server will ignore client certificates.

Table 12-1 Settings that Control the Use of Client Certificates in IIS

P:\010Comp\Tip&Tec\394-8\ch12.vp
Friday, January 04, 2002 4:27:02 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Auditing System Events to Detect Intruders
Across the Internet, hackers use many techniques to attack systems. Normally, as hackers perform
their attacks, they cause the operating system to generate events so that you may be able to detect an
ongoing attack or track down the hacker after the fact. In general, an audit trail consists of one or
more log files the operating system maintains to track the activities users perform. Within the Unix
environment, for example, different applications create log files that system administrators can view
to monitor system events. Using audit trails may help you catch a hacker who has successfully broken
into your system. More important, however, audit trails may alert you to the fact that a hacker attack
is in progress. Within Windows 2000, a special program called the Event Viewer lets system
administrators view a log of various system events, as shown in Figure 12-19.

The Event Viewer logs three event types: application, security, and system. In this Tip, your focus
will be on security events.

To display the Windows 2000 Event Viewer, perform these steps:

1. Select Start | Settings | Control Panel. Windows will open the Control Panel.

2. Within the Control Panel window, double-click the Administrative Tools icon. Windows will
display the Administrative Tools window.

3. Within the Administrative Tools window, double-click the Event Viewer icon. Windows will
display the Event Viewer.

6 1 4 H T M L & W e b D e s i g n T i p s & T e c h n i q u e s

Tip&Tec / HTML & Web Design Tips & Techniques / Anderson, King, Jamsa / 9394-8 / Chapter 12

Figure 12-19 Within Windows 2000, administrators use the Event Viewer to monitor system logs

P:\010Comp\Tip&Tec\394-8\ch12.vp
Friday, January 04, 2002 4:27:02 PM

Color profile: Generic CMYK printer profile
Composite Default screen

4. Within the Event Viewer, click the Security entry. The Event Viewer will display the security
log, as shown in Figure 12-20.

Within the Event Viewer, you can view details about a specific event by double-clicking the event’s
entry within the log file. The Event Viewer will display an Event Properties dialog box that describes
the event, as shown in Figure 12-21.

To monitor security events within Windows 2000, you must first enable security logging. Depending
on whether your system uses domain-level or local-level policies, the steps you must perform to enable
security logging will differ.

To enable security settings within a system that uses local-level policies, for example,
you would perform these steps:

1. Select Start | Settings | Control Panel. Windows will open the Control Panel.

2. Within the Control Panel window, double-click the Administrative Tools icon. Windows will
display the Administrative Tools window.

3. Within the Administrative Tools window, double-click the Local Security Policy icon. Windows
will display the Local Security Settings window.

4. Within the Local Security Settings window, double-click the policy you want to audit. Windows
will display the Local Security Policy Setting dialog box.

C h a p t e r 1 2 : S e c u r i t y a n d P e r f o r m a n c e 6 1 5

Tip&Tec / HTML & Web Design Tips & Techniques / Anderson, King, Jamsa / 9394-8 / Chapter 12

Figure 12-20 Viewing the security log within the Event Viewer

P:\010Comp\Tip&Tec\394-8\ch12.vp
Friday, January 04, 2002 4:27:03 PM

Color profile: Generic CMYK printer profile
Composite Default screen

5. Within the Local Security Policy Setting dialog box, select the Success check box to enable logging
for successful operations; select the Failure check box to enable logging for unsuccessful operations.

Using the Local Security Policy settings, you can set the policies briefly described in Table 12-2.

6 1 6 H T M L & W e b D e s i g n T i p s & T e c h n i q u e s

Tip&Tec / HTML & Web Design Tips & Techniques / Anderson, King, Jamsa / 9394-8 / Chapter 12

Figure 12-21 Viewing specifics about an Event

Policy Purpose

Account Logon Tracks logon and logoff operations for which this computer authenticated the account.

Account Management Tracks all changes to user and system accounts.

Directory Service Access Tracks the use of the active directory.

Logon Events Tracks all users logging onto or off of this computer.

Object Access Tracks each access to a directory, file, registry, or printer object.

Policy Change Tracks changes to accounts rights, audit policies, and trust policies.

Privilege Use Tracks each user’s exercise of a privilege.

Process Tracking Tracks when programs run, end, and duplicate handles.

System Events Tracks system operations that change log files.

Table 12-2 Security Settings that Windows 2000 Should Log

P:\010Comp\Tip&Tec\394-8\ch12.vp
Friday, January 04, 2002 4:27:04 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Exploiting the NTFS File System
Within an operating system, special software called the file system manages the files and folders that
reside on your disk. Each time you create, change, delete, or rename a file or folder, you interact with
the file system. If you are using a Windows NT or Windows 2000 server, you can improve your site’s
security by using the NT file system (NTFS).

Using NTFS, you can assign specific permissions to each file and folder. These permissions control
which users can access a resource and what each user can do with it. Should a hacker gain access to
your server, for example, the file permissions that you assign to files and folders may limit the information
the hacker can access.

To determine your current file system, perform these steps:

1. On the Windows desktop, double-click the My Computer icon. Windows will display the
My Computer window, which displays icons for each of your disk drives.

2. Within the My Computer window, right-click the icon that corresponds to your hard drive.
Windows will display a pop-up menu.

3. Within the pop-up menu, select the Properties icon. Windows will display the disk’s
Properties dialog box, which displays the file system type, as shown in Figure 12-22.

Tip&Tec / HTML & Web Design Tips & Techniques / Anderson, King, Jamsa / 9394-8 / Chapter 12

C h a p t e r 1 2 : S e c u r i t y a n d P e r f o r m a n c e 6 1 7

Figure 12-22 Using a disk’s Properties dialog box to view the file system type

P:\010Comp\Tip&Tec\394-8\ch12.vp
Friday, January 04, 2002 4:27:04 PM

Color profile: Generic CMYK printer profile
Composite Default screen

As discussed, using NTFS you can assign to files specific permissions that control which users can
access each of them and how.

To assign permissions to a file or folder within NTFS, perform these steps:

1. Within Windows Explorer, right-click the file or folder you want to protect. Windows will
display a pop-up menu.

2. Within the pop-up menu, select Properties. Windows will display the Properties dialog box.

3. Within the Properties dialog box, click the Security tab. Windows will display the Security
sheet, as shown in Figure 12-23.

4. Within the Security sheet, click the Add button to add users or groups to the permission list.
Windows will display the Select Users or Groups dialog box.

5. Within the Select Users or Groups dialog box, click the user or group you want to add. To add
multiple users or groups, hold down the CTRL key on your keyboard as you click the mouse on
the entries. After you select the users and groups you want, click OK.

6. Within the Security sheet, choose the security settings you want to allow or deny for the new
users or groups and then click OK.

6 1 8 H T M L & W e b D e s i g n T i p s & T e c h n i q u e s

Tip&Tec / HTML & Web Design Tips & Techniques / Anderson, King, Jamsa / 9394-8 / Chapter 12

Figure 12-23 Viewing a file’s Security sheet within the Properties dialog box

P:\010Comp\Tip&Tec\394-8\ch12.vp
Friday, January 04, 2002 4:27:05 PM

Color profile: Generic CMYK printer profile
Composite Default screen

TE
AM
FL
Y

Team-Fly®

Another advantage of NTFS is that it lets you encrypt files and folders on your disk. Again, should
a hacker gain access to your server, the hacker will not be able to view the encrypted file’s contents.
After you encrypt a file within NTFS, you can continue to use the file just as you always have. NTFS
will decrypt the file’s contents automatically for you each time you open the file (or a file within an
encrypted folder). NTFS encrypts files based on your username, so should another user later access
the system, that user cannot decrypt your files.

To encrypt a file or folder using NTFS, perform these steps:

1. Within Windows Explorer, right-click the file or folder you want to encrypt. Windows
will display a pop-up menu.

2. Within the pop-up menu, click the Properties option. Windows displays the Properties
dialog box.

3. Within the Properties dialog box, click the Advanced button. Windows will display the
Advanced Attributes dialog box, as shown in Figure 12-24.

4. Within the Advanced Attributes dialog box, select the Encrypt Contents to Secure Data
check box, placing a check mark in the box. Click OK.

The only disadvantage of encrypting files is that each time you open or save the file, NTFS must
either decrypt or encrypt the file’s contents. The process of encrypting and decrypting files adds overhead,
which, on a busy server, could degrade performance. Because most users, however, do not normally
open and save files in quick succession, most will not notice the slight overhead introduced by encryption
and decryption. Likewise, within a Web environment, there are many files whose contents you would
not encrypt, such as the HTML files that users download when they visit your site.

C h a p t e r 1 2 : S e c u r i t y a n d P e r f o r m a n c e 6 1 9

Tip&Tec / HTML & Web Design Tips & Techniques / Anderson, King, Jamsa / 9394-8 / Chapter 12

Figure 12-24 Using the Advanced Attributes dialog box to encrypt a file

P:\010Comp\Tip&Tec\394-8\ch12.vp
Friday, January 04, 2002 4:27:07 PM

Color profile: Generic CMYK printer profile
Composite Default screen

6 2 0 H T M L & W e b D e s i g n T i p s & T e c h n i q u e s

Tip&Tec / HTML & Web Design Tips & Techniques / Anderson, King, Jamsa / 9394-8 / Chapter 12

Finally, to improve your site’s security, you may want to know which users access what files or
folders and when.

Using NTFS, you can enable auditing for specific files and folders by performing
these steps:

1. Within Windows Explorer, right-click the file or folder you want to audit. Windows will
display a pop-up menu.

2. Within the pop-up menu, choose Properties. Windows will display the Properties dialog box.

3. Within the Properties dialog box, click the Security tab. Windows will display the Security sheet.

4. Within the Security sheet, click the Advanced button. Windows will display a dialog box that
contains the file’s current permissions.

5. Within the dialog box, click the Audit tab. Windows will display the Audit dialog box.

6. Within the Audit dialog box, click the Add button. Windows will display the Select User or
Group dialog box.

7. Within the Select User or Group dialog box, choose the users or groups whose actions you
want to audit.

After you enable auditing, the NTFS will place entries in the Event Viewer as discussed in the
Tip “Auditing System Events to Detect Intruders.”

If you are not currently using the NTFS file system, you can convert your disk to NTFS
by performing these steps:

1. Using backup software, perform a complete backup of the files that reside on the disk.

2. Close the applications you are currently running.

3. Select Start | Run. Windows will display the Run dialog box.

4. Within the Run dialog box, type CMD and press ENTER. Windows will open a console window.

5. Within the console window, issue the following convert command, replacing drive: with the
drive letter of the disk drive you want to convert to NTFS:

C:\> convert drive: /fs:ntfs <Enter>

Disabling Remote Services
Many Web sites let users log into the network from a remote location. If your site does not need to
allow users to access the system from remote locations, you should disable your site’s remote services
to reduce the risk of a hacker’s exploiting the services to gain access to your system. Depending on
the operating system your system is running, the steps you must perform to prevent remote access

P:\010Comp\Tip&Tec\394-8\ch12.vp
Friday, January 04, 2002 4:27:07 PM

Color profile: Generic CMYK printer profile
Composite Default screen

will differ. For example, within the Unix/Linux environment, you should remove support for Telnet
as well as remote capabilities, including remote logins (rlogin) and remote shell (rsh) operations.
Further, at a minimum, you should disable anonymous FTP operations, and if your site does not
require users to be able to upload and download files using FTP, you should disable FTP completely.

Within Windows 2000, you can disable remote services by performing these steps:

1. Select Start | Settings | Control Panel. Windows will display the Control Panel window.

2. Within the Control Panel, double-click the Administrative Tools icon. Windows will display
the Administrative Tools window.

3. Within the Administrative Tools window, double-click the Services icon. Windows will display
the Services window, as shown in Figure 12-25.

4. Within the Services window, double-click one of the Remote services, such as Remote Access
Connection Manager. Windows will display a dialog box, within which you can configure the
service.

5. Within the dialog box, select Disabled from the Startup Type pull-down list and then click OK.

6. Repeat steps 4 and 5 for each of the Remote entries.

C h a p t e r 1 2 : S e c u r i t y a n d P e r f o r m a n c e 6 2 1

Tip&Tec / HTML & Web Design Tips & Techniques / Anderson, King, Jamsa / 9394-8 / Chapter 12

Figure 12-25 The Windows 2000 Services window

P:\010Comp\Tip&Tec\394-8\ch12.vp
Friday, January 04, 2002 4:27:08 PM

Color profile: Generic CMYK printer profile
Composite Default screen

There are times when users have a legitimate need to access a network remotely. If you have one
or more users who access the network via dial-up operations, you can increase your system security
by using a call-back system, similar to that shown in Figure 12-26.

6 2 2 H T M L & W e b D e s i g n T i p s & T e c h n i q u e s

Tip&Tec / HTML & Web Design Tips & Techniques / Anderson, King, Jamsa / 9394-8 / Chapter 12

Figure 12-26 A call-back system increases security for remote operations by limiting access to
known phone numbers

P:\010Comp\Tip&Tec\394-8\ch12.vp
Friday, January 04, 2002 4:27:09 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Using a call-back system, the remote user dials into the system using his or her modem. Depending
on the call-back software, the user may simply need to dial into a specific number, or the user may
also be required to provide a username and password or digital certificate after dial-up. The call-back
system will then disconnect the call and call the user back at a predetermined number, such as the
phone number of a modem at the user’s remote office or home. In this way, a hacker at any other
location cannot access the system remotely, because the call-back system will not place a call back
to the hacker’s modem.

If you are running a Unix-based site that requires remote access, you should disable the Unix r
commands previously discussed and replace them with applications such as ssh (secure shell) that use
the secure sockets layer to encrypt the messages users exchange with the site. On the Web, you can
find implementations of ssh for a wide range of workstations, including Linux and Windows systems.

If your server is Unix or Linux based, you should also consider disabling the finger and
whois commands, which hackers can use to gain more information about system users.

Using the finger command, for example, a hacker can determine which users are currently logged on.
Then, using whois to view specifics about a user, the hacker may be able to guess the user’s username
and password or to contact the user and simply ask the user his or her username and password (a
social-engineering attack).

� NOTE

If you have specific remote services you must support, you can improve your site’s security by
restricting remote service operations to specific times of the day. For example, by disabling a remote
service during nonworking hours, you reduce the opportunity for a hacker to break into a system.

Analyzing Your System’s Vulnerability
Several Web sites exist that you can use to test your site for common vulnerabilities. Most of the tests
these sites perform examine network-specific issues, as opposed to operating system vulnerabilities.
Fortunately, there are several utilities you can download and run that perform such specific tests. For
example, within the Unix/Linux environments, administrators often run a program named SATAN
(which stands for Security Administrator Tool for Analyzing Networks). Using SATAN, Unix
administrators can identify such vulnerabilities as holes in the network file system (NFS) or file
transport protocol (FTP) application, as well as possible exposure through remote shell configurations
and other services.

C h a p t e r 1 2 : S e c u r i t y a n d P e r f o r m a n c e 6 2 3

Tip&Tec / HTML & Web Design Tips & Techniques / Anderson, King, Jamsa / 9394-8 / Chapter 12

P:\010Comp\Tip&Tec\394-8\ch12.vp
Friday, January 04, 2002 4:27:10 PM

Color profile: Generic CMYK printer profile
Composite Default screen

� NOTE

Many Unix/Linux administrators are concerned about hackers running SATAN against the
administrator’s site to determine vulnerabilities that the hackers can later exploit. To prevent a
hacker from running SATAN against a Unix/Linux site, some sites install the Courtney or Gabriel
application, both of which detect when SATAN is running against a system. You can download these
applications from the Computer Incident Advisory Capability Web site, at http://ciac.llnl.gov/ciac/
ToolsUnixNetMon.html.

If you are using a Windows NT or Windows 2000 server, you can use a program such as LANguard
Network Scanner, which you can download to test your system, as shown in Figure 12-27.

To learn more about key security programs, visit http://www.insecure.org/tools.html, which features
a list of the Top 50 Security Tools.

6 2 4 H T M L & W e b D e s i g n T i p s & T e c h n i q u e s

Tip&Tec / HTML & Web Design Tips & Techniques / Anderson, King, Jamsa / 9394-8 / Chapter 12

Figure 12-27 Using the LANguard Network Scanner utility to examine a Windows-based
system’s vulnerabilities

P:\010Comp\Tip&Tec\394-8\ch12.vp
Friday, January 04, 2002 4:27:10 PM

Color profile: Generic CMYK printer profile
Composite Default screen

C h a p t e r 1 2 : S e c u r i t y a n d P e r f o r m a n c e 6 2 5

Tip&Tec / HTML & Web Design Tips & Techniques / Anderson, King, Jamsa / 9394-8 / Chapter 12

Processing Credit Card Data
Earlier in this chapter, you learned how to create a secure Web site, which is the first step you
must perform if you want to accept credit cards. Next, you must establish a merchant account with
a bank that lets you accept credit card payments. On the Web, several companies, such as PSiGate,
at http://www.psigate.com, offer software that you can use to easily integrate credit card processing
into Active Server Pages and other scripting technologies. Using the credit card processing software,
the scripts you create can easily authorize and process credit card payments.

To accept a credit card purchase, a Web site normally creates an HTML-based form that prompts
the user for credit card information. By placing the form on to a page that users access securely
(using https:// to launch an SSL-based connection), you prevent a hacker from intercepting a user’s
credit card information as the information makes its way across the Net.

Your primary challenge as a Web designer, however, is storing the credit card information on your
site after the secure transaction is completed. To maintain a record of your credit card transactions, you
must store the credit card data within one or more files. Unfortunately, if you leave the credit card
information on your server’s hard drive, you expose the credit cards to the risk of theft by a hacker.
In the past, hackers have successfully broken into Web sites and stolen files that contain credit card
information that the site stored in a plain-text file (meaning that the file was not encrypted). When
you store credit card information, you must determine how you will protect the information from
hackers as well as your own employees (such as programmers and database administrators who
likely have access to the data).

Ideally, you should move credit card information off of your server as quickly as possible. The
longer the data remains on your server, the greater the risk of theft. Regardless of where you store
the credit card data, you should store the information in an encrypted file.

Because storing credit card information can be a challenging process, you may find it easier
initially to outsource your company’s credit card operations to a larger company that performs
such e-commerce operations on a regular basis.

Taking a Close Look at a Web Site’s Performance Chain
Depending on whom you ask, the definition of Web site performance will differ. To a user visiting a
site, performance is a measure of the site’s responsiveness—the length of time the user must wait to
see the results desired. To a Web site administrator, performance often is a measure of the site’s user
or hit capacity, meaning the number of simultaneous or near simultaneous hits the site can process
in a given period of time. By focusing on the site’s capacity, Web administrators take slow network
connections (such as dial-up connections) out of the equation. Although it may be fair from a server-
performance perspective to eliminate the user’s connection speed from the equation, Web page designers
must fully consider the ramifications of slow download times on the pages they create.

As shown in Figure 12-28, to truly measure a Web site’s performance, you must take into account
several factors, the combination of which creates a performance chain that influences the site’s
responsiveness as perceived by the visitor.

P:\010Comp\Tip&Tec\394-8\ch12.vp
Friday, January 04, 2002 4:27:10 PM

Color profile: Generic CMYK printer profile
Composite Default screen

6 2 6 H T M L & W e b D e s i g n T i p s & T e c h n i q u e s

Tip&Tec / HTML & Web Design Tips & Techniques / Anderson, King, Jamsa / 9394-8 / Chapter 12

Figure 12-28 The chain of Web server performance

P:\010Comp\Tip&Tec\394-8\ch12.vp
Friday, January 04, 2002 4:27:12 PM

Color profile: Generic CMYK printer profile
Composite Default screen

C h a p t e r 1 2 : S e c u r i t y a n d P e r f o r m a n c e 6 2 7

Tip&Tec / HTML & Web Design Tips & Techniques / Anderson, King, Jamsa / 9394-8 / Chapter 12

In the Tip “Monitoring Server Performance,” you will learn how to monitor your server’s CPU
use and available free memory to determine whether your server has sufficient processing resources
to handle its current workload. Further, you will learn how to use log files to determine the number
of hits you are receiving and the frequency of hits.

In addition to monitoring your server’s performance, you can gain significant insight into your
server’s basic capabilities, as compared to other servers on Web, by running special benchmark
programs. Several Web sites offer benchmark programs you can download and run on your server.
The benchmarks simulate a range of user operations, so you can measure such server capabilities
as these:

• Ability to support simultaneous connections.

• Support for connections at a limited line speed.

• Processing of dynamic GET operations as well as static GET and POST operations.

• Support for persistent connections (HTTP 1.1).

• Ability to process dynamic ad rotations using cookies and table lookups.

• File access speed.

• Support for socket-based communication.

• Secure operations such as SSL-based transactions.

Most of the benchmark programs are available for major server platforms, such as Windows 2000,
Unix/Linux (Apache), and so on. Further, to help you understand the processing the benchmarks
perform, you can normally download the source code programmers wrote to create the benchmark.
With the source code in hand, you can compile the code into an executable program for use on your
server platform.

For specifics on Web server benchmark programs, visit the following sites:

SpecWeb http://www.specbench.org

Webstone http://www.mindcraft.com/webstone

Webbench http://www.zdnet.com/zdbop

After you run the benchmark programs, you may want to take a closer look at your server’s
hardware capabilities. The following sections briefly examine aspects of your server that you may
want to consider as you evaluate your server’s performance.

Network Connection Type
Across the Web, sites connect to the Internet in a variety of ways: using high-speed T1 connections,
or digital subscriber line (DSL) connections, or cable modems. Depending on the site’s connection type,
the speed at which the visitor can download data will differ. Table 12-3 briefly describes the speeds
of common connection types.

P:\010Comp\Tip&Tec\394-8\ch12.vp
Friday, January 04, 2002 4:27:12 PM

Color profile: Generic CMYK printer profile
Composite Default screen

6 2 8 H T M L & W e b D e s i g n T i p s & T e c h n i q u e s

Tip&Tec / HTML & Web Design Tips & Techniques / Anderson, King, Jamsa / 9394-8 / Chapter 12

Depending on your connection type, you can find different sites on the Web that will
measure your connection’s true bandwidth. For example, if you connect your site to

the Web using a cable modem, you should visit http://www.bandwidthplace.com/speedtest and
run the bandwidth evaluation shown in Figure 12-29. Similarly, if you are using a DSL connection,
you should visit http://www.dslreports.com/stest to measure your connection’s bandwidth.

PC Processing Speed
Within the PC, the CPU is the workhorse that executes the instructions within the operating system
and server programs. In general, the faster your server’s CPU speed, the faster your site’s performance.
CPU speed is measured in cycles per second, or Hertz. The CPU contains a clock that ticks a specific
number of times per second; each time the clock ticks, the CPU executes an instruction. Within a
500 MHz (500 megahertz) CPU, for example, the clock ticks 500 million times per second. Likewise,
within a 2 GHz (2 gigahertz) CPU, the clock ticks 2 billion times per second. Most users normally assume
that using a 2 GHz CPU, which is four times faster than a 500 MHz CPU, would make the server four
times faster. Unfortunately, that is not the case. In the Tip “Monitoring Server Performance,” you will
learn how to measure your CPU’s use. Assume that your server normally maintains a 20 percent CPU
utilization rate (which is actually quite high). If you were to upgrade a 500 MHz processor to a 2 GHz
processor, you would see gains from the CPU’s faster speed only when the CPU is in use (which
means 20 percent of the time). Thus, rather than making your server four times faster (which would

Connection Type Description Download Speed Upload Speed

ISDL ISDN DSL 144 Kbps 144 Kbps

HDSL High bit-rate DSL 1.5 Mbps 1.5 Mbps

SDSL Symmetric DSL 1.5 Mbps 1.5 Mbps

ADSL Asymmetric DSL Based on distance,
up to 9 Mbps

Based on distance, down
to 384 Kbps

RADSL Rate Adaptive DSL Varies Varies

VDSL Very high bit-rate DSL Up to 50 Mbps Up to 16 Mbps

Satellite TV satellite Up to 500 Kbps Up to 60 Kbps

Cable TV cable Up to 1.5 Mbps Up to 1.5 Mbps

T1 Leased line Up to 1.5 Mbps Up to 1.5 Mbps

T3 Leased line Up to 45 Mbps Up to 45 Mbps

Table 12-3 Common Server Connection Speeds

P:\010Comp\Tip&Tec\394-8\ch12.vp
Friday, January 04, 2002 4:27:12 PM

Color profile: Generic CMYK printer profile
Composite Default screen

TE
AM
FL
Y

Team-Fly®

C h a p t e r 1 2 : S e c u r i t y a n d P e r f o r m a n c e 6 2 9

Tip&Tec / HTML & Web Design Tips & Techniques / Anderson, King, Jamsa / 9394-8 / Chapter 12

be the case if your CPU were in use 100 percent of the time), the 2 GHz CPU would increase the
server’s performance by only 80 percent:

Performance improvement = (Percentage of use) * (Speed gained)

= (20%) * (4)

= 80%

Figure 12-29 Measuring the true bandwidth of a cable-modem connection

P:\010Comp\Tip&Tec\394-8\ch12.vp
Friday, January 04, 2002 4:27:13 PM

Color profile: Generic CMYK printer profile
Composite Default screen

The amount of RAM the server contains is also key to performance. Before a CPU can run a program,
the program and the program’s data must reside in RAM. To improve performance, a server must
be able to hold all the programs it runs on a regular basis within RAM. Otherwise, the server must
continually load the programs from disk into RAM, which is a slow process (the mechanical disk
drive is much slower than the computer’s electronic RAM). Most administrators will tell you that
the more RAM your server contains, the better. However, rather than simply throwing RAM (and
money) at your server, you should monitor your server’s amount of unused physical memory (as
discussed in the Tip “Monitoring Server Performance”). If your server is not running short on
physical memory, adding more RAM will not improve your server’s performance.

Disk Access Time
Because a disk drive is a mechanical device (has moving parts), the disk drive is much slower than
the computer’s electronic components. Server administrators improve performance by adding more
RAM, to reduce slow disk operations. That said, many server applications must eventually read or
write information to or from disk. By monitoring the disk operations your server performs, you can
gain an understanding of how much a faster disk drive would improve your server’s performance.
For most servers, spending more money to purchase a faster disk drive is a good initial investment.

Operating System and Server Application
The operating system and applications that a server runs have a very significant impact on the server’s
performance. On the Web, you can find numerous benchmark reports that compare and contrast
operating system performance under various server loads. In general, however, for most Web sites,
any of the major operating systems will offer more than adequate performance. If you have a site that
receives millions of hits a day, the operating system’s performance will be a more critical factor. If
you manage a smaller site, your priorities should be ease of management (meaning that you should
use an operating system with which you are familiar), security, and, finally, performance.

Proxy Servers and Web Caching Devices
Within a Web site, the contents of many HTML-based pages never change. To reduce overhead
on the server, many sites place a proxy server or Web-caching device between the server and the
Internet, as shown in Figure 12-30. In general, the proxy server or cache device maintains a copy
of static content, which can be used to satisfy user requests. Depending on your site’s use of static
pages, the overhead on your server that you eliminate using such a front end can be quite significant.
Further, many sites allow the proxy server to perform simple Active Server Pages (ASP) or PHP
operations that generate output that does not depend on data stored on the server. For the specifics
on integrating a proxy server or Web cache into your site, visit http://wwwcache.ja.net/servers.

6 3 0 H T M L & W e b D e s i g n T i p s & T e c h n i q u e s

Tip&Tec / HTML & Web Design Tips & Techniques / Anderson, King, Jamsa / 9394-8 / Chapter 12

P:\010Comp\Tip&Tec\394-8\ch12.vp
Friday, January 04, 2002 4:27:13 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Creating a Web Farm
As your Web traffic increases, managing your site can become much more difficult. Because users
expect your system to be up and running 7 days a week, 24 hours a day, performing even simple
operations, such as installing new software and restarting the system, can become challenging. To
simplify such operations, some sites use a Web farm that consists of two or more identical sites (which
administrators often call mirrored sites). As shown in Figure 12-31, a Web farm uses one server
that receives the incoming messages. That server then forwards messages (requests) to one of the
mirrored sites. If you must restart one of the mirrored servers, or if one of the mirrored servers fails,
the front-end server can simply route messages to one of the other servers.

Using a Web farm, a busy site can perform load balancing by spreading the site’s requests across
multiple servers. If the site becomes very busy, administrators can simply add another server to the
Web farm.

Although Figure 12-31 implies that the servers within the Web farm reside in close proximity to
one another, the servers could reside at geographically dispersed locations. In fact, by placing servers
in different regions, you better protect your site from disasters, such as fires or floods. In addition,
you reduce the risk that a single network failure will prevent users from accessing your site.

Monitoring Server Performance
Most network administrators will argue that to provide optimal performance, you should always
use your fastest computer as your Web server. Further, many administrators have strong opinions
regarding a Web server’s minimum hardware configuration, such as the minimum amount of RAM
the server should use. The reality, however, is that your server’s performance must support your
server’s workload. If your server runs only Web software and your site experiences only a few

C h a p t e r 1 2 : S e c u r i t y a n d P e r f o r m a n c e 6 3 1

Tip&Tec / HTML & Web Design Tips & Techniques / Anderson, King, Jamsa / 9394-8 / Chapter 12

Figure 12-30 Using a proxy server or Web-caching device to reduce server overhead

P:\010Comp\Tip&Tec\394-8\ch12.vp
Friday, January 04, 2002 4:27:14 PM

Color profile: Generic CMYK printer profile
Composite Default screen

hundred (or even a few thousand) hits per hour, a low-end PC will more than likely meet your
needs. Rather than guess whether your server hardware is sufficient, you should monitor your
server’s performance.

Normally, the first two indicators that your server’s hardware may not be sufficient
are the percentage of CPU use and the amount of available physical memory. Within

Windows 2000, you can quickly monitor these two settings by performing these steps:

1. Press the CTRL-ALT-DEL keyboard combination. Windows 2000 will display the
Windows Security dialog box.

2. Within the Windows Security dialog box, select Task Manager. Windows will open
the Windows Task Manager dialog box.

3. Within the Windows Task Manager dialog box, select the Performance tab. Windows will
display your system’s current CPU use and physical memory use, as shown in Figure 12-32.

6 3 2 H T M L & W e b D e s i g n T i p s & T e c h n i q u e s

Tip&Tec / HTML & Web Design Tips & Techniques / Anderson, King, Jamsa / 9394-8 / Chapter 12

Figure 12-31 A Web farm consists of multiple identical (mirrored) servers

P:\010Comp\Tip&Tec\394-8\ch12.vp
Friday, January 04, 2002 4:27:15 PM

Color profile: Generic CMYK printer profile
Composite Default screen

C h a p t e r 1 2 : S e c u r i t y a n d P e r f o r m a n c e 6 3 3

Tip&Tec / HTML & Web Design Tips & Techniques / Anderson, King, Jamsa / 9394-8 / Chapter 12

In addition, Windows 2000 lets you monitor a wide range of performance settings using the
Performance window, shown in Figure 12-33.

To use the Performance window to monitor your server, perform these steps:

1. Select Start | Settings | Control Panel. Windows will open the Control Panel window.

2. Within the Control Panel, double-click the Administrative Tools icon. Windows will open the
Administrative Tools window.

3. Within the Administrative Tools window, double-click the Performance icon. Windows will
open the Performance window, shown in Figure 12-33.

4. To monitor a specific item within the Performance window, click the plus sign (+) that appears
in the window’s toolbar. Windows will display the Add Counters dialog box, as shown in
Figure 12-34.

5. Within the Add Counters dialog box, select the object you want to monitor and then the specific
characteristic of the object, which Windows 2000 refers to as a counter, and then click OK.

Figure 12-32 Monitoring CPU and physical memory use within Windows 2000

P:\010Comp\Tip&Tec\394-8\ch12.vp
Friday, January 04, 2002 4:27:15 PM

Color profile: Generic CMYK printer profile
Composite Default screen

6 3 4 H T M L & W e b D e s i g n T i p s & T e c h n i q u e s

Tip&Tec / HTML & Web Design Tips & Techniques / Anderson, King, Jamsa / 9394-8 / Chapter 12

Figure 12-33 Using the Windows 2000 Performance window to monitor a server’s performance

Figure 12-34 Using the Add Counters dialog box to select an item for performance monitoring

P:\010Comp\Tip&Tec\394-8\ch12.vp
Friday, January 04, 2002 4:27:15 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Most servers also let you enable logging so you can see the actual operations that browsers are
asking the server to perform (such as the specific HTML pages that browsers are requesting). Using
the log file, you can monitor your site’s use, get accurate hit statistics, and more. The following
output is an example of the type of contents that the IIS log file produces:

152.163.188.195 [04/Dec/2001:22:11:34 -0500]

"GET /bands-up1.gif HTTP/1.0" 200 437

152.163.188.193 [04/Dec/2001:22:11:34 -0500]

"GET /bands-over1.gif HTTP/1.0" 200 437

152.163.188.227 [04/Dec/2001:22:11:34 -0500]

"GET /links-over1.gif HTTP/1.0" 200 360

152.163.188.161 [04/Dec/2001:22:11:34 -0500]

"GET /home-over2.gif HTTP/1.0" 200 386

152.163.188.194 [04/Dec/2001:22:11:42 -0500]

"GET /CommercialButtonOver.jpg HTTP/1.0" 200 5889

152.163.188.197 [04/Dec/2001:22:11:44 -0500]

"GET /emailButtonOver1.jpg HTTP/1.0" 200 945

152.163.188.228 [04/Dec/2001:22:12:02 -0500]

"GET /gallery2.html HTTP/1.0" 200 16808

152.163.188.164 [04/Dec/2001:22:12:16 -0500]

"GET /al2.jpg HTTP/1.0" 200 10273

152.163.188.195 [04/Dec/2001:22:12:16 -0500]

"GET /aaron1.jpg HTTP/1.0" 200 16805

152.163.188.228 [04/Dec/2001:22:13:59 -0500]

"GET /phone-_.jpg HTTP/1.0" 200 3870

If the number of hits to your Web site is large, so too will be the size of the server’s log file.
The larger the log file, the more difficult it will be for you to gain meaningful information from
the log file simply by viewing its contents.

On the Web, several companies offer software tools you can use to manipulate a large
log file to extract the information you need:

SurfStats Log Analyzer http://www.surfstats.com/

AWStats http://awstats.sourceforge.net/

WebTrends Log Analyzer http://www.webtrends.com/products/log/default.htm

C h a p t e r 1 2 : S e c u r i t y a n d P e r f o r m a n c e 6 3 5

Tip&Tec / HTML & Web Design Tips & Techniques / Anderson, King, Jamsa / 9394-8 / Chapter 12

P:\010Comp\Tip&Tec\394-8\ch12.vp
Friday, January 04, 2002 4:27:16 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Tip&Tec / HTML & Web Design Tips & Techniques / Anderson, King, Jamsa / 9394-8 /
Blind Folio 636

P:\010Comp\Tip&Tec\394-8\ch12.vp
Friday, January 04, 2002 4:27:16 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Index

Note: Page numbers in italics refer to illustrations or charts.

NUMBERS and SYMBOLS
404 errors. See “Status: 404 not found” errors
@font-face declarations, CSS rules for embedding fonts

within XHTML Web pages, 250–251
@import command, XHTML media attributes, 260
@import statements, CSS (Cascading Style Sheets), 168–169
@language command, ASP (Active Server Pages), 528, 529
@media rule. See CSS @media rule
; (semicolon) statement terminator, PHP4, 472
\ (backslash) escape character, PHP4, 472–473
“ (double quote character), writing on Web pages, 533–535
<!-- --> (comment) tags, 24–25

See also comments
JavaScript and, 362

A
a:active pseudoclass, hyperlinks appearance, 191
<a> (anchor) tags

graphical hyperlink anchors, 300–301
href attribute, 58–59, 93–95
hyperlinks and, 40
image map simulation, 100–101
links arrays (JavaScript) and, 398–399
multiple <iframe> tags, 256–257
target attribute, 58, 59
thumbnail images within tables, 93–95
video and, 332

abort event, JavaScript events, 378
absolute pathnames, relative pathnames comparison, 14–16
absolute positioning, overlapping text, 178
absolute and relative values for dimensioning

cells, 85–86
<table> tags, 84–85

“Accept Cookie” message box, sessions via PHP4, 501
accessing Web sites via ASP, 562–565

See also ASP (Active Server Pages)
action attribute, 562
ConnectionString property, 564

Count field, 564
Execute method, 564
HTTP (HyperText Transport Protocol), 565
security certificates, 565
Server.CreateObject method, 563–564
SQL CREATE TABLE statements, 563
SQL INSERT statements, 563
SQL SELECT statements, 563
SSL (Secure Socket Layer) protocol, 565
type attribute, 564
username/password pairs, 562–563

accessing Web sites via PHP4, 496–498, 509–511
See also MySQL databases and tables; PHP4
action attribute, 496
fopen() function, 497
header() function, 497
HTTP (HyperText Transport Protocol), 498
mysql_connect() function, 511
mysql_num_rows() function, 511
mysql_query() function, 511
mysql_select_db() function, 511
name attribute, 496
SQL CREATE statements, 509–510
SQL INSERT statements, 510
SSL (Secure Socket Layer) protocol, 498
username/password pairs, 509

accesskey attribute
<input> tags, 120
<label> tags and form shortcut keys, 149

action attribute
accessing Web sites via ASP, 562
accessing Web sites via PHP4, 496
<form> tags, 117
replacing Submit and Reset buttons with images,

141–142
retrieving form results from ASP Form collection, 550
retrieving form results from ASP QueryString

collection, 553–554
sending data from HTML forms to PHP scripts,

484–485, 486, 487

637

Tip&Tec / HTML & Web Design Tips & Techniques / Anderson, King, Jamsa / 9394-8 / Index

P:\010Comp\Tip&Tec\394-8\index.vp
Monday, January 07, 2002 2:25:06 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Copyright 2002 by The McGraw-Hill Companies, Inc. Click Here for Terms of Use.

sending form results via e-mail, 143, 144
SQL queries and results via ASP, 570

Active Server Pages. See ASP
ActiveX objects, 419–420, 422–424, 460–462

See also Java applets
embedding in Web pages, 432–435
marquee control, 460–462
Microsoft Chat IRC, 457–460
security, 424
Security Settings dialog box, 435–437
virus-detection software and, 609

Ad Rotator, 573–580
See also ASP (Active Server Pages); banner ads
bannerImageAltAttribute description, 574
bannerImageURL description, 574
bannerRedirectionURL description, 574
bannerWeight description, 574
BORDER keyword, 574
GetAdvertisement method, 575, 577–579
HEIGHT keyword, 574
REDIRECT keyword, 574
redirector file, 573
Response.Redirect method, 576
Response.Write method, 575, 577
rotator schedule file, 573–574
Server.CreateObject method, 575
tracking impressions and click-throughs, 576–580
WIDTH keyword, 574

Add Counters dialog box, monitoring Web server
performance, 633, 634

addToList() function, selection list items availability,
134–135, 136

Adobe Photoshop. See Photoshop
advertisements. See banner ads
a:hover pseudoclass, hyperlinks appearance, 191, 192
align attribute

aligning cell content horizontally and vertically,
86–87, 88

aligning tables on Web pages, 89
<hr> (horizontal rule) tags, 46
inserting Java applets into Web pages, 427
multiple <iframe> tags, 255

aligning cell content horizontally and vertically, 86–88
See also tables
align attribute, 86–87, 88
valign attribute, 87, 88

aligning labels, form elements and CSS, 206–209
aligning tables on Web pages, 89

See also tables
aligning text and graphics, 37–39

<center> tags, 39
 (image) tags, 38
<p> (paragraph) tags, 38–39

aligning Web page content via borders, 108–110
See also tables
border attribute, 109–110

aligning Web page text. See text-align property

a:link pseudoclass, hyperlinks appearance, 191
alinkColor property

JavaScript document object color properties, 402
JavaScript document objects, 394

alpha property, filter properties, 205
alt attribute and (image) tags, 37, 278–281
alt attribute and text-only viewers, 278–281

See also graphics; (image) tags
height attribute, 279
longdesc attribute, 281
width attribute, 279

analyzing system vulnerabilities, 623–624
See also security
LANguard Network Scanner, 624
SATAN (Security Administrator Tool for Analyzing

Networks), 623–624
anchor tags. See <a> tags
anchors arrays, JavaScript document objects, 394
animation, 316–357

banner ads, 338–340
broadcasting streaming audio and video, 348–351
determining use of, 325–326
DHTML (Dynamic HTML), 318–320
Flash, 322–323, 324, 342–348
GIF (Graphics Interchange Format), 320–322, 334–342
onLoad events and, 410–411
overview, 317–318
persistence of vision, 317
plug-in software, 318
Shockwave, 324–325
sine wave and SinLogo.class (Java applets), 450–451
SMIL (Synchronized Multimedia Integration

Language) and, 354–357
sound and, 326–328
streaming audio and video, 351–352
video and, 328–332
virtual tours, 332–334
Web cams and, 352–354
Web design and, 318

animation and onLoad events, 410–411
See also JavaScript
 (image) tags, 410
nextImage() function, 411
onLoad event handler, 410
src attribute, 411

animation programs, GIF animation, 334–335
AnimText.class, Java applets, 440–441
anti-aliasing, 313–315

See also graphics; images
<applet> tags, 420

See also Java applets
code attribute, 424–425
codebase attribute, 431–432
inserting Java applets into Web pages, 424–425

applets arrays, JavaScript document objects, 394
arrays

document, 390–392

6 3 8 H T M L & W e b D e s i g n T i p s & T e c h n i q u e s

Tip&Tec / HTML & Web Design Tips & Techniques / Anderson, King, Jamsa / 9394-8 / Index

P:\010Comp\Tip&Tec\394-8\index.vp
Monday, January 07, 2002 2:25:07 PM

Color profile: Generic CMYK printer profile
Composite Default screen

TE
AM
FL
Y

Team-Fly®

images. See images arrays (JavaScript)
JavaScript, 371–372
links. See links arrays (JavaScript)

ASP (Active Server Pages), 524–585
accessing Web sites via, 562–565
Ad Rotator, 573–580
comments, 530–531
connecting to MySQL DBMS via MyODBC driver,

559–561
cookies collection, 547–550
creating, 527, 528–530
hiding ASP source code from Web site visitors, 531
HTML output stream, 539–543
@language command, 528, 529
marquee control (ActiveX), 462
objects, 532–539
overview, 525–527
preventing Web browsers from displaying “stale,”

543–545
publishing, 527
PWS (Personal Web Server) and, 527
redirecting Web browsers, 545–547
Response object, 532
Response.Buffer property, 539–541
Response.Clear method, 542–543
Response.End method, 543
Response.Flush method, 541–542
Response.Write method, 529, 532–539
retrieving form results from ASP Form collection,

550–552
retrieving form results from ASP QueryString

collection, 553–556
retrieving information from Server Variables

collection, 556–558
scripts and, 525–527
sessions, 565–568
SQL queries and results via, 568–573
start and end tags, 525, 528–531
“Status: 404 not found” errors, 580–585
VBScript engine and, 525, 526, 529, 530
Web browsers and, 527
Web servers and, 527

attributes, 9
assigning sets of to multiple page elements, 11
 tags and, 10
minimization of, 227
XHTML values enclosed in quotes, 227

audio. See sound
auditing NTFS (NT file system), 620
auditing system events to detect intruders, 614–616

See also security
enabling security settings, 615–616
Event Viewer log, 614–615
Local Security Policy Setting dialog box, 616

auto value, cursor types, 214
a:visited pseudoclass, hyperlinks appearance, 191

B
 (bold) tags

character formatting tags, 41–42
formatting text, 8

background attribute
<table> tags, 80–81
<td> (table data) tags, 80–81
tiled backgrounds, 301–302

background images, positioning watermarks and, 196–199
background images and colors, 78–81

See also tables
cells, 79
style attribute, 81
<table> tags and background attribute, 80–81
<table> tags and bgcolor attribute, 80–81
<td> (table data) tags, 78–81
<td> (table data) tags and background attribute, 80–81
<td> (table data) tags and bgcolor attribute, 80
<td> (table data) tags and bordercolor attribute, 78

background-color property, style attribute, 81
background-image property

CSS (Cascading Style Sheets), 196
CSS (Cascading Style Sheets) and border graphics,

194–196
positioning background images and watermarks,

196–197
style attribute, 81

background-position property, positioning background
images and watermarks, 198–199

background-repeat setting, positioning background images
and watermarks, 197–198

backgrounds
cell color, 107–108
tiled, 301–304

backslash (\) escape character, PHP4, 472–473
BadURL() function, “Status: 404 not found” errors, 582–583
banner ads, 338–340

See also GIF animation; JavaScript
Ad Rotator, 573–576
 (image) tags, 339–340
self-changing (JavaScript), 411–413

bannerImageAltAttribute description, Ad Rotator, 574
bannerImageURL description, Ad Rotator, 574
bannerRedirectionURL description, Ad Rotator, 574
banners, drop-shadow effect and text, 193–194
bannerWeight description, Ad Rotator, 574
benchmark programs, Web sites, 627
bgcolor attribute

cell background colors, 108
Flash animation, 345
hexadecimal color values, 81–82
<table> tags, 80–81
<td> (table data) tags, 80

bgColor property
JavaScript document object color properties, 402
JavaScript document objects, 394

I n d e x 6 3 9

Tip&Tec / HTML & Web Design Tips & Techniques / Anderson, King, Jamsa / 9394-8 / Index

P:\010Comp\Tip&Tec\394-8\index.vp
Monday, January 07, 2002 2:25:07 PM

Color profile: Generic CMYK printer profile
Composite Default screen

<bgsound> tag, background sound, 328
<blockquote> tags, 47, 48
blur event, JavaScript events, 378
blur property, filter properties, 205
<body> tags

HTML section tags, 4
 (image) tags and, 269
XHTML, 224

bold tags. See tags
border attribute

aligning Web page content via borders, 109–110
 (image) tags, 37
JavaScript images arrays, 397
<table> tags, 70, 72, 75–76
tables, 69–70, 75–78
tables and form layout, 147

border graphics, 194–196
See also CSS (Cascading Style Sheets)
background-image property, 194–196
tiles, 194–196

BORDER keyword, Ad Rotator, 574
border properties, CSS (Cascading Style Sheets), 186–187
border-color properties, style attribute, 77–78
bordercolor attribute

hexadecimal color values, 81–82
<table> tags, 76–77
<td> (table data) tags, 78

bordercolordark attribute, <table> tags, 76–77
bordercolorlight attribute, <table> tags, 76–77
borders

aligning Web page content via, 108–110
inserting Java applets into Web pages, 428–429
nesting tables to control, 99, 100

bounding boxes, transparent GIFs and, 304

 (line break) tags, <p> (paragraph) tags and, 27–31
breaking into systems, 591–594

See also hacker threats; security
default accounts protection, 593
password-cracking software, 592–593
social-engineering attacks, 593–594
username/password pairs, 591–592

broadcasting streaming audio and video, 348–351
See also animation; streaming audio and video;

streaming vs. downloading video
port numbers, 350–351
radio, 327, 348–349
RealNetworks server, 350
Web sites, 349–350

browsers. See Web browsers
buffer overflow errors, CGI script attacks, 595
bullets. See lists and bullets
button objects, 153–154

See also forms
<input> tags, 153–154
type attribute, 154
value attribute, 154

bytecode
editing Java source code, 453–454
Java applets, 420–422

C
caching images. See pre-caching images; preloading and

caching images
calendars, KNCalendar.zip (Java applets), 442–443
call-back systems, disabling remote services, 622–623
calling JavaScript functions within event handlers, 384–385

onClick event handler, 385
onUnload event handler, 384

calling user-defined JavaScript functions, 382–384
<script> tags, 383

cameras, Web, 352–354
<caption> tags, tables and, 70
captions, thumbnails with, 209–212
case sensitivity of XHTML, 225
CDATA section (XHTML)

See also XHTML
hiding scripts and CSS (Cascading Style Sheets),

231–232
cellpadding attribute, <table> tags, 83–84
cells

See also tables
aligning content horizontally and vertically, 86–88
background colors, 107–108
background images and colors, 79
images and links in, 98
relative and absolute values for dimensioning, 85–86
spanning multiple columns or rows, 72–74

cellspacing attribute, <table> tags, 83–84
<center> tags, aligning text and graphics, 39
CERT Web site, virus-detection software, 610
Certificate dialog box, embedding ActiveX objects in Web

pages, 435, 436
certificates

See also digital signatures; security
accessing Web sites via ASP, 565
client, 612–613
embedding ActiveX objects in Web pages, 435, 436

CGI script attacks, 594–595
See also hacker threats; security
buffer overflow errors, 595

change event, JavaScript events, 378
character formatting tags, 41–42

See also symbols and special characters
 (bold) tags, 41–42
<cite> tags, 42
<code> tags, 42
 tags, 42
 (emphasis) tags, 42
<i> (italic) tags, 42
<q> (quotation) tags, 42
 tags, 42
<sub> (subscript) tags, 42

6 4 0 H T M L & W e b D e s i g n T i p s & T e c h n i q u e s

Tip&Tec / HTML & Web Design Tips & Techniques / Anderson, King, Jamsa / 9394-8 / Index

P:\010Comp\Tip&Tec\394-8\index.vp
Monday, January 07, 2002 2:25:07 PM

Color profile: Generic CMYK printer profile
Composite Default screen

<sup> (superscript) tags, 42
<u> (underline) tags, 42

chat, Microsoft Chat IRC ActiveX control, 457–460
checkboxes, 124–126

See also forms
<input> tags and type attribute, 124–126
parsing and extracting form results via PHP4, 489

checked attribute, <input> tags, 125, 127
checked property, validating radio button group selections, 129
children and parents, CSS (Cascading Style Sheets) and

inheritance, 165–166
chr() function, Response.Write method, 534, 535
chroma property, filter properties, 205, 206
<cite> tags, character formatting tags, 42
class attribute

aligning labels via form elements and CSS, 209
overlapping text, 179
text-align property and, 180

class names, multiple CSS rules and single selectors, 172
classes, multiple CSS rules and single selectors, 170–171
classid attribute

Flash animation, 345
<object> tags, 433, 434

click event, JavaScript events, 378
click-throughs, tracking. See tracking impressions and

click-throughs
client certificates, 612–613

See also certificates; security
Directory Security tab, 612, 613
SSL (Secure Socket Layer) protocol, 612

clip art, saving. See GIF (Graphics Interchange Format) files
clock example, inserting Java applets into Web pages, 425–432
CLUTs (color lookup tables), cross-platform issues for

graphics, 275
<code> tags, character formatting tags, 42
code attribute

<applet> tags, 424–425
editing Java source code, 454

codebase attribute
<applet> tags, 431–432
Flash animation, 344, 345
inserting Java applets into Web pages, 431–432
<object> tags, 433, 434

color
cell background, 107–108
CSS rules for adding to XHTML tables, 247–249
hexadecimal values, 81–83
JavaScript document object color properties, 401–402
Web-safe color palette, 298–300, 311–313

color attribute, tags, 33–35
color lookup tables (CLUTs), cross-platform issues for

graphics, 275
colorful horizontal rules, 294–296

See also graphics
<hr> (horizontal rule) tags, 294–295
<p> (paragraph) tags, 296

Colors dialog box, hexadecimal color values, 82–83

cols attribute
<frameset> tags, 58
<textarea> tags, 121, 122

colspan attribute
CSS rules for adding color to XHTML tables, 248
<td> (table data) tags, 72, 74
<tr> (table row) tags, 72, 74

columns, 183–185
See also CSS (Cascading Style Sheets)
<div> tags, 183–184
padding properties, 185
width property, 183–184

comments
<!-- --> tags, 24–25, 362
ASP (Active Server Pages), 530–531
JavaScript, 365–367
PHP4, 473–474

CommView program, intercepting and changing network
messages, 589–590

complete attribute, JavaScript images arrays, 397
compound statements, PHP4, 479
compressing photographs. See JPEG (Joint Photographic

Experts Group) format
conditional and repetitive processing

JavaScript, 369–370
PHP4, 478–484

connecting to MySQL DBMS via MyODBC driver, 559–561
See also ASP (Active Server Pages); MySQL

databases and tables
objResultsSet object, 561
Open method, 561
Set statements, 561

Connection objects, SQL queries and results via ASP, 568, 571
connection speeds, 627–628

See also performance
ConnectionString property

accessing Web sites via ASP, 564
SQL queries and results via ASP, 569

“container” elements, XHTML, 226–227
container tags, HTML, 4
converting HTML to XHTML. See HTML Tidy
cookie property

JavaScript document objects, 395
retrieving values from cookie files, 406

CookieName parameter
removing cookies from cookie files, 408
retrieving values from cookie files, 406

cookies, 402–409
See also JavaScript
formatting cookie data, 404–405
JavaScript document objects and, 394
preventing session masquerading, 516
removing from cookie files, 407–409
retrieving values from cookie files, 406–407
sessions via ASP, 565–566, 568
sessions via PHP4, 500
storing on visitors’ hard drives, 402–404

I n d e x 6 4 1

Tip&Tec / HTML & Web Design Tips & Techniques / Anderson, King, Jamsa / 9394-8 / Index

P:\010Comp\Tip&Tec\394-8\index.vp
Monday, January 07, 2002 2:25:08 PM

Color profile: Generic CMYK printer profile
Composite Default screen

cookies acceptance (determining via PHP4), 493–495
See also PHP4
onload attribute, 494
setCookie() function, 495

cookies collection, 3, 547–550
See also ASP (Active Server Pages)
Expires property, 548
maintaining variable values between HTTP requests,

547–550
Request.Cookies collection, 547–549
Request.Cookies method, 549–550

cookieValue() function, retrieving values from cookie files,
406–407

Cool Edit, streaming audio and video, 351–352
copyright issues for Web graphics, 270–272

See also graphics
release forms, 271–272

copyright symbol, symbols and special characters, 43, 44
Count field, accessing Web sites via ASP, 564
Count property

Request.Form collection, 552
Request.QueryString collection, 555–556

countSelections() function, validating radio button group
selections, 129

Courtney program, detecting SATAN (Security Administrator
Tool for Analyzing Networks), 624

CPU processing speed, 628–630
See also performance
monitoring Web server performance, 632–633
RAM and, 630

CREATE DATABASE statements, MySQL databases and
tables, 503

CREATE statements, accessing Web sites via PHP4, 509–510
CREATE TABLE statements

accessing Web sites via ASP, 563
MySQL databases and tables, 503
tracking visitors via PHP4 and MySQL, 512–513

creating Web pages, 5–6, 11–13, 14
See also Web pages
overview, 11
text editors, 11–12
Web layout applications, 13, 14
word processors, 12–13

credit card processing, security, 625
cross-platform issues for graphics, 274–276

See also graphics
CLUTs (color lookup tables), 275
Photoshop, 276

crosshair value, cursor types, 214
CSS (Cascading Style Sheets), 158–218

adding to Web pages, 166–170
background-image property, 194–196
border graphics, 194–196
border properties, 186–187
children and parents, 165–166
columns, 183–185
columns and padding properties, 185, 211

creating, 162–166
cursor types, 212–213, 214
drop-shadow effect, 192–194
embedding, 166–167
filter properties, 203–206
float attribute, 200
float property, 199–200
floating images and text, 199–200
font-family property, 172–174
font-size property, 174–176
form elements and, 206–209
<hn> (heading level) tags, 163, 169–170
hiding via CDATA section (XHTML), 231–232
hyperlinks appearance, 191–192
icap class (initial caps), 189–190
@import statements, 168–169
indenting paragraphs, 188
inheritance, 164–166
layering Web page elements, 214–215, 216
letter-spacing property, 188
line-height property, 183, 188–189
<link> tags, 167–168
list-style-image property, 202
list-style-position property, 202
list-style-type property, 201–202, 203
margin properties, 181–183
multiple declarations, 163
multiple rules and single selectors, 170–172
overlapping text, 177–179
overview, 159–162
<p> (paragraph) tags, 163
padding properties, 185, 211
parents and children, 165–166
position property, 159, 178–179
positioning background images and watermarks,

196–199
rules, 159, 160, 162, 163–164
rules for adding color to XHTML tables, 247–249
selector {rule} statements, 163
separating content from appearance, 161–162
<style> tags, 159–160, 162, 164
style attribute, 169–170
table selector, 164
terminology, 163–164
text size keywords for XHTML, 242–245
text-align property, 179–181
thumbnails with captions, 209–212
 (unordered list) tags, 164
validator, 216–218
word spacing, 188

CSS @media rule
printing XHTML Web pages, 263
XHTML media attributes, 259–260

CSS page-break-before and page-break-after properties,
printing XHTML Web pages, 261–263

CSS rules for adding color to XHTML tables, 247–249
See also tables; XHTML

6 4 2 H T M L & W e b D e s i g n T i p s & T e c h n i q u e s

Tip&Tec / HTML & Web Design Tips & Techniques / Anderson, King, Jamsa / 9394-8 / Index

P:\010Comp\Tip&Tec\394-8\index.vp
Monday, January 07, 2002 2:25:08 PM

Color profile: Generic CMYK printer profile
Composite Default screen

colspan attribute, 248
<tbody> tags, 247–248
<td> (table data) tags, 248
<tfoot> tags, 247–248
<th> (table heading) tags, 249
<thead> tags, 247–248
<tr> (table row) tags, 247

CSS rules for embedding fonts within XHTML Web pages,
249–251

EOT (Embedded Object Type) files, 250–251
 tags, 249–250
@font-face declarations, 250–251
font-family property, 249–250
PFR (Portable Font Resource) files, 250–251

CSS validator, 216–218
“Errors” section, 216
Validator screen, 217, 218

cursor property, cursor types, 212, 213
cursor types, 212–213, 214

See also CSS (Cascading Style Sheets)
auto value, 214
crosshair value, 214
cursor property, 212, 213
default value, 214
hand value, 214
help value, 214
move value, 214
resize values, 214
text value, 214
title attribute, 212
tool tips, 212, 213
wait value, 214

cycle counts, GIF animation, 336–338
cycling cells, GIF animation, 334

D
data attribute, Flash animation, 345
<dd> tags, definition lists, 52–53
default accounts protection, breaking into systems, 593
default value, cursor types, 214
definition lists, 52–53

<dd> tags, 52–53
<dl> tags, 52–53
<dt> tags, 52–53

 tags, character formatting tags, 42
deleteCookie() function, removing cookies from cookie files,

408–409
denying access to systems, 594

See also hacker threats; security
ReloadForever.html, 594

DHTML (Dynamic HTML), 318–320
See also animation; HTML (HyperText Markup

Language)
DOM (document object model) and, 318–319
DynamicDemo.html, 319–320
onmouseover and onmouseout events, 320

digital signatures
See also certificates; security
downloading and installing, 600, 601
embedding ActiveX objects in Web pages, 435

Dim keyword, Response.Write method and variables
display, 536–537

Director. See Shockwave animation
Directory Security tab, client certificates, 612, 613
disabled attribute

enabling/disabling form elements “on-the-fly,” 154–156
<input> tags, 120

disk access time, performance and, 630
DisplayRotatorAd() function, tracking impressions and

click-throughs, 578
dither patterns, JPEG files, 283
dithering techniques, Web-safe color palette, 311–313
<div> tags

columns, 183–184
form elements and CSS, 207–209
margin properties, 182
thumbnails with captions, 210–212

<dl> tags, definition lists, 52–53
<!DOCTYPE> element, 228–229, 237–238

See also XHTML
DTD (Document Type Definition), 237–238
FPI (formal public identifier), 237
Transitional XHTML DTD, 238
validating XHTML, 239, 241

<!doctype> tags, HTML, 23–24
document arrays, 390–392

See also JavaScript
images and, 391–392
properties and, 390–392

document object color properties (JavaScript), 401–402
alinkColor property, 402
bgColor property, 402
fgColor property, 402
linkColor property, 402
selectScheme() function, 401
vlinkColor property, 402

document objects (JavaScript), 393–396
See also JavaScript
alinkColor property, 394
anchors arrays, 394
applets arrays, 394
bgColor property, 394
color properties, 401–402
cookie property, 395
cookies and, 394
domain property, 395
embeds arrays, 395
fgColor property, 395
forms arrays, 395
images arrays, 395
lastModified property, 395
linkColor property, 396

I n d e x 6 4 3

Tip&Tec / HTML & Web Design Tips & Techniques / Anderson, King, Jamsa / 9394-8 / Index

P:\010Comp\Tip&Tec\394-8\index.vp
Monday, January 07, 2002 2:25:09 PM

Color profile: Generic CMYK printer profile
Composite Default screen

links arrays, 396
referrer property, 396
title property, 396
url property, 396
vlinkColor property, 396

Document Type Definition. See DTD
DOM (document object model), DHTML (Dynamic HTML)

and, 318–319
domain property

JavaScript document objects, 395
storing cookies on visitors’ hard drives, 403

downloading
HTML Tidy (converting HTML to XHTML), 233–234
PHP4, 468
preloading and caching images, 309–311
public keys, digital signatures, and server IDs, 600, 601
PWS (Personal Web Server), 16–17

downloading vs. streaming video, 331–332
See also broadcasting streaming audio and video

drop-down lists, 129–132
See also forms
<option> tags, 130, 132
<select> tags, 129–131, 132

drop-shadow effect, 192–194
See also CSS (Cascading Style Sheets)
banners, 193–194

<dt> tags, definition lists, 52–53
DTD (Document Type Definition)

HTML <!doctype> tags, 23–24
Transitional XHTML, 238
validating XHTML, 239, 241
XHTML, 225, 228–229, 237–238

Dynamic HTML. See DHTML
DynamicDemo.html, DHTML (Dynamic HTML), 319–320

E
e-mail

sending form results via, 143–144
sending messages via PHP4, 491–493

editing Java source code, 452–457
See also Java applets
bytecode, 453–454
code attribute, 454
Java compiler, 454–455, 456
Java programming tools, 455
Java SDK, 454, 455
javac command, 457
Nervous.java, 452–453, 456–457
source files, 452

 (emphasis) tags, character formatting tags, 42
<embed> tags

ActiveX objects, 434–435
Shockwave animation, 325
sound, 328

Embedded Object Type (EOT) files, CSS rules for embedding
fonts within XHTML Web pages, 250–251

embedding ActiveX objects in Web pages, 432–435
See also inserting Java applets into Web pages;

Java applets
Certificate dialog box, 435, 436
digital signatures, 435
<embed> tags, 434–435
Internet Explorer, 434
Netscape Navigator, 434–435
<object> tags, 432–433, 434
signed objects, 435

embedding CSS (Cascading Style Sheets), 166–167
embedding fonts, CSS rules and XHTML Web pages, 249–251
embeds arrays, JavaScript document objects, 395
empty tags

HTML, 5
XHTML, 226–227

encryption, 597–599
See also security
NTFS (NT file system), 619
overview, 597–598
public key, 598–599

enctype attribute
<form> tags, 117
sending form results via e-mail, 144

EOT (Embedded Object Type) files, CSS rules for
embedding fonts within XHTML Web pages, 250–251

error event, JavaScript events, 378
“Errors” section, CSS validator, 216
event handlers (JavaScript), 384–387

See also JavaScript
calling functions within, 384–385
onAbort event handler, 386
onBlur event handler, 386
onChange event handler, 386
onClick event handler, 386
onDoubleClick event handler, 386
onDragDrop event handler, 386
onError event handler, 386
onFocus event handler, 386
onKeyDown event handler, 386
onKeyPress event handler, 386
onKeyUp event handler, 386
onLoad event handler, 387
onMouseDown event handler, 387
onMouseOut event handler, 387
onMouseOver event handler, 387
onMouseUp event handler, 387
onMove event handler, 387
onReset event handler, 387
onResize event handler, 387
onSelect event handler, 387
onSubmit event handler, 387
onUnload event handler, 387
overview, 385–386

Event Viewer log, auditing system events to detect intruders,
614–615

6 4 4 H T M L & W e b D e s i g n T i p s & T e c h n i q u e s

Tip&Tec / HTML & Web Design Tips & Techniques / Anderson, King, Jamsa / 9394-8 / Index

P:\010Comp\Tip&Tec\394-8\index.vp
Monday, January 07, 2002 2:25:09 PM

Color profile: Generic CMYK printer profile
Composite Default screen

events (JavaScript), 378–380
See also JavaScript
abort event, 378
blur event, 378
change event, 378
click event, 378
error event, 378
focus event, 378
load event, 378
mouseout event, 379
mouseover event, 379
onClick event handler, 379
reset event, 379
select event, 379
submit event, 379
unload event, 379

Execute method
accessing Web sites via ASP, 564
SQL queries and results via ASP, 571

expiration dates, removing cookies from cookie files, 407–408
expires keyword, storing cookies on visitors’ hard drives, 403
Expires property, cookies collection, 548
external scripts, 409–410

See also JavaScript
<script> tags, 409–410

F
face attribute, typefaces, 26–27
farms, Web, 631, 632
fgColor property

JavaScript document object color properties, 402
JavaScript document objects, 395

filter properties, 203–206
See also CSS (Cascading Style Sheets)
alpha property, 205
blur property, 205
chroma property, 205, 206
fliph property, 205, 206
glow property, 205, 206
gray property, 205, 206
invert property, 205, 206
mask property, 205, 206
shadow property, 205, 206
wave property, 205, 206
width property and, 204
xray property, 205, 206

finding public keys, public key encryption, 599
finger command, disabling remote services, 623
firewalls, 595–597, 603–607

See also security
port assignments, 605–606, 607
software-based, 603–605
virus-detection software and, 608

Fireworks image-editing program, 292
Flash animation, 322–323, 324, 342–348

See also animation
adding splash screens to Web sites, 342–345

advantages of, 323
bgcolor attribute, 345
classid attribute, 345
codebase attribute, 344, 345
creating, 345–347
data attribute, 345
FlaX shareware, 348
height attribute, 345
movie attribute, 345
<object> tags, 344
pluginspage attribute, 344, 345
quality attribute, 345
src attribute, 345
type attribute, 345
vector graphics, 322–323
Web sites, 323, 347
width attribute, 345

FlaX shareware, Flash animation, 348
fLeft class, thumbnails with captions, 210–211
fliph property, filter properties, 205, 206
float attribute, CSS (Cascading Style Sheets), 200
float property

CSS (Cascading Style Sheets), 199–200
form elements and CSS, 207

floating images and text, 199–200
See also CSS (Cascading Style Sheets)
float property, 199–200

focus event, JavaScript events, 378
 tags, 10

attributes and, 10
color attribute, 33–35
CSS rules for embedding fonts within XHTML Web

pages, 249–250
size attribute, 32–33
typefaces, 26–27

@font-face declarations, CSS rules for embedding fonts
within XHTML Web pages, 250–251

font-family property, 172–174
See also CSS (Cascading Style Sheets)
CSS rules for embedding fonts within XHTML Web

pages, 249–250
<p> (paragraph) tags, 173–174
selecting typefaces, 172–174

font-size property
CSS (Cascading Style Sheets), 174–176
text size keywords for XHTML, 243

fontStyle parameter, navigation menus (Java applets), 447
fontType parameter, navigation menus (Java applets), 447
fopen() function, accessing Web sites via PHP4, 497
for attribute, <label> tags and form shortcut keys, 149
for statements

JavaScript, 376–377
PHP4, 482–483

<form> tags, 117–119
See also forms
action attribute, 117
enctype attribute, 117

I n d e x 6 4 5

Tip&Tec / HTML & Web Design Tips & Techniques / Anderson, King, Jamsa / 9394-8 / Index

P:\010Comp\Tip&Tec\394-8\index.vp
Monday, January 07, 2002 2:25:10 PM

Color profile: Generic CMYK printer profile
Composite Default screen

id attribute, 118
method attribute, 118, 134
name attribute, 118
onReset attribute, 118
onSubmit attribute, 118, 134
retrieving form results from ASP Form collection,

550–551
retrieving form results from ASP QueryString

collection, 553–554
sending data from HTML forms to PHP scripts,

484–485, 486, 487
target attribute, 118
title attribute, 119

form elements and CSS, 206–209
See also CSS (Cascading Style Sheets)
aligning labels, 206–209
class attribute, 209
<div> tags, 207–209
float property, 207
 tags, 207–209

formal public identifier (FPI), XHTML <!DOCTYPE>
element, 237

formatting
character tags, 41–42
<hr> (horizontal rule) tags, 44–46
<pre> (preformatted text) tags, 54–55

formatting cookie data, 404–405
See also cookies; JavaScript
setCookie() function, 404, 405
visitorSignIn() function, 405

formatting text, 6–8
 (bold) tags, 8
<i> (italic) tags, 8
<p> (paragraph) tags, 7
<u> (underline) tags, 8

forms, 112–156
button objects, 153–154
checkboxes, 124–126
disabled attribute, 154–156
drop-down lists, 129–132
<form> tags, 117–119
hiding input in password fields, 152–153
hotmail example, 113, 114
<label> tags and form shortcut keys, 148–149
multiline input fields, 120–122
<optgroup> tags (grouping XHTML selection list

items), 245–247
overview, 113–119
parsing and extracting results via PHP4, 488–491
passing values via hidden fields, 151–152
processing of, 115–117
radio buttons, 126–129
replacing Submit and Reset buttons with images,

141–143
Reset buttons, 138–140
results of. See parsing and extracting form results

via PHP4

retrieving results from ASP Form collection, 550–552
retrieving results from ASP QueryString collection,

553–556
selection list items availability, 134–136
selection list values and hidden fields, 136–137
sending data to PHP scripts, 484–488
sending results via e-mail, 143–144
single-line input fields, 119–120
Submit buttons, 140–143
tables and form layout, 145–147
ValidateForm() function, 123–124
validating data, 122–124
validating radio button group selections, 128–129
validating selection list choices, 132–134
validating via onClick attribute, 149–150

forms arrays, JavaScript document objects, 395
FPI (formal public identifier), XHTML <!DOCTYPE>

element, 237
fps (frames per second), GIF animation, 336–338
<frame> tags, src attribute, 58
frames, 57–60

<frame> tags, 58
<frameset> tags, 58
inline (XHTML), 251–257
<noframes> tags, 60

frames simulation, 104–107
See also tables
framesets, 104

<frameset> tags, 58
cols attribute, 58
navigation menus, 56

FTP (file transfer protocol), upload file functionality via
PHP4, 520

functions (JavaScript), 362–365, 380–385
See also JavaScript
built-in, 380
calling user-defined, 382–384
calling within event handlers, 384–385
executing statements within Web pages, 380–381
inserting within HTML, 370
overview, 362–364
passing values between, 364–365
write method, 380–381

G
Gabriel program, detecting SATAN (Security Administrator

Tool for Analyzing Networks), 624
Get Info dialog box, graphics size, 270, 271
GET method

preventing visitors from changing variable values via
URL arguments, 511

retrieving form results from ASP Form collection, 551
retrieving form results from ASP QueryString

collection, 553–554
sending data from HTML forms to PHP scripts, 485–487

6 4 6 H T M L & W e b D e s i g n T i p s & T e c h n i q u e s

Tip&Tec / HTML & Web Design Tips & Techniques / Anderson, King, Jamsa / 9394-8 / Index

P:\010Comp\Tip&Tec\394-8\index.vp
Monday, January 07, 2002 2:25:10 PM

Color profile: Generic CMYK printer profile
Composite Default screen

GetAdvertisement method
Ad Rotator, 575, 577–579
tracking impressions and click-throughs, 577–579

getCookieValue() function, retrieving values from cookie
files, 406–407

GetOrderNumber.asp, SQL queries and results via ASP,
569–570

GIF (Graphics Interchange Format) files, 268
See also graphics; graphics file formats
animation, 320–322, 334–342
interlaced mode, 286, 287
noninterlaced mode, 286
RLE (Run Length Encoding) compression, 286
tips, 288
transparent. See transparent GIFs

GIF animation, 320–322, 334–342
See also animation
animation programs, 334–335
banner ads, 338–340
creating, 334–336
cycle counts, 336–338
cycling cells, 334
fps (frames per second), 336–338
 (image) tags, 321, 335–336
internal settings, 336–338
src attribute, 322, 336
tweening, 341–342
Web sites, 322

glow property, filter properties, 205, 206
graphical hyperlink anchors, 300–301

See also graphics; hyperlinks
<a> (anchor) tags, 300–301
 (image) tags, 301

graphics, 264–315
See also images; (image) tags
aligning, 37–39
anti-aliasing, 313–315
balancing text and graphics on Web pages, 272–274
colorful horizontal rules, 294–296
copyright issues for Web, 270–272
creating, 267
cross-platform issues, 274–276
file formats, 268–269
Get Info dialog box and size of, 270, 271
GIF (Graphics Interchange Format) files, 268, 286–288
graphical hyperlink anchors, 300–301
image-editing programs, 291–292
 tags. See (image) tags
inserting into Web pages, 269–270
interlaced option, 288–289
Internet access speeds and, 270
JPEG (Joint Photographic Experts Group) format, 102,

268, 283–286
lowsrc attribute, 296–298
making images appear to load faster, 288–289
overview, 265

PNG (Portable Network Graphic) format, 268–269,
290, 291

preloading and caching images, 309–311
progression option, 288–289
scanners and, 292–294
smoothing edges. See anti-aliasing
thumbnails and retrieving full size images, 307–309
tiled backgrounds, 301–304
transparent GIFs, 304–307
Web design and, 265–267
Web-safe color palette, 298–300, 311–313

graphics file formats, 268–269
GIF (Graphics Interchange Format) files, 268,

286–288
JPEG (Joint Photographic Experts Group) format,

102, 268, 283–286
PNG (Portable Network Graphic) format, 268–269,

290, 291
gray property, filter properties, 205, 206
grouping XHTML selection list items. See <optgroup> tags
gutter size, Web page, 110–111

H
<hn> (heading level) tags, 32

CSS (Cascading Style Sheets), 163, 169–170
hacker threats, 587–595

See also security
breaking into systems, 591–594
CGI script attacks, 594–595
denying access to systems, 594
intercepting and changing network messages,

587–590, 591
overview, 587

hand value, cursor types, 214
hash attribute, JavaScript links arrays, 399
hash property, pointing hyperlinks to new files

“on-the-fly,” 413
<head> tags

HTML, 4
XHTML, 224

header() function, accessing Web sites via PHP4, 497
heading level tags. See <hn> tags
headings, table. See <th> tags
height attribute

alt attribute and text-only viewers, 279
<embed> tags, 325
Flash animation, 345
<iframe> tags, 253
 (image) tags, 37, 277–278
JavaScript images arrays, 397
<object> tags, 433
preloading and caching images, 309–310
<table> tags, 84–85
tables and form layout, 145–146
<td> (table data) tags, 85
<th> (table heading) tags, 86

HEIGHT keyword, Ad Rotator, 574

I n d e x 6 4 7

Tip&Tec / HTML & Web Design Tips & Techniques / Anderson, King, Jamsa / 9394-8 / Index

P:\010Comp\Tip&Tec\394-8\index.vp
Monday, January 07, 2002 2:25:11 PM

Color profile: Generic CMYK printer profile
Composite Default screen

help value, cursor types, 214
hexadecimal color values, 81–83

See also <table> tags; tables
bgcolor attribute, 81–82
bordercolor attribute, 81–82
Colors dialog box, 82–83

hidden fields
passing values via, 151–152
selection list values and, 136–137

hiding ASP source code from Web site visitors, 531
See also ASP (Active Server Pages)

hiding input in password fields, 152–153
See also forms
type attribute, 153

hiding scripts and CSS (Cascading Style Sheets), CDATA
section (XHTML), 231–232

hiding scripts from Web browsers without JavaScript support,
361–362

See also JavaScript
horizontal rule tags. See <hr> (horizontal rule) tags
host attribute, JavaScript links arrays, 399
hostname attribute, JavaScript links arrays, 399
hotspots, image map simulation, 100
<hr> (horizontal rule) tags, 44–46

align attribute, 46
colorful horizontal rules, 294–295
noshade attribute, 46
size attribute, 46
width attribute, 46

href attribute
<a> (anchor) tags, 58–59, 93–95
hyperlinks, 40–41
image map simulation, 101
JavaScript links arrays, 399
<link> tags, 167
multiple <iframe> tags, 257
pointing hyperlinks to new files “on-the-fly,” 413,

414–415
replacing Submit and Reset buttons with images, 142
thumbnail images within tables, 93–95
thumbnails and retrieving full size images, 307, 308–309

hspace attribute, JavaScript images arrays, 398
<html> tags

HTML section tags, 4
XHTML section tags, 223–224

HTML (HyperText Markup Language)
aligning text and graphics, 37–39
animation, 316–357
ASP (Active Server Pages), 524–585
attribute minimization, 227
attributes, 9
character formatting tags, 41–42
comments, 24–25
container tags, 4
converting to XHTML. See HTML Tidy
creating Web pages, 5–6
CSS (Cascading Style Sheets), 158–218

definition lists, 52–53
DHTML (Dynamic HTML) and, 318–320
displaying multiple Web pages. See frames
DTD (Document Type Definition), 23–24
empty tags, 5
formatting text, 6–8
forms, 112–156
frames, 57–60
graphics, 264–315
HTTP (HyperText Transport Protocol) and, 1–2
hyperlinks, 40–41
inserting JavaScript functions within, 370
Java applets and, 418–462
JavaScript and, 358–417
navigation menus, 56–57
nested lists, 51–52
overview, 1–2
pathnames, 14–16
performance, 625–635
PHP4 and, 464–522
PWS (Personal Web Server) and, 16–21
section tags, 4–5
security, 586–625
symbols and special characters, 42–44
tables, 62–111
typefaces, 26–27
Web browsers and, 1, 2–3
XHTML and, 220–263

HTML Tidy (converting HTML to XHTML), 233–237
configuration options, 236–237
conversion steps, 235–236
downloading, 233–234
Tidy Configuration dialog box, 235
Tidy Output dialog box, 236
TidyGUI.exe, 234–235

HTML Validation service, validating XHTML, 239–242
HTTP (HyperText Transport Protocol), 1–2

accessing Web sites via ASP, 565
accessing Web sites via PHP4, 498
“Status: 404 not found” errors, 580–585

HTTP_X_FORWARDED_FOR field, IP address
determination, 515

hyperlinks, 40–41
See also graphical hyperlink anchors
<a> (anchor) tags, 40
defined, 40
href attribute, 40–41
pointing to new files “on-the-fly,” 413–415
preventing linking to Web pages via PHP4, 498–499
sending e-mail messages via PHP4, 491
<u> (underline) tags caveat, 41

hyperlinks appearance, 191–192
See also CSS (Cascading Style Sheets)
a:active pseudoclass, 191
a:hover pseudoclass, 191, 192
a:link pseudoclass, 191
a:visited pseudoclass, 191

6 4 8 H T M L & W e b D e s i g n T i p s & T e c h n i q u e s

Tip&Tec / HTML & Web Design Tips & Techniques / Anderson, King, Jamsa / 9394-8 / Index

P:\010Comp\Tip&Tec\394-8\index.vp
Monday, January 07, 2002 2:25:11 PM

Color profile: Generic CMYK printer profile
Composite Default screen

TE
AM
FL
Y

Team-Fly®

I
<i> (italic) tags

character formatting tags, 42
formatting text, 8

icap class (initial caps), CSS (Cascading Style Sheets),
189–190

id attribute
<form> tags, 118
<input> tags, 119, 125, 127
<object> tags, 433
<select> tags, 131
<textarea> tags, 121

ID cookies, sessions via ASP, 565–566, 568
if statements, 372–376

See also JavaScript
multiple conditions, 374–375
Not operator, 375–376
overview, 372–374
PHP4, 478–481
SQL queries and results via PHP4, 505

if-else statements, PHP4, 479–480
if-elseif structures, PHP4, 480–481
<iframe> tags, 252–257

See also inline frames (XHTML)
height attribute, 253
multiple, 255–257
name attribute, 253–254
scrolling attribute, 253
src attribute, 253
target attribute, 254
width attribute, 253

IIS (Internet Information Server)
client certificates, 612–613
server IDs, 601–602, 603
“Status: 404 not found” errors, 583–585

IIS log file, monitoring Web server performance, 635
image map simulation, 100–101

See also tables
<a> (anchor) tags, 100–101
hotspots, 100
href attribute, 101

image maps, 65–66
image parameter, pop-up navigation menus, 439
Image Size dialog box, Photoshop, 294
image tags. See tags
image-editing programs, 291–292

See also graphics
Macromedia Fireworks, 292
Photoshop, 292
src attribute, 291

imageposition parameter, pop-up navigation menus, 439
images

See also graphics; (image) tags
anti-aliasing, 313–315
border graphics, 194–196

caching. See pre-caching images; preloading and
caching images

document arrays and, 391–392
file formats, 268–269
floating text and, 199–200
making appear to load faster, 288–289
pre-caching, 415–416
preloading and caching, 309–311
replacing Submit and Reset buttons with, 141–143
slicing for quick loading, 102, 103
smoothing edges. See anti-aliasing
thumbnail within tables, 93–95
thumbnails with captions, 209–212
tiled backgrounds, 301–304
wrapping text around, 91–93

images arrays, JavaScript document objects, 395
images arrays (JavaScript), 396–398

See also arrays; JavaScript
border attribute, 397
complete attribute, 397
height attribute, 397
hspace attribute, 398
lowsrc attribute, 398
name attribute, 398
overview, 396–397
src attribute, 398
vspace attribute, 398
width attribute, 398

images and links in cells, 98
See also tables
src attribute, 98
<table> tags, 98
<td> (table data) tags, 98

 (image) tags, 35–37, 269–270, 277–282, 283
See also graphics; images
aligning text and graphics, 38
alt attribute, 37
alt attribute and text-only viewers, 278–281
animation and onLoad events, 410
banner ads, 339–340
<body> tags and, 269
border attribute, 37
dimensioning, 277–278
GIF animation, 321, 335–336
graphical hyperlink anchors, 301
graphics, 269–270
height attribute, 37, 277–278
lowsrc attribute, 296–298
pre-caching images, 415
preloading and caching images, 309–310
src attribute, 36, 269
title attribute and tool tips, 281–282, 283
width attribute, 37, 277–278
XHTML, 269

@import command, XHTML media attributes, 260
@import statements, CSS (Cascading Style Sheets), 168–169

I n d e x 6 4 9

Tip&Tec / HTML & Web Design Tips & Techniques / Anderson, King, Jamsa / 9394-8 / Index

P:\010Comp\Tip&Tec\394-8\index.vp
Monday, January 07, 2002 2:25:11 PM

Color profile: Generic CMYK printer profile
Composite Default screen

impressions, tracking. See tracking impressions and
click-throughs

indenting paragraphs, CSS (Cascading Style Sheets), 188
Indexed Color dialog box, Photoshop, 299, 300
inheritance, CSS (Cascading Style Sheets), 164–166
initial caps (icap class), CSS (Cascading Style Sheets),

189–190
inline frames (XHTML), 251–257

See also frames; XHTML
<iframe> tags, 252–257

<input> tags
accesskey attribute, 120
button objects, 153–154
checkboxes, 124–126
checked attribute, 125, 127
disabled attribute, 120
id attribute, 119, 125, 127
maxlength attribute, 120
name attribute, 120, 125, 127
radio buttons, 126–127
readonly attribute, 120
single-line input fields, 119–120
size attribute, 120
tabindex attribute, 120
type attribute, 119, 124–127, 138
value attribute, 120, 125, 127

<input> tags and type attribute
checkboxes, 124–126
radio buttons, 126–127
Reset buttons, 138

INSERT statements
accessing Web sites via ASP, 563
accessing Web sites via PHP4, 510
MySQL databases and tables, 503–504

inserting graphics into Web pages, 269–270
inserting Java applets into Web pages, 424–432

See also embedding ActiveX objects in Web pages;
Java applets

align attribute, 427
<applet> tags, 424–425
borders, 428–429
clock example, 425–432
codebase attribute, 431–432
.jar (Java Archive) files, 431
overview, 424–425
<param> tags, 430
passing parameter values, 429–431
positioning Java applets, 426–429

installing
PHP4, 468–469
public keys, digital signatures, and server IDs, 600, 601
PWS (Personal Web Server), 17–18

intercepting and changing network messages, 587–590, 591
See also hacker threats; security
CommView program, 589–590
tracert command, 588–589

interlaced mode, GIF files, 286, 287

interlaced option, graphics, 288–289
Internet access speeds, graphics and, 270
Internet Explorer

embedding ActiveX objects in Web pages, 434
using only ActiveX objects, 460–462

Internet Information Server. See IIS
invert property, filter properties, 205, 206
IP address determination, 514–516

See also PHP4
HTTP_X_FORWARDED_FOR field, 515

IP addresses, PWS (Personal Web Server) and, 19–21
isEmpty() function, sessions via ASP, 568
isset() function, parsing and extracting form results via

PHP4, 489–490
italic tags. See <i> tags
Item method

Request.Form collection, 552
Request.QueryString collection, 556

J
.jar (Java Archive) files, inserting Java applets into

Web pages, 431
Java applets, 418–462

ActiveX objects and, 419–420, 422–424, 460–462
AnimText.class, 440–441
<applet> tags, 420
bytecode, 420–422
codebase attribute, 431–432
editing Java source code, 452–457
embedding ActiveX objects in Web pages, 432–435
inserting into Web pages, 424–432
.jar (Java Archive) files, 431
JVM (Java Virtual Machine), 422
KNCalendar.zip, 442–443
Microsoft Chat IRC ActiveX control and, 457–460
navigation menus, 444–447
NewsScroller applet, 448–450
<object> tags, 420
overview, 419–420
passing parameter values to, 429–431
PetQuotes.class, 443–444
pop-up navigation menus, 437–440
positioning, 426–429
security, 422
Security Settings dialog box, 435–437
SinLogo.class, 450–451
Web browser and, 420–422

Java compiler, editing Java source code, 454–455, 456
Java programming tools, editing Java source code, 455
Java SDK, editing Java source code, 454, 455
javac command, editing Java source code, 457
JavaScript, 358–417

See also scripts
<!-- --> (comment) tags and, 362
animation and onLoad events, 410–411
arrays, 371–372

6 5 0 H T M L & W e b D e s i g n T i p s & T e c h n i q u e s

Tip&Tec / HTML & Web Design Tips & Techniques / Anderson, King, Jamsa / 9394-8 / Index

P:\010Comp\Tip&Tec\394-8\index.vp
Monday, January 07, 2002 2:25:12 PM

Color profile: Generic CMYK printer profile
Composite Default screen

banner ads, 411–413
built-in functions, 380
comments, 362, 365–367
conditional and repetitive processing, 369–370
cookies, 402–409
declaring variables, 367
document arrays, 390–392
document object color properties, 401–402
document objects, 393–396
event handlers, 384–387
events, 378–380
external scripts, 409–410
for statements, 376–377
functions, 362–365, 370, 380–385
hiding scripts from Web browsers without JavaScript

support, 361–362
if statements, 372–376
images arrays, 396–398
inserting functions within HTML, 370
inserting statements into HTML, 360–361
links arrays, 398–400
<marquee> tags, 416–417
naming Web page objects, 392–393
navigation bars, 388–390
<noscript> tags, 370–371
operators, 367–369
overview, 359–360
passing values between functions, 364–365
pointing hyperlinks to new files “on-the-fly,” 413–415
pre-caching images, 415–416
repetitive and conditional processing, 369–370
reserved words, 365
<script> tags, 360–361
self-changing banner ads, 411–413
user-defined functions, 382–384
while loops, 377–378
write method, 380–381

JPEG (Joint Photographic Experts Group) format, 283–286
See also graphics; graphics file formats
dither patterns, 283
graphics file formats, 268
lossy compression, 284
nonprogressive mode, 284
progressive mode, 284, 285
slicing images for quick loading, 102
tips, 285–286

“justify” option, text-align property, 180
JVM (Java Virtual Machine), 422

See also Java applets

K
Key method

Request.Form collection, 552
Request.QueryString collection, 556

KNCalendar.zip, Java applets, 442–443

L
<label> tags and form shortcut keys, 148–149

See also forms
accesskey attribute, 149
for attribute, 149

label attribute, <optgroup> tags (grouping XHTML selection
list items), 246

label parameter, pop-up navigation menus, 439
LabelButton.class, navigation menus (Java applets), 445
labels, aligning via form elements and CSS, 206–209
@language command, ASP (Active Server Pages), 528, 529
LANguard Network Scanner, analyzing system

vulnerabilities, 624
large keyword, text size keywords for XHTML, 243
larger keyword, text size keywords for XHTML, 244
lastModified property, JavaScript document objects, 395
layering Web page elements, 214–215, 216

See also CSS (Cascading Style Sheets)
z-index property, 215, 216

length property, validating radio button group selections, 129
letter-spacing property, CSS (Cascading Style Sheets), 188
 tags, nested lists, 52
line break tags. See
 tags
line-height property, CSS (Cascading Style Sheets), 183,

188–189
<link> tags, 167–168

See also CSS (Cascading Style Sheets)
href attribute, 167
media attribute, 167–168
type attribute, 167

linkColor property
JavaScript document object color properties, 402
JavaScript document objects, 396

links. See hyperlinks
links arrays, JavaScript document objects, 396
links arrays (JavaScript), 398–400

<a> (anchor) tags and, 398–399
hash attribute, 399
host attribute, 399
hostname attribute, 399
href attribute, 399
overview, 398–399
pathname attribute, 399
port attribute, 400
protocol attribute, 400
search attribute, 400
target attribute, 400

list boxes, parsing and extracting form results via PHP4, 490
list-style-image property, CSS (Cascading Style Sheets), 202
list-style-position property, CSS (Cascading Style Sheets), 202
list-style-type property, 201–202, 203

See also CSS (Cascading Style Sheets)
style attribute, 202
 (unordered list) tags, 202, 203
values, 201

I n d e x 6 5 1

Tip&Tec / HTML & Web Design Tips & Techniques / Anderson, King, Jamsa / 9394-8 / Index

P:\010Comp\Tip&Tec\394-8\index.vp
Monday, January 07, 2002 2:25:12 PM

Color profile: Generic CMYK printer profile
Composite Default screen

lists
definition, 52–53
form drop-down, 129–132
nested, 51–52
ordered (tags), 48–50
selection. See selection lists
unordered (tags), 50–51

lists and bullets, 96–97
See also tables
 (unordered list) tags, 96

load event, JavaScript events, 378
Local Security Policy Setting dialog box, auditing system

events to detect intruders, 616
log files, tracking visitors via PHP4 and MySQL, 512–513
longdesc attribute, alt attribute and text-only viewers, 281
lossless compression, PNG files, 290
lossy compression, JPEG files, 284
lowsrc attribute, 296–298

See also graphics; (image) tags
JavaScript images arrays, 398

M
Macintosh, cross-platform issues for graphics, 274–276
macro-based viruses, virus-detection software, 607–608
Macromedia Director. See Shockwave animation
Macromedia Fireworks image-editing program, 292
Macromedia Flash. See Flash animation
mail() function, sending e-mail messages via PHP4, 491–493
mailto:, sending form results via e-mail, 144
maps, image. See image map simulation; image maps
margin properties, 181–183

See also CSS (Cascading Style Sheets)
<div> tags, 182

margin width, Web page, 110–111
<marquee> tags, 416–417

See also JavaScript
marquee control (ActiveX), 460–462

See also ActiveX objects
ASP (Active Server Pages), 462

mask property, filter properties, 205, 206
maxlength attribute, <input> tags, 120
media attributes, <link> tags, 167–168
media attributes (XHTML), 257–260

See also XHTML
CSS @, 259–260
@import command, 260

@media rule. See CSS @media rule
medium keyword, text size keywords for XHTML, 242
memory

CPU processing speed and, 630
monitoring Web server performance, 632–633

<menu item> parameter, pop-up navigation menus, 439–440
MenuApplet.class, navigation menus (Java applets), 445–447
menus, navigation. See navigation menus; pop-up

navigation menus
messages, intercepting and changing network, 587–590, 591

method attribute
<form> tags, 118, 134
retrieving form results from ASP Form collection,

550–551
retrieving form results from ASP QueryString

collection, 553
sending data from HTML forms to PHP scripts, 485

Microsoft Chat IRC ActiveX control, 457–460
See also ActiveX objects

mkdir() function, upload file functionality via PHP4, 520–521
monitoring Web server performance, 631–635

See also performance
Add Counters dialog box, 633, 634
CPU processing speed, 632–633
IIS log file, 635
RAM, 632–633
Web sites, 635
Windows Task Manager dialog box, 632–633, 634

mouseout and mouseover events, JavaScript events, 379
move value, cursor types, 214
move_uploaded_file() function, upload file functionality via

PHP4, 521–522
movie attribute, Flash animation, 345
mt_rand() function, random passwords via PHP4, 507
multiline input fields, 120–122

See also forms
<textarea> tags, 120–122

multiple attribute, <select> tags, 131, 132–133, 134
multiple conditions, JavaScript if statements, 374–375
multiple CSS rules and single selectors, 170–172

See also CSS (Cascading Style Sheets)
class names, 172
classes, 170–171
p.critical text style, 171
p.regular text style, 171

multiple declarations, CSS (Cascading Style Sheets), 163
multiple <iframe> tags, 255–257

See also <iframe> tags; inline frames (XHTML)
<a> (anchor) tags, 256–257
align attribute, 255
href attribute, 257
onClick events, 256–257
target attribute, 256, 257

multiple Web pages, displaying. See frames
MyODBC driver, connecting to MySQL DBMS via, 559–561
MySQL databases and tables, 502–504

See also PHP4
accessing Web sites via PHP4, 509–511
connecting to via MyODBC driver, 559–561
SQL CREATE DATABASE statements, 503
SQL CREATE TABLE statements, 503
SQL INSERT statements, 503–504
SQL SELECT statements, 504
tracking visitors via PHP4 and MySQL, 512–514

mysql_connect() function
accessing Web sites via PHP4, 511
SQL queries and results via PHP4, 504, 505

6 5 2 H T M L & W e b D e s i g n T i p s & T e c h n i q u e s

Tip&Tec / HTML & Web Design Tips & Techniques / Anderson, King, Jamsa / 9394-8 / Index

P:\010Comp\Tip&Tec\394-8\index.vp
Monday, January 07, 2002 2:25:12 PM

Color profile: Generic CMYK printer profile
Composite Default screen

mysql_fetch_array() function, SQL queries and results via
PHP4, 504, 506

mysql_num_rows() function, accessing Web sites via
PHP4, 511

mysql_query() function
accessing Web sites via PHP4, 511
SQL queries and results via PHP4, 504, 505–506

mysql_select_db() function, accessing Web sites via
PHP4, 511

N
name attribute

accessing Web sites via PHP4, 496
<embed> tags, 325
<form> tags, 118
<iframe> tags, 253–254
<input> tags, 120, 125, 127
JavaScript images arrays, 398
parsing and extracting form results via PHP4, 489
replacing Submit and Reset buttons with images, 142
<select> tags, 131
sending data from HTML forms to PHP scripts, 486
sending form results via e-mail, 143
Submit buttons, 141
<textarea> tags, 121
validating radio button group selections, 128

naming Web page objects, JavaScript, 392–393
navigation bars, 388–390

See also JavaScript
newImage() function, 389
onMouseOut event handler, 388–390
onMouseOver event handler, 388–390

navigation menus, 56–57
<frameset> tags, 56

navigation menus (Java applets), 444–447
fontStyle parameter, 447
fontType parameter, 447
LabelButton.class, 445
MenuApplet.class, 445–447
pop-up, 437–440
targetWindow parameter, 446

navigation sidebars, 97–98
See also tables

Nervous.java, editing Java source code, 452–453, 456–457
nested lists, 51–52

 tags, 52
nesting

tables to control borders, 99, 100
XHTML elements, 224–225

Netscape Navigator, embedding ActiveX objects in
Web pages, 434–435

Network dialog box, disabling printer and file sharing, 611
network messages, intercepting and changing, 587–590, 591
newImage() function

navigation bars, 389
pre-caching images, 415

newOption() function, selection list items availability, 136
NewsScroller applet, 448–450

See also Java applets
nextImage() function, animation and onLoad events, 411
<noframes> tags, frames and, 60
noninterlaced mode, GIF files, 286
nonprogressive mode, JPEG files, 284
Norton Personal Firewall, software-based firewalls, 605
<noscript> tags, JavaScript, 370–371
noshade attribute, <hr> (horizontal rule) tags, 46
Not operator, JavaScript if statements, 375–376
Nothing session variables, sessions via ASP, 567
now() function, Response.Write method, 535
NTFS (NT file system), 617–620

See also security
auditing, 620
determining current file system, 617
encryption, 619
permissions, 618

O
<object> tags

classid attribute, 433, 434
codebase attribute, 433, 434
embedding ActiveX objects in Web pages, 432–433, 434
Flash animation, 344
height attribute, 433
id attribute, 433
Java applets, 420
param attribute, 433
sound, 328
type attribute, 433
width attribute, 433

objects, ASP (Active Server Pages), 532–539
objResultsSet object, connecting to MySQL DBMS via

MyODBC driver, 561
ODBC (open database connectivity), connecting to MySQL

DBMS via MyODBC driver, 559–561
 (ordered list) tags, 48–50

start attribute, 50
type attribute, 50

onAbort event handler, JavaScript event handlers, 386
onBlur event handler, JavaScript event handlers, 386
onChange event handler, JavaScript event handlers, 386
onClick attribute, validating forms via, 149–150
onClick event handler

calling JavaScript functions within event handlers, 385
JavaScript event handlers, 386
JavaScript events, 379

onClick events, multiple <iframe> tags, 256–257
onDoubleClick event handler, JavaScript event handlers, 386
onDragDrop event handler, JavaScript event handlers, 386
onError event handler, JavaScript event handlers, 386
onFocus event handler, JavaScript event handlers, 386
onKeyDown event handler, JavaScript event handlers, 386
onKeyPress event handler, JavaScript event handlers, 386

I n d e x 6 5 3

Tip&Tec / HTML & Web Design Tips & Techniques / Anderson, King, Jamsa / 9394-8 / Index

P:\010Comp\Tip&Tec\394-8\index.vp
Monday, January 07, 2002 2:25:13 PM

Color profile: Generic CMYK printer profile
Composite Default screen

onKeyUp event handler, JavaScript event handlers, 386
onload attribute, cookies acceptance (determining via

PHP4), 494
onLoad event handler

animation and onLoad events, 410
JavaScript event handlers, 387
pre-caching images, 415, 416
self-changing banner ads (JavaScript), 412

onLoad events, animation and, 410–411
onMouseDown event handler, JavaScript event handlers, 387
onMouseOut event handler

JavaScript event handlers, 387
navigation bars, 388–390

onMouseOver event handler
JavaScript event handlers, 387
navigation bars, 388–390

onmouseover and onmouseout events, DHTML (Dynamic
HTML), 320

onMouseUp event handler, JavaScript event handlers, 387
onMove event handler, JavaScript event handlers, 387
onReset attribute

<form> tags, 118
Reset buttons, 139

onReset event handler, JavaScript event handlers, 387
onResize event handler, JavaScript event handlers, 387
onSelect event handler, JavaScript event handlers, 387
onSubmit attribute

<form> tags, 118, 134
Submit buttons, 141
validating radio button group selections, 129

onSubmit event handler, JavaScript event handlers, 387
onUnload event handler

calling JavaScript functions within event handlers, 384
JavaScript event handlers, 387

Open method
connecting to MySQL DBMS via MyODBC driver, 561
SQL queries and results via ASP, 569

opendir() function, upload file functionality via PHP4, 520–521
operating systems and server applications, performance and, 630
operators

JavaScript, 367–369
PHP4, 476–477, 482

<optgroup> tags (grouping XHTML selection list items),
245–247

See also forms; XHTML
label attribute, 246

<option> tags
drop-down lists, 130, 132
selected attribute, 132
value attribute, 132

ordered lists, tags, 48–50
overflow errors, CGI script attacks, 595
overlapping tags caveat, XHTML, 224–225
overlapping text, 177–179

See also CSS (Cascading Style Sheets)
absolute positioning, 178
class attribute, 179

<p> (paragraph) tags, 179
position property, 178–179
relative positioning, 178

P
<p> (paragraph) tags

See also paragraphs
aligning text and graphics, 38–39

 (line break) tags and, 27–31
colorful horizontal rules, 296
CSS (Cascading Style Sheets), 163
font-family property, 173–174
formatting text, 7
overlapping text, 179

padding properties
CSS (Cascading Style Sheets) and columns, 185, 211
thumbnails with captions, 211

page layout, tables and, 72
page-break-before and page-break-after properties, printing

XHTML Web pages, 261–263
<par> tags, SMIL (Synchronized Multimedia Integration

Language), 355–356
paragraphs

See also <p> tags
indenting via CSS (Cascading Style Sheets), 188

<param> tags
inserting Java applets into Web pages, 430
pop-up navigation menus, 439–440

param attribute, <object> tags, 433
parameter values, passing to Java applets, 429–431
parents and children, CSS (Cascading Style Sheets) and

inheritance, 165–166
parsing and extracting form results via PHP4, 488–491

See also forms; PHP4; retrieving form results
from ASP...

checkboxes, 489
form results validation script, 490–491
isset() function, 489–490
list boxes, 490
name attribute, 489
radio buttons, 489–490

passing parameter values to Java applets, 429–431
passing values between JavaScript functions, 364–365
passing values via hidden fields, 151–152

See also forms
type attribute, 151
validateAndSubmit() function, 152
value attribute, 151

password fields, hiding input in, 152–153
password-cracking software, breaking into systems, 592–593
passwords

See also username/password pairs
accessing Web sites via ASP, 562–565
accessing Web sites via PHP4, 496–498, 509–511
preventing linking to Web pages via PHP4, 498–499
random via PHP4, 507–509

6 5 4 H T M L & W e b D e s i g n T i p s & T e c h n i q u e s

Tip&Tec / HTML & Web Design Tips & Techniques / Anderson, King, Jamsa / 9394-8 / Index

P:\010Comp\Tip&Tec\394-8\index.vp
Monday, January 07, 2002 2:25:13 PM

Color profile: Generic CMYK printer profile
Composite Default screen

path keyword, storing cookies on visitors’ hard drives, 403
pathname attribute, JavaScript links arrays, 399
pathname property, pointing hyperlinks to new files

“on-the-fly,” 413–414
pathnames, relative vs. absolute, 14–16
p.critical text style, multiple CSS rules and single selectors, 171
performance, 625–635

chain of Web server, 625, 626
connection speeds, 627–628
CPU processing speed, 628–630
disk access time, 630
monitoring Web server, 631–635
operating systems and server applications, 630
overview, 625–627
proxy servers and Web-caching devices, 630, 631
Web farms, 631, 632
Web sites, 627

permissions, NTFS (NT file system), 618
persistence of vision, animation, 317
Personal Web Manager, 18, 19

See also PWS (Personal Web Server)
Personal Web Server. See PWS
PetQuotes.class, Java applets, 443–444
PFR (Portable Font Resource) files, CSS rules for embedding

fonts within XHTML Web pages, 250–251
photographs, compressing. See JPEG (Joint Photographic

Experts Group) format
photos. See graphics; images
Photoshop

cross-platform issues for graphics, 276
Image Size dialog box, 294
image-editing programs, 292
Indexed Color dialog box, 299, 300
Save For Web dialog box, 289, 305, 306
transparent GIFs, 305–306
Web-safe color palette, 299, 300

PHP4, 464–522
accessing Web sites via, 496–498, 509–511
backslash (\) escape character, 472–473
comments, 473–474
compound statements, 479
conditional and repetitive processing, 478–484
cookies acceptance (determining via), 493–495
downloading and installing, 468–469
for statements, 482–483
history of, 467
if statements, 478–481
if-else statements, 479–480
if-elseif structures, 480–481
IP address determination, 514–516
logical operators, 482
MySQL databases and tables, 502–504
operators, 476–477, 482
overview, 465–466
parsing and extracting form results, 488–491
preventing linking to Web pages via, 498–499

preventing session masquerading, 516–517
preventing visitors from changing variable values via

URL arguments, 511–512
random passwords via, 507–509
repetitive and conditional processing, 478–484
<script> tags, 470
semicolon (;) statement terminator, 472
sending data from HTML forms to PHP scripts, 484–488
sending e-mail messages via, 491–493
sessions via, 499–502
SQL queries and results via PHP4, 504–506
start and end tags, 469–472
statement syntax, 472–474
switch statements, 481
tracking visitors via PHP4 and MySQL, 512–514
upload file functionality, 520–522
variables, 474–476
Web page templates, 517–519
while loops, 483–484

PHP processor, preventing session masquerading, 516
pictures. See graphics; images
plug-in software, animation and, 318
pluginspage attribute, Flash animation, 344, 345
PNG (Portable Network Graphic) format, 268–269, 290, 291

See also graphics; graphics file formats
lossless compression, 290

pointing hyperlinks to new files “on-the-fly,” 413–415
See also JavaScript
hash property, 413
href attribute, 413, 414–415
pathname property, 413–414

pop-up navigation menus, 437–440
See also Java applets
image parameter, 439
imageposition parameter, 439
label parameter, 439
<menu item> parameter, 439–440
<param> tags, 439–440
PopupNavigator.class, 437–439

port assignments, firewall, 605–606, 607
port attribute, JavaScript links arrays, 400
port numbers, broadcasting streaming audio and video,

350–351
Portable Font Resource (PFR) files, CSS rules for

embedding fonts within XHTML Web pages, 250–251
position property

CSS (Cascading Style Sheets), 159, 178–179
overlapping text, 178–179

positioning background images and watermarks, 196–199
See also CSS (Cascading Style Sheets)
background-image property, 196–197
background-position property, 198–199
background-repeat setting, 197–198
tiles, 196
watermarks, 197–198

positioning Java applets, 426–429

I n d e x 6 5 5

Tip&Tec / HTML & Web Design Tips & Techniques / Anderson, King, Jamsa / 9394-8 / Index

P:\010Comp\Tip&Tec\394-8\index.vp
Monday, January 07, 2002 2:25:13 PM

Color profile: Generic CMYK printer profile
Composite Default screen

POST method
preventing visitors from changing variable values via

URL arguments, 511
retrieving form results from ASP QueryString

collection, 553
sending data from HTML forms to PHP scripts, 486–487

<pre> (preformatted text) tags, 54–55
pre-caching images, 415–416

See also JavaScript
 (image) tags, 415
new Image() constructor, 415
onLoad event handler, 415, 416
preCache() function, 416

p.regular text style, multiple CSS rules and single selectors, 171
preloading and caching images, 309–311

See also downloading; graphics
height attribute, 309–310
 (image) tags, 309–310
width attribute, 309–310

prepFormResults() function, selection list values and hidden
fields, 137

PreResetProc() function, Reset buttons, 140
preventing linking to Web pages, 498–499

See also PHP4
preventing session masquerading, 516–517

See also PHP4
cookies, 516
PHP processor, 516
session_start() function, 516

preventing visitors from changing variable values via URL
arguments, 511–512

See also PHP4
GET method, 511
POST method, 511

preventing Web browsers from displaying “stale” ASP, 543–545
See also ASP (Active Server Pages)
Response.CacheControl property, 545
Response.Expires property, 544–545
Response.ExpiresAbsolute property, 544

printer and file sharing (disabling), 610–612
See also security
Network dialog box, 611

printing XHTML Web pages, 261–263
See also XHTML
CSS @media rule, 263
CSS page-break-before and page-break-after

properties, 261–263
progression option, graphics, 288–289
progressive mode, JPEG files, 284, 285
protocol attribute, JavaScript links arrays, 400
proxy servers

IP address determination, 514–516
performance and Web-caching devices, 630, 631

public key encryption, 598–599
See also encryption; security
finding public keys, 599
overview, 598

public keys, downloading and installing, 600
publishing ASP (Active Server Pages), 527
publishing Web pages, PWS (Personal Web Server), 18–21
PWS (Personal Web Server), 16–21

ASP (Active Server Pages) and, 527
downloading, 16–17
installing, 17–18
IP addresses and, 19–21
managing and publishing Web pages, 18–21
Personal Web Manager, 18, 19

Q
<q> (quotation) tags, character formatting tags, 42
quality attribute, Flash animation, 345
query results, displaying SQL in HTML tables on

Web pages, 504–506
QueryString collection, retrieving form results from ASP,

553–556
quick-loading tables, 103–104

See also tables
QuickTime, sound and, 327
quotation tags. See <q> tags
quotes, PetQuotes.class (Java applets), 443–444

R
radio broadcasts, 327, 348–349

See also broadcasting streaming audio and video; sound
radio buttons, 126–129

See also forms
<input> tags and type attribute, 126–127
parsing and extracting form results via PHP4, 489–490
validating group selections, 128–129

RAM
CPU processing speed and, 630
monitoring Web server performance, 632–633

random passwords via PHP4, 507–509
See also PHP4
mt_rand() function, 507
script, 508
usernames table, 508–509

readonly attribute, <input> tags, 120
RealAudio, sound, 326
RealNetworks server, broadcasting streaming audio and

video, 350
RealPix format, SMIL (Synchronized Multimedia

Integration Language), 356
RealPlayer, SMIL (Synchronized Multimedia Integration

Language) and, 354, 355, 357
RealText format, SMIL (Synchronized Multimedia

Integration Language), 356
recordPageHit() function, tracking visitors via PHP4 and

MySQL, 514
REDIRECT keyword, Ad Rotator, 574
redirecting Web browsers, 545–547

See also ASP (Active Server Pages)
Response.Redirect method, 545–547

6 5 6 H T M L & W e b D e s i g n T i p s & T e c h n i q u e s

Tip&Tec / HTML & Web Design Tips & Techniques / Anderson, King, Jamsa / 9394-8 / Index

P:\010Comp\Tip&Tec\394-8\index.vp
Monday, January 07, 2002 2:25:14 PM

Color profile: Generic CMYK printer profile
Composite Default screen

redirector file
Ad Rotator, 573
tracking impressions and click-throughs, 579–580

referrer property, JavaScript document objects, 396
relative and absolute values for dimensioning

cells, 85–86
<table> tags, 84–85

relative pathnames, absolute pathnames comparison, 14–16
relative positioning, overlapping text, 178
release forms, copyright issues for Web graphics, 271–272
ReloadForever.html, denying access to systems, 594
remote services (disabling), 620–623

See also security
call-back systems, 622–623
finger command, 623
whois command, 623

removing cookies from cookie files, 407–409
See also cookies; JavaScript
CookieName parameter, 408
deleteCookie() function, 408–409
expiration dates, 407–408

repetitive and conditional processing
JavaScript, 369–370
PHP4, 478–484

replacing Submit and Reset buttons with images, 141–143
See also forms
action attribute, 141–142
href attribute, 142
name attribute, 142

Request.Cookies collection, cookies collection, 547–549
Request.Cookies method, cookies collection, 549–550
Request.Form collection

Count property, 552
Item method, 552
Key method, 552
retrieving form results from ASP Form collection,

551–552
Request.QueryString collection, 554–556

See also retrieving form results from ASP QueryString
collection

Count property, 555–556
Item method, 556
Key method, 556

Request.Server Variables collection, retrieving information
from Server Variables collection, 556–557, 558

reserved words, JavaScript, 365
Reset buttons, 138–140

See also forms
<input> tags and type attribute, 138
onReset attribute, 139
PreResetProc() function, 140
preventing accidental clearings, 139–140
replacing with images, 141–143

reset event, JavaScript events, 379
resize values, cursor types, 214
Response objects, SQL queries and results via ASP, 568
Response.Buffer property, ASP (Active Server Pages), 539–541

Response.CacheControl property, preventing Web browsers
from displaying “stale” ASP, 545

Response.Clear method, ASP (Active Server Pages), 542–543
Response.End method, ASP (Active Server Pages), 543
Response.Expires property, preventing Web browsers from

displaying “stale” ASP, 544–545
Response.ExpiresAbsolute property, preventing Web

browsers from displaying “stale” ASP, 544
Response.Flush method, ASP (Active Server Pages), 541–542
Response.Redirect method

Ad Rotator, 576
redirecting Web browsers, 545–547

Response.Write method, 529, 532–539
See also ASP (Active Server Pages)
Ad Rotator, 575, 577
chr() function, 534, 535
Dim keyword, 536–537
now() function, 535
SQL queries and results via ASP, 568, 572
tracking impressions and click-throughs, 577
variables display, 536–539
With keyword, 535–536
writing double quote (“) characters on Web pages,

533–535
results

displaying SQL query in HTML tables on Web pages,
504–506

form. See parsing and extracting form results via
PHP4; retrieving form results from ASP...

SQL queries and results via ASP, 568–573
retrieving form results from ASP Form collection, 550–552

See also ASP (Active Server Pages); parsing and
extracting form results via PHP4

action attribute, 550
<form> tags, 550–551
GET method, 551
method attribute, 550–551
Request.Form collection, 551–552

retrieving form results from ASP QueryString collection,
553–556

See also ASP (Active Server Pages); parsing and
extracting form results via PHP4

action attribute, 553–554
<form> tags, 553–554
GET method, 553–554
method attribute, 553
POST method, 553
Request.QueryString collection, 554–556

retrieving information from Server Variables collection,
556–558

See also ASP (Active Server Pages)
Request.Server Variables collection, 556–557, 558

retrieving values from cookie files, 406–407
See also cookies; JavaScript
cookie property, 406
CookieName parameter, 406
cookieValue() function, 406–407

I n d e x 6 5 7

Tip&Tec / HTML & Web Design Tips & Techniques / Anderson, King, Jamsa / 9394-8 / Index

P:\010Comp\Tip&Tec\394-8\index.vp
Monday, January 07, 2002 2:25:14 PM

Color profile: Generic CMYK printer profile
Composite Default screen

getCookieValue() function, 406–407
unescape() function, 406

RLE (Run Length Encoding) compression, GIF files, 286
rotateBanner() function, self-changing banner ads

(JavaScript), 412–413
rotator schedule file, Ad Rotator, 573–574
rows attribute, <textarea> tags, 121
rowspan attribute

<td> (table data) tags, 72–74
<tr> (table row) tags, 72–74

rsOrderDetail.EOF, SQL queries and results via ASP, 571
rsOrderInfo object, SQL queries and results via ASP, 572
rsOrderItems object, SQL queries and results via ASP, 572
rsOrderStatus object, SQL queries and results via ASP, 572
rules

CSS (Cascading Style Sheets), 159, 160, 162, 163–164
CSS for adding color to XHTML tables, 247–249
CSS for embedding fonts within XHTML Web pages,

249–251
XHTML, 222–230

S
SATAN (Security Administrator Tool for Analyzing

Networks), 623–624
Courtney program for detecting, 624
Gabriel program for detecting, 624

Save For Web dialog box, Photoshop, 289, 305, 306
saving clip art. See GIF (Graphics Interchange Format) files
scanners, 292–294

See also graphics
<script> tags

calling user-defined JavaScript functions, 383
external scripts, 409–410
JavaScript, 360–361
PHP4, 470
validating data, 123

scripts
ASP (Active Server Pages) and, 525–527
CGI script attacks, 594–595
external JavaScript, 409–410
hiding from Web browsers without JavaScript support,

361–362
hiding via CDATA section (XHTML), 231–232
JavaScript, 358–417
sending data from HTML forms to PHP, 484–488

scrolling, <marquee> tags, 416–417
scrolling attribute, <iframe> tags, 253
search attribute, JavaScript links arrays, 400
section tags, HTML, 4–5
Secure Communications dialog box, server IDs, 602, 603
secure keyword, storing cookies on visitors’ hard drives,

403–404
security, 586–625

See also certificates; digital signatures
ActiveX objects, 424

analyzing system vulnerabilities, 623–624
auditing system events to detect intruders, 614–616
client certificates, 612–613
credit card processing, 625
disabling remote services, 620–623
downloading and installing public keys, digital

signatures, and server IDs, 600, 601
encryption and, 597–599
firewalls, 595–597, 603–607
hacker threats, 587–595
Java applets, 422
NTFS (NT file system), 617–620
overview, 587
printer and file sharing (disabling), 610–612
server IDs, 600, 601–602, 603
virus-detection software, 607–609, 610

security settings, auditing system events to detect intruders,
615–616

Security Settings dialog box, Java applets and ActiveX
objects, 435–437

<select> tags
drop-down lists, 129–131, 132
id attribute, 131
multiple attribute, 131, 132–133, 134
name attribute, 131
size attribute, 130

select event, JavaScript events, 379
SELECT statements

accessing Web sites via ASP, 563
MySQL databases and tables, 504

selected attribute, <option> tags, 132
SelectedByDefault parameter, selection list items

availability, 136
selectedIndex property, validating selection list choices, 133
SelectedWhenAdded parameter, selection list items

availability, 136
selection list items, grouping XHTML. See <optgroup> tags
selection list items availability, 134–136

See also forms
addToList() function, 134–135, 136
newOption() function, 136
<select> tags and multiple attribute, 134
SelectedByDefault parameter, 136
SelectedWhenAdded parameter, 136

selection list values and hidden fields, 136–137
See also forms
prepFormResults() function, 137

selector {rule} statements, CSS (Cascading Style Sheets), 163
selectScheme() function, JavaScript document object color

properties, 401
self-changing banner ads (JavaScript), 411–413

See also banner ads; JavaScript
onLoad event handler, 412
rotateBanner() function, 412–413
setTimeout() function, 412–413

6 5 8 H T M L & W e b D e s i g n T i p s & T e c h n i q u e s

Tip&Tec / HTML & Web Design Tips & Techniques / Anderson, King, Jamsa / 9394-8 / Index

P:\010Comp\Tip&Tec\394-8\index.vp
Monday, January 07, 2002 2:25:15 PM

Color profile: Generic CMYK printer profile
Composite Default screen

TE
AM
FL
Y

Team-Fly®

semicolon (;) statement terminator, PHP4, 472
sending data from HTML forms to PHP scripts, 484–488

See also forms; PHP4
action attribute, 484–485, 486, 487
<form> tags, 484–485, 486, 487
GET method, 485–487
method attribute, 485
name attribute, 486
POST method, 486–487

sending e-mail messages via PHP4, 491–493
hyperlinks, 491
mail() function, 491–493

sending form results via e-mail, 143–144
See also forms
action attribute, 143, 144
enctype attribute, 144
mailto:, 144
name attribute, 143

<seq> tags, SMIL (Synchronized Multimedia Integration
Language), 356

server applications and operating systems, performance and, 630
server IDs, 601–602, 603

See also certificates; digital signatures; security
downloading and installing, 600
Secure Communications dialog box, 602, 603

Server Variables collection, retrieving information from,
556–558

Server.CreateObject method
accessing Web sites via ASP, 563–564
Ad Rotator, 575
SQL queries and results via ASP, 568

Session object, sessions via ASP, 566–567
sessions via ASP, 565–568

See also ASP (Active Server Pages)
ID cookies, 565–566, 568
isEmpty() function, 568
Nothing session variables, 567
Session object, 566–567
Session.Timeout property, 567

sessions via PHP4, 499–502
See also PHP4
“Accept Cookie” message box, 501
cookies, 500
preventing masquerading, 516–517
session_register() function, 501, 502
session_start() function, 500–501

session_start() function, preventing session masquerading, 516
Session.Timeout property, sessions via ASP, 567
Set statements, connecting to MySQL DBMS via MyODBC

driver, 561
setCookie() function

cookies acceptance (determining via PHP4), 495
formatting cookie data, 404, 405

setTimeout() function, self-changing banner ads (JavaScript),
412–413

shadow property, filter properties, 205, 206
shadows, drop-shadow effect, 192–194

Shockwave animation, 324–325
See also animation
<embed> tags, 325
Web sites, 325

shortcut keys, <label> tags and form, 148–149
ShowOrderStatus.asp, SQL queries and results via ASP, 571
sidebars, navigation, 97–98
signatures. See digital signatures
sine wave animation, SinLogo.class (Java applets), 450–451
single-line input fields, 119–120

See also forms
<input> tags, 119–120

SinLogo.class (Java applets), sine wave animation, 450–451
size attribute

 tags, 32–33
<hr> (horizontal rule) tags, 46
<input> tags, 120
<select> tags, 130

slicing images for quick loading, 102, 103
See also tables
JPEG files, 102

small keyword, text size keywords for XHTML, 242
smaller keyword, text size keywords for XHTML, 244
SMIL (Synchronized Multimedia Integration Language),

354–357
See also animation; sound; video
<par> tags, 355–356
RealPix format, 356
RealPlayer and, 354, 355, 357
RealText format, 356
<seq> tags, 356

social-engineering attacks, breaking into systems, 593–594
software-based firewalls, 603–605

See also firewalls; security
Norton Personal Firewall, 605
Symantec Security Check program, 604

sound, 326–328
See also animation
adding to Web pages, 328
<bgsound> tag, 328
broadcasting streaming, 348–351
capturing, 327
<embed> tags, 328
file formats, 327
guidelines for using, 327
<object> tags, 328
QuickTime, 327
radio broadcasts, 327
RealAudio, 326
SMIL (Synchronized Multimedia Integration

Language), 354–357
streaming, 351–352
Web sites, 328

source code, hiding ASP from Web site visitors, 531
source files, editing Java source code, 452
spaghetti graphics, tiled backgrounds, 302
 tags, form elements and CSS, 207–209

I n d e x 6 5 9

Tip&Tec / HTML & Web Design Tips & Techniques / Anderson, King, Jamsa / 9394-8 / Index

P:\010Comp\Tip&Tec\394-8\index.vp
Monday, January 07, 2002 2:25:15 PM

Color profile: Generic CMYK printer profile
Composite Default screen

special characters. See character formatting tags; symbols and
special characters

splash screens, adding Flash animation to Web sites, 342–345
SQL CREATE DATABASE statements, MySQL databases

and tables, 503
SQL CREATE statements, accessing Web sites via PHP4,

509–510
SQL CREATE TABLE statements

accessing Web sites via ASP, 563
MySQL databases and tables, 503
tracking visitors via PHP4 and MySQL, 512–513

SQL INSERT statements
accessing Web sites via ASP, 563
accessing Web sites via PHP4, 510
MySQL databases and tables, 503–504

SQL queries and results via ASP, 568–573
See also ASP (Active Server Pages)
action attribute, 570
Connection objects, 568, 571
ConnectionString property, 569
Execute method, 571
GetOrderNumber.asp, 569–570
Open method, 569
Response objects, 568
Response.Write method, 568, 572
rsOrderDetail.EOF, 571
rsOrderInfo object, 572
rsOrderItems object, 572
rsOrderStatus object, 572
Server.CreateObject method, 568
ShowOrderStatus.asp, 571
Status item, 569

SQL queries and results via PHP4, 504–506
if statements, 505
mysql_connect() function, 504, 505
mysql_fetch_array() function, 504, 506
mysql_query() function, 504, 505–506

SQL query results, displaying in HTML tables on Web pages,
504–506

SQL SELECT statements
accessing Web sites via ASP, 563
MySQL databases and tables, 504

src attribute
animation and onLoad events, 411
<embed> tags, 325
Flash animation, 345
<frame> tags, 58
GIF animation, 322, 336
<iframe> tags, 253
image-editing programs, 291
images and links in cells, 98
 (image) tags, 36, 269
JavaScript images arrays, 398

SSL (Secure Socket Layer) protocol
accessing Web sites via ASP, 565
accessing Web sites via PHP4, 498
client certificates, 612

start attribute, (ordered list) tags, 50
start and end tags

ASP (Active Server Pages), 525, 528–531
PHP4, 469–472

“Status: 404 not found” errors, 580–585
See also ASP (Active Server Pages)
BadURL() function, 582–583
IIS (Internet Information Server), 583–585
overview, 580–581
replacing, 581–585

Status item, SQL queries and results via ASP, 569
storing cookies on visitors’ hard drives, 402–404

See also cookies; JavaScript
domain keyword, 403
expires keyword, 403
overview, 402–403
path keyword, 403
secure keyword, 403–404

streaming audio and video, 351–352
See also animation
broadcasting, 348–351
Cool Edit, 351–352

streaming vs. downloading video, 331–332
See also broadcasting streaming audio and video

 tags, character formatting tags, 42
<style> tags, 159–160, 162, 164

See also CSS (Cascading Style Sheets)
type attribute, 167

style attribute, 77–78
See also <table> tags
background images and colors, 81
background-color property, 81
background-image property, 81
border-color properties, 77–78
CSS (Cascading Style Sheets), 169–170
list-style-type property, 202
text size keywords for XHTML, 243

style sheets. See CSS (Cascading Style Sheets)
<sub> (subscript) tags, character formatting tags, 42
Submit buttons, 140–143

See also forms
name attribute, 141
onSubmit attribute, 141
replacing with images, 141–143
value attribute, 141

submit event, JavaScript events, 379
summary attribute, <table> tags, 70
<sup> (superscript) tags, character formatting tags, 42
switch statements, PHP4, 481
Symantec Security Check program, software-based

firewalls, 604
symbols and special characters, 42–44

See also character formatting tags
copyright symbol, 43, 44

Synchronized Multimedia Integration Language. See SMIL

6 6 0 H T M L & W e b D e s i g n T i p s & T e c h n i q u e s

Tip&Tec / HTML & Web Design Tips & Techniques / Anderson, King, Jamsa / 9394-8 / Index

P:\010Comp\Tip&Tec\394-8\index.vp
Monday, January 07, 2002 2:25:15 PM

Color profile: Generic CMYK printer profile
Composite Default screen

T
tabindex attribute, <input> tags, 120
<table> tags, 67–68

See also tables
absolute and relative values for dimensioning, 84–85
background attribute, 80–81
bgcolor attribute, 80–81
border attribute, 70, 72, 75–76
bordercolor attribute, 76–77
bordercolordark attribute, 76–77
bordercolorlight attribute, 76–77
cellpadding attribute, 83–84
cellspacing attribute, 83–84
height attribute, 84–85
hexadecimal color values, 81–83
images and links in cells, 98
relative and absolute values for dimensioning, 84–85
style attribute, 77–78
summary attribute, 70
width attribute, 84–85

table heading tags. See <th> tags
table selector, CSS (Cascading Style Sheets), 164
tables, 62–111

aligning cell content horizontally and vertically, 86–88
aligning Web page content via borders, 108–110
aligning on Web pages, 89
background images and colors, 78–81
border attribute, 69–70, 75–78
<caption> tags, 70
cell background colors, 107–108
cell padding and cell spacing, 83–84
cells spanning multiple columns or rows, 72–74
CSS rules for adding color to XHTML, 247–249
displaying SQL query results on Web pages, 504–506
form layout and, 145–147
frames simulation, 104–107
heading tags. See <th> tags
hexadecimal color values, 81–83
image map simulation, 100–101
image maps and, 65–66
images and links in cells, 98
lists and bullets, 96–97
MySQL databases and, 502–504
navigation sidebars, 97–98
nesting to control borders, 99, 100
overview, 63–66
page layout and, 72
quick loading, 103–104
setting cell dimensions via relative or absolute values,

85–86
setting dimensions via relative or absolute values, 84–85
slicing images for quick loading, 102, 103
<table> tags, 67–68
tags for creating, 67–72
<td> (table data) tags, 67–69
<th> (table heading) tags, 70–71

thumbnail images within, 93–95
<tr> (table row) tags, 67–69, 71
transparent GIFs, 89–91
Web page gutter size and margin width, 110–111
wrapping text around images, 91–93

tables and form layout, 145–147
See also forms
border attribute, 147
height attribute, 145–146
valign attribute, 145

tags
See also under specific tag names
character formatting, 41–42
container, 4
empty, 5
section, 4–5
table, 67–72
XHTML, 222

target attribute
<a> (anchor) tags, 58, 59
<form> tags, 118
<iframe> tags, 254
JavaScript links arrays, 400
multiple <iframe> tags, 256, 257

targetWindow parameter, navigation menus
(Java applets), 446

<tbody> tags, CSS rules for adding color to XHTML tables,
247–248

<td> (table data) tags, 67–69
See also tables
background attribute, 80–81
background images and colors, 78–81
bgcolor attribute, 80
bordercolor attribute, 78
colspan attribute, 72, 74
CSS rules for adding color to XHTML tables, 248
height attribute, 85
images and links in cells, 98
rowspan attribute, 72–74
width attribute, 85

templates, Web page, 517–519
text

aligning, 37–39
aligning Web page. See text-align property
balancing text and graphics on Web pages, 272–274
floating images and, 199–200
formatting, 6–8
overlapping, 177–179
wrapping around images, 91–93

text editors, creating Web pages, 11–12
text flow, <p> (paragraph) and
 (line break) tags, 27–31
text size keywords for XHTML, 242–245

See also XHTML
CSS (Cascading Style Sheets), 242–244
font-size property, 243
large keyword, 243
larger keyword, 244

I n d e x 6 6 1

Tip&Tec / HTML & Web Design Tips & Techniques / Anderson, King, Jamsa / 9394-8 / Index

P:\010Comp\Tip&Tec\394-8\index.vp
Monday, January 07, 2002 2:25:16 PM

Color profile: Generic CMYK printer profile
Composite Default screen

medium keyword, 242
small keyword, 242
smaller keyword, 244
style attribute, 243
x-large keyword, 243
x-small keyword, 242
xx-large keyword, 243
xx-small keyword, 242

text value, cursor types, 214
text-align property

class attribute and, 180
CSS (Cascading Style Sheets), 179–181
“justify” option, 180

text-only viewers, alt attribute and (image) tags, 278–281
<textarea> tags, 120–122

See also forms
cols attribute, 121, 122
id attribute, 121
multiline input fields, 120–122
name attribute, 121
rows attribute, 121
type attribute, 122

<tfoot> tags, CSS rules for adding color to XHTML tables,
247–248

<th> (table heading) tags, 70–71
See also tables
CSS rules for adding color to XHTML tables, 249
height attribute, 86
width attribute, 86

<thead> tags, CSS rules for adding color to XHTML tables,
247–248

thumbnail images within tables, 93–95
See also tables
<a> (anchor) tags and href attribute, 93–95

thumbnails with captions, 209–212
See also CSS (Cascading Style Sheets)
<div> tags, 210–212
fLeft class, 210–211
padding properties, 211

thumbnails and retrieving full size images, 307–309
See also graphics
href attribute, 307, 308–309

Tidy Configuration dialog box, HTML Tidy (converting
HTML to XHTML), 235

Tidy Output dialog box, HTML Tidy (converting HTML to
XHTML), 236

TidyGUI.exe, HTML Tidy (converting HTML to XHTML),
234–235

tiled backgrounds, 301–304
See also graphics; images
background attribute, 301–302
spaghetti graphics, 302

tiles
border graphics, 194–196
positioning background images and watermarks, 196

<title> tags, 21–23
XHTML, 229–230

title attribute
cursor types, 212
<form> tags, 119

title attribute and tool tips, 281–282, 283
See also graphics; (image) tags

title property, JavaScript document objects, 396
tool tips

cursor types, 212, 213
title attribute and, 281–282, 283

tours, virtual, 332–334
<tr> (table row) tags, 67–69, 71

See also tables
colspan attribute, 72, 74
CSS rules for adding color to XHTML tables, 247
rowspan attribute, 72–74

tracert command, intercepting and changing network
messages, 588–589

tracking impressions and click-throughs, 576–580
See also Ad Rotator; ASP (Active Server Pages)
DisplayRotatorAd() function, 578
GetAdvertisement method, 577–579
redirection file, 579–580
Response.Write method, 577

tracking visitors via PHP4 and MySQL, 512–514
See also MySQL databases and tables; PHP4
log files, 512–513
recordPageHit() function, 514
SQL CREATE TABLE statements, 512–513

Transitional XHTML DTD, <!DOCTYPE> element, 238
transparent GIFs, 89–91, 304–307

See also GIF (Graphics Interchange Format) files;
graphics; tables

bounding boxes and, 304
Photoshop, 305–306
width attribute, 91

tweening, GIF animation, 341–342
type attribute

accessing Web sites via ASP, 564
button objects, 154
Flash animation, 345
hiding input in password fields, 153
<input> tags, 119, 124–127, 138
<link> tags, 167
<object> tags, 433
 (ordered list) tags, 50
passing values via hidden fields, 151
<style> tags, 167
<textarea> tags, 122
 (unordered list) tags, 51

type attribute and <input> tags
checkboxes, 124–126
Reset buttons, 138

typefaces
See also tags
face attribute, 26–27
selecting via font-family property, 172–174

6 6 2 H T M L & W e b D e s i g n T i p s & T e c h n i q u e s

Tip&Tec / HTML & Web Design Tips & Techniques / Anderson, King, Jamsa / 9394-8 / Index

P:\010Comp\Tip&Tec\394-8\index.vp
Monday, January 07, 2002 2:25:16 PM

Color profile: Generic CMYK printer profile
Composite Default screen

U
<u> (underline) tags

character formatting tags, 42
formatting text, 8
hyperlinks caveat, 41

 (unordered list) tags, 50–51
CSS (Cascading Style Sheets), 164
list-style-type property, 202, 203
lists and bullets, 96
type attribute, 51

underline tags. See <u> tags
unescape() function, retrieving values from cookie files, 406
unload event, JavaScript events, 379
unordered lists. See tags
upload file functionality via PHP4, 520–522

See also PHP4
FTP (file transfer protocol), 520
mkdir() function, 520–521
move_uploaded_file() function, 521–522
opendir() function, 520–521

URL arguments, preventing visitors from changing variable
values via, 511–512

url property, JavaScript document objects, 396
user-defined JavaScript functions, calling, 382–384
username/password pairs

See also passwords
accessing Web sites via ASP, 562–563
accessing Web sites via PHP4, 509
breaking into systems, 591–592

usernames
accessing Web sites via ASP, 562–565
accessing Web sites via PHP4, 496–498, 509–511
preventing linking to Web pages via PHP4, 498–499

usernames table, random passwords via PHP4, 508–509

V
validateAndSubmit() function, passing values via hidden

fields, 152
ValidateForm() function

validating data, 123–124
validating radio button group selections, 129
validating selection list choices, 134

validating data, 122–124
See also forms
<script> tags, 123
ValidateForm() function, 123–124

validating forms via onClick attribute, 149–150
See also forms; parsing and extracting form results

via PHP4
validating radio button group selections, 128–129

See also forms; radio buttons
checked property, 129
countSelections() function, 129
length property, 129
name attribute, 128

onSubmit attribute, 129
ValidateForm() function, 129

validating selection list choices, 132–134
See also forms
<form> tags and method attribute, 134
<form> tags and onSubmit attribute, 134
<select> tags and multiple attribute, 132–133
selectedIndex property, 133
ValidateForm() function, 134

validating XHTML, 238–242
See also XHTML
<!DOCTYPE> element, 239, 241
DTD (Document Type Definition), 239, 241
HTML Validation service, 239–242

validator, CSS (Cascading Style Sheets), 216–218
valign attribute

aligning cell content horizontally and vertically, 87, 88
tables and form layout, 145

value attribute
button objects, 154
<input> tags, 120, 125, 127
<option> tags, 132
passing values via hidden fields, 151
Submit buttons, 141

values
maintaining between HTTP requests via cookies

collection, 547–550
passing between JavaScript functions, 364–365
passing parameter to Java applets, 429–431
passing via hidden fields, 151–152
preventing visitors from changing via URL

arguments, 511–512
retrieving from cookie files, 406–407
XHTML attribute enclosed in quotes, 227

variables
declaring JavaScript, 367
displaying via Response.Write method, 536–539
maintaining values between HTTP requests via

cookies collection, 547–550
PHP4, 474–476
preventing visitors from changing values via URL

arguments, 511–512
retrieving information from Server Variables

collection, 556–558
VBScript engine, ASP (Active Server Pages) and, 525, 526,

529, 530
vector graphics, Flash animation, 322–323
video, 328–332

See also animation
<a> (anchor) tags, 332
broadcasting streaming, 348–351
compatibility issues, 331
overview, 328–329
production of, 329–332
SMIL (Synchronized Multimedia Integration

Language), 354–357

I n d e x 6 6 3

Tip&Tec / HTML & Web Design Tips & Techniques / Anderson, King, Jamsa / 9394-8 / Index

P:\010Comp\Tip&Tec\394-8\index.vp
Monday, January 07, 2002 2:25:16 PM

Color profile: Generic CMYK printer profile
Composite Default screen

streaming, 351–352
streaming vs. downloading, 331–332
video-editing programs, 329
Web sites, 331

virtual tours, 332–334
See also animation
Web sites, 333

virus-detection software, 607–609, 610
See also security
ActiveX objects and, 609
CERT Web site, 610
firewalls and, 608
macro-based viruses, 607–608
Web sites, 609, 610

visitorSignIn() function, formatting cookie data, 405
vlinkColor property

JavaScript document object color properties, 402
JavaScript document objects, 396

vspace attribute, JavaScript images arrays, 398

W
wait value, cursor types, 214
watermarks, positioning background images and, 196–199
wave property, filter properties, 205, 206
Web browsers

ActiveX objects and, 422–424
ASP (Active Server Pages) and, 527
cookies acceptance (determining via PHP4), 493–495
defined, 1
Java applets and, 420–422
preventing from displaying “stale” ASP, 543–545
redirecting, 545–547
Web pages and, 2–3

Web cams, 352–354
See also animation
Web sites, 352

Web design
animation and, 318
graphics and, 265–267

Web farms, 631, 632
See also performance

Web layout applications, creating Web pages, 13, 14
Web page gutter size and margin width, 110–111

See also tables
width attribute, 111

Web page templates, 517–519
See also PHP4

Web pages
adding CSS (Cascading Style Sheets) to, 166–170
aligning content via borders, 108–110
aligning text. See text-align property
animation, 316–357
balancing text and graphics on, 272–274
comments, 24–25
creating, 5–6, 11–13, 14
CSS (Cascading Style Sheets), 158–218

CSS rules for embedding fonts within XHTML,
249–251

displaying multiple. See frames
displaying SQL query results in HTML tables on,

504–506
embedding ActiveX objects in, 432–435
graphics, 264–315
gutter size and margin width, 110–111
 (image) tags, 35–37
inserting graphics into, 269–270
inserting Java applets into, 424–432
layering elements, 214–215, 216
naming objects, 392–393
placing graphics into, 269–270
preventing linking to via PHP4, 498–499
printing XHTML, 261–263
publishing via PWS (Personal Web Server), 18–21
redirecting Web browsers, 545–547
sessions via PHP4, 499–502
sound, 326–328
tables, 63–111
templates, 517–519
<title> tags, 21–23
upload file functionality via PHP4, 520–522
video, 328–332
virtual tours, 332–334
Web browsers and, 2–3
writing double quote (“) characters on, 533–535

Web servers
ASP (Active Server Pages) and, 527
benchmark programs and Web sites, 627
monitoring performance, 631–635

Web sites
accessing via ASP, 562–565
accessing via PHP4, 496–498, 509–511
broadcasting streaming audio and video, 349–350
Flash animation, 323, 347
GIF animation, 322
monitoring Web server performance, 635
performance, 627
Shockwave animation, 325
sound, 328
video, 331
virtual tours, 333
virus-detection software, 609, 610
Web cams, 352
Web server benchmark programs, 627

Web-caching devices and proxy servers, performance and,
630, 631

Web-safe color palette, 298–300, 311–313
See also color; graphics
dithering techniques, 311–313
Photoshop, 299, 300

while loops
JavaScript, 377–378
PHP4, 483–484

whois command, disabling remote services, 623

6 6 4 H T M L & W e b D e s i g n T i p s & T e c h n i q u e s

Tip&Tec / HTML & Web Design Tips & Techniques / Anderson, King, Jamsa / 9394-8 / Index

P:\010Comp\Tip&Tec\394-8\index.vp
Monday, January 07, 2002 2:25:17 PM

Color profile: Generic CMYK printer profile
Composite Default screen

width attribute
alt attribute and text-only viewers, 279
<embed> tags, 325
Flash animation, 345
<hr> (horizontal rule) tags, 46
<iframe> tags, 253
 (image) tags, 37, 277–278
JavaScript images arrays, 398
<object> tags, 433
preloading and caching images, 309–310
<table> tags, 84–85
<td> (table data) tags, 85
<th> (table heading) tags, 86
transparent GIFs, 91
Web page gutter size and margin width, 111

WIDTH keyword, Ad Rotator, 574
width property

columns, 183–184
filter properties and, 204

Windows, cross-platform issues for graphics, 274–276
Windows Task Manager dialog box, monitoring Web server

performance, 632–633, 634
With keyword, Response.Write method, 535–536
word processors, creating Web pages, 12–13
word spacing, CSS (Cascading Style Sheets), 188
wrapping text around images, 91–93

See also tables
write method, JavaScript, 380–381
writing double quote (“) characters on Web pages,

Response.Write method, 533–535

X
x-large keyword, text size keywords for XHTML, 243
x-small keyword, text size keywords for XHTML, 242
XHTML, 220–263

See also HTML (HyperText Markup Language)
attribute values enclosed in quotes, 227
<body> tags, 224
case sensitivity of, 225

CDATA section, 231–232
“container” elements, 226–227
converting HTML to. See HTML Tidy
CSS rules for adding color to tables, 247–249
CSS rules for embedding fonts within Web pages,

249–251
<!DOCTYPE> element, 228–229, 237–238
DTD (Document Type Definition), 225, 228–229,

237–238
empty tags, 226–227
grouping selection list items. See <optgroup> tags
<head> tags, 224
<html> tags, 223–224
HTML Tidy (converting HTML to XHTML), 233–237
 (image) tags, 269
inline frames, 251–257
media attributes, 257–260
nesting elements, 224–225
<optgroup> tags (grouping selection list items), 245–247
overlapping tags caveat, 224–225
overview, 221–222
printing Web pages, 261–263
requirements for creating valid, 222–230
rules, 222–230
tags, 222
text size keywords for, 242–245
<title> tags, 229–230
Transitional DTD and <!DOCTYPE> element, 238
validating, 238–242
“well-formed” requirement, 263–264
XML and, 221, 222

xray property, filter properties, 205, 206
xx-large keyword, text size keywords for XHTML, 243
xx-small keyword, text size keywords for XHTML, 242

Z
z-index property, layering Web page elements, 215, 216

I n d e x 6 6 5

Tip&Tec / HTML & Web Design Tips & Techniques / Anderson, King, Jamsa / 9394-8 / Index

P:\010Comp\Tip&Tec\394-8\index.vp
Monday, January 07, 2002 2:25:17 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Tip&Tec / HTML & Web Design Tips & Techniques / Anderson, King, Jamsa / 9394-8 /
Blind Folio 666

INTERNATIONAL CONTACT INFORMATION

AUSTRALIA
McGraw-Hill Book Company Australia Pty. Ltd.
TEL +61-2-9417-9899
FAX +61-2-9417-5687
http://www.mcgraw-hill.com.au
books-it_sydney@mcgraw-hill.com

CANADA
McGraw-Hill Ryerson Ltd.
TEL +905-430-5000
FAX +905-430-5020
http://www.mcgrawhill.ca

GREECE, MIDDLE EAST,
NORTHERN AFRICA
McGraw-Hill Hellas
TEL +30-1-656-0990-3-4
FAX +30-1-654-5525

MEXICO (Also serving Latin America)
McGraw-Hill Interamericana Editores S.A. de C.V.
TEL +525-117-1583
FAX +525-117-1589
http://www.mcgraw-hill.com.mx
fernando_castellanos@mcgraw-hill.com

SINGAPORE (Serving Asia)
McGraw-Hill Book Company
TEL +65-863-1580
FAX +65-862-3354
http://www.mcgraw-hill.com.sg
mghasia@mcgraw-hill.com

SOUTH AFRICA
McGraw-Hill South Africa
TEL +27-11-622-7512
FAX +27-11-622-9045
robyn_swanepoel@mcgraw-hill.com

UNITED KINGDOM & EUROPE
(Excluding Southern Europe)
McGraw-Hill Education Europe
TEL +44-1-628-502500
FAX +44-1-628-770224
http://www.mcgraw-hill.co.uk
computing_neurope@mcgraw-hill.com

ALL OTHER INQUIRIES Contact:
Osborne/McGraw-Hill
TEL +1-510-549-6600
FAX +1-510-883-7600
http://www.osborne.com
omg_international@mcgraw-hill.com

P:\010Comp\Tip&Tec\394-8\index.vp
Monday, January 07, 2002 2:25:17 PM

Color profile: Generic CMYK printer profile
Composite Default screen

	sample.pdf
	sterling.com
	Welcome to Sterling Software

